
r'V1 r~CN <T {
L Copy 2 0 of 36 copies

N FINAL
cc

CID
It- IDA MEMORANDUM REPORT M-496

BIBLIOGRAPHY OF TESTING AND EVALUATION
REFERENCE MATERIAL

Bill R. Brykczynski
Christine Youngblut

DTIC
ELECTE August 1989

S JAN 2 5 19901

Prepared for
Strategic Defense Initiative Organization (SDIO)

Apprcvga- ici pucli: ee- eDismnutcn Uai:=ted

INSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street. Alexandria, Virginia 2231 1-1772

90 U Uo I 0 , IDA Log No. HO 88-33619



DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, or (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have signif-
icant economic implications. IDA Reports are reviewed by outside panels of experts to
ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would
be the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality
and relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers ae reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals
or formal Agency reports.

Memorandum Reports
IDA Memorandum Reports am used for the convenience of the sponsors or the analysts
(a) to record substantive work done in quick reaction studies, (b)to record the proceedings
of conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of
IDA Memorandum Reports is suited to their content and intended use.

The work reported In this document was conducted under contract MDA 903 89 C 0003
for the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be con-
strued as reflecting the official position of that agency.

This Memorandum Report is published in order to make available the material it contains

for the use and convenience of interested parties. The material has not necessarily been
completely evaluated and analyzed, nor subjected to formal IDA Iw.

I Apprvd for public release; unlimited distribution. Unclassified. I



0I

R DForm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pfita reptb ~ ord 6w ths M ofman klfOft i estiried to Irae 1 hoUr per mpoF1e, Ifnddtg the t1me for wmv n In tion. eM rchi SOW ng dXiM da sourceM gat nlgM i d
ilng thle dM neesd, Oi -n1d1 g ai re14 g the olled10 aWomsion. Send Camnw re-w ne this bardn eetkle or sy oder aspeo of this calmctlon 0 oItorn lon,

id g spuhetor m educg thi burde, to Wulngton Heedquamtm Seem Oe, ,orIe 1w hIorlieton opweos ari Ppoi. 1216 Jotemm 0" H~ gy Sufe 120%, Arington,
VA 222430. md to the 011o. ofManagemu an BudgVt Pqewo R uon Proi (0704-010). WWhigton, 0 206 .

1. AGENCY USE ONLY (Leav blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1989 Final

-TITLE AND SUBTITLE 5. FUNDING NUMBERS

* Bibliography of Testing and Evaluation Reference Material

MDA 903 89 C 0003
s. AUTHOR(S) T-R2-597.21

Bill R. Brykczynski, Christine Youngblut

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Defense Analyses REPORT NUMBER

1801 N. Beauregard St. IDA Memorandum Report M-496
Alexandria, VA 22311-1772

* 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Strategic Defense Initiative Organization (SDIO) AGENCY REPORT NUMBER

Room 1E149, The Pentagon
Washington, D.C. 20301-7100

11. SUPPLEMENTARY NOTES

12.. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution. 2A

13. ABSTRACT (Muxknwn 200 words)

The purpose of IDA Memorandum Report M-496, Bibliography of Testing and Evaluation Reference
Material, is to present the reference material acquired in the course of developing IDA Paper P-2132, SDS
Testing and Evaluation: A Review of the State of the Art in Software Testing and Evaluation with

• Recommended R&D Tasks. This document comprises four sections: Section 1, Subject Index; Section 2,
References; Section 3, Author Index; and Section 4, Abstracts.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software Testing and Evaluation (T&E); Software Validation; Software Maintaina- 390
bility; Software Development; Regression Teseting; Software Life Cycle. 16. PRICE CODE

17. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. uMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 764001.200- Standardo Frm 294 (Rev. 2-0)
pnwcoI by ANSI s$t. Z39-1
2W102~



IDA MEMORANDUM REPORT M-496

BIBLIOGRAPHY OF TESTING AND EVALUATION
REFERENCE MATERIAL

Bill R. Brykczynski
Christine Youngblut

* Acc,-Sto F

NTis-

August 1989 uA

•T By .. . d

Av,! 0t rC.tt

I DA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-R2-597.21



August 9, 1989

* PREFACE

The purpose of IDA Memorandum M-496, Bibliography of Testing and Evaluation Refer-
ence Material, is to present the reference material acquired in the course of developing IDA
Paper P-2132, SDS Testing and Evaluation: A Review of the State-of-the-Art in Software Testing

* and Evaluation With Recommended R&D Tasks. This document was prepared for the Stra-
tegic Defense Initiative Organization (SDIO).

Sv



* CONTENTS

PREFACE . 1

1. SUBJECT INDEX ...................... 1

* 2. REFERENCES...........................57

3. AUTHOR INDEX............................145

4. ABSTRACTS..................................181

S vii



August 9, 1989

* 1. SUBJECT INDEX

Al Certification, see also Security Verification
structuring a system for, [Good84a]

ADAMAT, [Keli85a], [Kel185b], [Perk87]
analysis and validation of metrics, [Perk86]

• AFFIRM, [Gerh8O], [Thom81]
applications of,
specification/verification of communication protocols, [Suns77], [Suns82]

comparison with other techniques, [Cheh8l], [Mill8lb]
example of model formulation and analyzer for PSL/PSA, [Gerh84]
status and future directions, [Kemm86]

* underlying formalisms, [Muss79], [Suns77], [Suns82]
ANNA: A Language for Annotating Ada Programs, [KrieS0], [Luck84a], [Luck84b]
automated support for, [Luck85]
consistency checking in Ada and ANNA, [Krie83]
implementation of a subset, [Sank85]
transformation approach, [Sank85], [Sank86]

* uses of,
comparative testing, [Luck85]
self-checking Ada programs, [Luck85]
semantic specification of Ada packages, [vonH85]

ASSET: A System to Select and Evaluate Tests, [Fran85a], [Fran85b]
example script, [Fran88]

* ArTIEST,
AID: ATTEST Interface Description Language, [Wint78]
constraint management in, [Dill8l]

Abstract Data Types,
applications of,
formal verification, [Flon77]

* functional testing, [Boug85a], [Boug86], [Choq86]
performance analysis, [Boot8O]
programming, [Gutt75]
prototypes and implementation models, [Belk86]
to simplify modifications, [Lind76]

automated support for, see DAISTS, [Gann80]
* specification (and verification) of, [Flon77]

access-right expressions for sequential constraints, [Kieb83]
algebraic techniques, [Gogu78], [Gutt77], [Gutt78b], [Zi1174]
automated support for, AFFIRM, DAISTS
logic programming, [Boug86]
proof of correctness of implementations of, [Gutt78a]

* axiomatic techniques,
applied to modeling specification languages, Ljerh84]
testing completeness of,
automated support for, [Jalo89]

comparison of specification formalisms, [Emde8l]
evaluation of specification techniques, [Lisk75]

* hierarchical specification, [Wirs83]
using state machines, [Shan82]

survey of techniques, [Shan82]



August 9, 1989

Acceptance Testing,
debugging techniques, [Laue79]
evaluating readiness for, [Bowe79]
example of,
for Ada compilers, [Amor89]

management using coverage measures, [Basi84a]
methods, [CSC78], [Cele81]
based on internal program state behavior data, [Prot88]

screening criteria for military software, [Pari76]
supported by reliability measurement, [Thom8O]

Ada,
acceptance testing,
example for compilers, [Amor89]

animation of programs, [Feld89l
automated support for, Development Environments
interactive Ada, [Stan83]
programming-in-the-large, [Wolf85a]
run-time environments, problems with, [Bend89]
using DIANA trees as an internal form, [Rose84], [Rose85a]

communication protocols,
Remote Entry Call/Remote Procedure Call, [Schu81]

compiler validation, [W'dl89]
debugging, [Cont85]
AdaTAD, [Fain85], [Fain86], [Lind88c]
VIPS: Visual and Interactive Programming Support, Isod871
annotation based see also ANNA, TSL
capabilities needed, [Brin85]
graphical debugger, [Mora5]
graphics-oriented animation tool, [Feld89]
knowledge-based see also STAD,
reconstructing execution host/target, [Tayl82b]
saving traces for, [LeDo85]
symbolic debugger, [DiMa85], [Maug85], [Maye89]

definition of, [HONE80]
AVA: Annotated Verifiable Ada, [Smit88]
EEC formal definition, [Mayf86]
axiomatic semantics for exceptions, [Luck8Ob]
definitions of modularity and their application, [Katz87]
denotational semantics, [Mear83]
description of language using Petri Nets, [Mand85]
problems with task semantics, [Germ84]
virtual machine for, [Grov8O]

experiments in, [Agre86], [Basi82b], [Basi84d], [Godf87]
impact on reliability, [Goel88]
lessons learned, [Basi85h], [Brop87]

fault-tolerance,
correspondent computing, [Lee89a]

formal verification of, [Luck80a], [Luck8Ob], [McGe82]
current issues, [Mayf85], [Mayf86], [Roby85]
proof system for tasks, [Barr82I, [Gert84], [Mear8l]
using symbolic execution, [Dii187], [DiIl88a], [Dii188b], [Harr88c]

2



August 9, 1989

0 specification and proving for exceptions, [Luck8Oc]
interface control see also AdaPIC Toolset,
measurement of,
Partial Metrics System for metric-driven design, [Reyn86], [Reyn87], [Reyn89]
automated support for,
metric analysis, experience with, [Ande88]

characterization of an Ada development, [Basi85h]
metrics for, [Basi83a], [Gann83], [Gann85], [Gann86]

Cyclomatic Complexity,
ACE metric and tool, [Taus87a], [Taus87b], [Taus88]

Software Science for designs, [Szu84]
analysis and validation of, [Perk86]
automated support for see also ADAMAT,
classification of, [Basi84c]
example of WIS metrics, [Dela88]
structure and maintainability, [Katz86]
complexity, [Leac87]

software structure,
based on DQL: DIANA Query Language, [Byrn89]

performance evaluation,
of compilers, [Shaw89]
benchmarks for real-time system compilers, [Goel89]

of programs, [Stan83]
of run-time environments, [Bend89]
performance analyzer, [Maye89]
supported by model simulation, [Lee89b]

programmer errors, [Good86b]
quality assurance,
planning for Ada development with 2167, [Bark89]

* reproducible testing, [Tai85b]
reuse,
Ada Software Repository, [Conn87]
metric analysis of, [Leac89]

Moorehouse object-oriented reuse library, [Jone89]
RLF: Reusability Library Framework project,
domain modeling, [Sold89]

hypertext for taxonomies of packages, [Lato89]
reusability analysis and measurement, [Romb88g], [Romb88h]

run-time environments,
evaluation and selection of, [Lefk89]

run-time monitoring, [Helm84b]
ART: relational translator and interpreter, [DiMa85]
ATEST: Ada Test and Analysis Tools, [Maye89]
based on TSL specifications, [Helm84a], [Helm85]

detection of errors and evasive actions, [Helm83]
transformation and monitoring, [Germ82a], [Germ82b], [Germ84], [Helm83]

statement probes, [Prob82c]
simulation,
TASKIT: Tasking Ada Simulation Kit), [Ange89]

specification languages see also SADMT, ANNA, TSL
ADAM: Ada-based language for multiprocessing, [Luck8l]

* 3



August 9, 1989

specifying tasking using patterns of behavior, [Meld88]
test drivers,
GET Test Environment Generator, [Bess87]
TBGEN Test Bed Generator, [Pout87]
based on UATL: Universal Ada Test Language, [Zeig89]

testing and analysis of,
ASAP: Ada Static source code Analyzer Program, [Doub87]
ATEST: Ada Test and Analysis Tools, [Maye89]
data flow analysis see also STAD,
mutation analysis,

automated support for, [Appe88]
reference manual for mutant operators, [Bows87]

safety analysis using fault-tree analysis, [Leve83c]
automated support for, [Cha88]

standards checking,
based on DIANA intermediate form, [Byrn89]

static concurrency analysis, [Tay183a]
automated support for, [Wamp85]
supported by Petri nets, [Mura89], [Shat88]
using "IG and TICG models, [Long88]

structural testing,
automated support for, [Basi86d], [Wu87c]
requisite support tools, [Tayl86a]

coverage monitors,
Test Coverage Monitor/Bottleneck Finder, [Pout87

symbolic execution, [Knig85b], IOGen
CASEX: Concurrent Ada Symbolic EXecutor, [Harr88a]

symbolic testing techniques, [Clar86b]
AdaPIC Toolset, [Wolf86c]
Algebraic Program Testing, [Howd76a], [Howd78b]
comparison with other techniques, [Zeil84]
for concurrent systems, [Avru83]
probabilistic approach, [DeMi77]

Algol,
debugging tools for Algol W, [Satt72], [Satt75]
numerical algorithms testbed, [Henn78]
run-time monitoring,
Algol68 numerical algorithms testbed, [Henn76a]

Alphard,
support for formal verification, [Wulf76]

Animation of Programs,
PegaSys: Programming Environment for the Graphical Analysis of SYStems, [Mori83]
demonstration system for Ada, [Feld89]
system for algorithm animation, [Bent87]
using Smaltalk, [Lond85]
using VDM and Prolog, [Bloo86]

Arcadia, [Wolf86b]
determining requirements for persistent object capability,
PGRAPHYTE model, [Wile88]

environment architecture, [Oste86b], [Tayl86b], [Tay188]
object management, [Oste86a]

4



August 9, 1989

research objectives, approaches, status, [Tay186b], [Tayl87], [Tayl88]
support for process programming, [Tayl88]

Arithmetic Fault Detection, see also Perturbation Testing
Artificial Intelligence,

expert systems,
ARROWSMITH-P for management, [Basi85g]
testing strategy for, [Hite88]

heuristics,
analysis of nature and power of, [Pear84]
characterization of methods, [Pear84]
heuristic search for error detection, [Andr8l]

knowledge-based testing environment,
for kernel system calls of UNIX systems, [Pesc85]

support for debugging, [Hara83], STAD, [Shap8l]
LAURA to debug student programs, [Adam80]
PROUST, [John84]
model of fault localization process, [Sedl83]

* support for domain modeling, [Sold89]
Assertions,
automated support for,

input/output assertion verifier, [SiyaSO]
temporal assertions, [Lamp83]
uses of,

* break-point assertions for debugging,
ALADDIN for assembly language, [Fair79]

error detection,
combined with heuristic search algorithms, [Andr8l]
during design see also DACC,

formal verification see also Inductive Assertion [KeU76],
* testing programs against formal specification, [Majo83]

verification of program execution, [Chen76], PET
Automata Theoretic, [Chow78]
Availability Estimation and Measurement,
modeling systems with hardware/software faults, [Land77]
using data from design/code inspections, [Gaff88]

Axiomatic Proof Techniques, [Chan79], [Hoar75], [Owic75], [Owic76]

BASIC,
program testing assistant, [Chan84]

Backtracking Techniques,
proving correctness from contro! structure abstraction, [Gerh76b]

* Bibliography on, [Perr83], [Youn89b]
SEL literature, [SEL82]
automated support tools, [DeMi87a]
formal verification, [Bryk89], [Lond75], [Yeh77J
intermittent assertion, [Grie79]
invariant assertion, [Grie79]

* proving correctness of programs, [Lond70]
measurement, [Bryk89]
metrics, [Cook82]
software quality, [Boeh78]

* 5



August 9, 1989

testing and analysis, [Bryk89], [DeMi87a], [Perr88], [Yeh77], r[oun89b]
mutation analysis, [Guin87]

Boundary Value Analysis, [Selb86]
Boyer-Moore Computational Logic, [Boye79], [Boye8l]
comparison with other techniques, [Crai88a], [Kauf87a], [Kauf87b]
examples of, [Russ83]

FM8501 verified microprocessor, [Hunt85], [Hunt87]
Goedels' incompleteness theorem, [Shan87]
RSA Public Key Encryption Algorithm, [Boye84b]
Turing completeness of pure Lisp, [Boye83]
verified assembler, [Moor88]
verified operating system kernel, [Bevi87]

theorem prover, [Boye79], [Boye8O], [Boye84a], [Boye88]
Branch Testing,
based on concept of essential branches, [Chus87]

automated support for, [Chus87]
comparison with other techniques, [Howd77c], [Ntaf8la]
problems and methods, [Chus87], [Huan75]
types of errors found and resource costs, [Gann79]

COBOL,
automated support for,
mutation analysis, CMS1 system, [Hank8O]
test data generator, [Saud62]

errors, error-proneness, error diagnosis, [Lite76]
program analysis for, [AI-J82]
code-based model for predicting path faults, [Rogg80]

software science analysis of programs, [Shen80]
Cause-Effect Graphing, [Elme73]
Change Data,
applications of,
evaluation of development, [Basi82a], [Weis85c]
evaluation of requirements,
examples from A-7E requirements, [Frye8l]

Chief Programmer Teams, [Bake8l]
impact on quality, [Bake72a]
part of an overall development methodology, [Bake72b]

Classification of,
automated support tools, [Reif75], [Reif79b]

testing and analysis tools, [Mil177b]
cost models, [Ducl82]
data flow, [Fosd76a]
errors, [Beiz83I, [JohnXX], [Ostr84], [RADC76a]
error complexity (measure of detectability), [Naka89]

formal verification methods, [Mili84]
heuristic methods, [Pear84]
measurement,

complexity measures, [Gors80]
metrics, [Basi86c]
for Ada, [Basi84c]

module cohesion, (Emer84]

6



August 9, 1989

• productivity factors, [Vosb84]
reliability models, [Rama82]

program structure types, fTurn80]
testing and analysis techniques, [Youn89c]
dynamic analysis techniques, [Howd81c]
fault-based teclmques, [More88]

* reliability validation techniques, [Triv80]
Cleanroom Software Development, [Dyer8lb], [Dyer8lc], [Dyer82c]
certifying model, [Curr83]
certifying reliability, [Dyer82b]
engineering software under statistical quality control, [Mill87a]
evaluation of, [Selb85], [Selb87b]

* project management data, [Dyer8la]
software validation, [Dyer83]
statistical quality control, [Dyer85b]
statistical testing for, [Dyer82a]

Code Reading and Inspections, [Faga74], [Faga76]
advances in, [Faga86]

* comparison with other techniques, [Hetz76], (Hwan8l], [Selb86]
fault detection effectiveness/cost faults, [Basi85b]

evaluation of, [Selb85]
experiments in, [Cail79], [Myer7ga]
applications of a probability-based model, [Jeli73]

indicators of quality inspections, [Buck8l]
uses of,

estimating software availability, (Gaff88]
investigating program correctness, [Brit88]
mechanism for error reduction rates, [Faga76]
quality assurance, [Bark89]
role in the software life cycle, [Basi86b]

Cohesion,
applications of,
measuring the design process, [CruiSO]

discriminant metric for classification of, [Emer84]
for generation of hierarchical system descriptions,
based on data bindings, [Selb88a], [Selb88b]

0 Communicating Sequential Processes, [Hoar85]
ECSP,
Concurrent Debugger, [Baia85], [DeFr85], [Late84]
static analysis of interprocess communication,
automated support for, [Baia84]

calculus for total correctness, [Hoar8l]
parallel composition, [Hoar78]
proof systems for, [Apt8O], [Apt83a], [Levi8O], [Levi8l], [Zhou8l]
static analysis of, [Apt83b]

Communication Protocols, [Sari88a]
certification of, [Bart80]
design of,

computer-aided design tool for testing, [Barb88]
design vahidion using executable specifications,
automated support for, [Jard83]

* 7



August 9, 1989

formal methods, [Boch8O]
perturbation technique for reachability analysis, [Zafi8O]

automated support for, [Zafi8O]
production rules to prevent errors, fZafi8O]
types of errors and their effects, [Zafi80]

for Ada,
Remote Entry Call/Remote Procedure Call, [Schu81]

security analysis,
Interrogator, [Mil187b]

specification (and verification) of, [Boch78I, [Sari84b], [Sari88a], [Zhou81]
CEDAR Programming Environment, [Fern85]
Escort for integrated v&v and simplification, [Waka89]
XESAR sliding window protocol example, [Rich87b]
automated testing of, [Ural84]
state transition approach,
automated support for see also AFFIRM,
semi-automatic implementation of protocols, [Boch87b]

using Gypsy, [DiVi82]
using Lotos, [ISO87c], [Najm87]
using logic interpreter SLOG, [Choq85]
using symbolic execution, [Bran78]
via projections, [Lami84]

testing and analysis, [Rubi82], [Sabn85]
based on finite state machines, [HoIz82], [Waka89]

automated support for, [Holz821
dynamic analysis, [Sari88c]

based on finite state transition model,
limiting non-determinancy, [Jard83]

conformance testing for ISO-OSI protocols, ISO-OSI [Stee86]
using automaton models, [Kato86]
using checking sequences, [Heng87]

error detection with multiple observers, [Dsso85]
reachability analysis, [Zhao86]
RGA: Reachability Graph Analyzer, [Morg86], [Morg87]

test generation, [Sari88a]
based on finite state machines, [Sari82], [Sari84a], [Sari84b], [Sari87], [Sari88b]

CONTEST-FSM tool, [Forg87]
931, [Uyar86]

using T-, U-, D- and W- methods,
evaluation of fault coverage, [Sidh89]

testing methods based on formal specifications, [Dsso86]
trace analysis, [Boch88], [Sari88a]
for conformance and arbitration testing, [Boch87a]

Compiler-Based Testing,
example for a record-oriented text editor, [McMu83]
static analysis,
ECSP interprocess communication, [Baia84]

using input-output specifications, [Haml77a], [Haml77b]
Compiler Techniques, [Aho86]
for code analysis and generation, [Payt82]
optimization for asynchronous multiprocessor, [Hibb82]

8



August 9, 1989

* smart'recompilation, [Tich86]
to support symbolic debugging, [John79]
type checking for separately compiled parts, [Levy84]

Compiler Testing,
acceptance testing,
example for Ada compiler, [Amor89]

* automated support for,
symbolic interpretation, [Same76]
syntax machine to generate random test cases, [Hanf7O]
test generator based on grammars, [Bazz82], [Cele8O], [Hous77]

performance evaluation, [Shaw89]
benchmarks for Ada real-time compilers, [Goel89]

* specification and verification, [Pola8l]
Compiler Verification,
for micro Gypsy, [Youn86c]

Complexity, [INF076]
computational complexity,

Blum axioms and complexity gaps, [Boro72]
* applications of, [Pipp78]

inductive inference, [Angl76]
examples of,
of specific control flow measures, [Howa85]

theory of, [Hart7l], [Pipp78]
framework for research, [Rabi77]

process complexity,
of analyzing synchronization structure, [Tayl83b]
of modeling information systems, [Mart70]
of temporal logic, [Sist88]
programming complexity,
impact of programming factors, [Duns78a], [Duns78b]

* measures for, [Duns77], [Duns78a], [Duns78b]
relation with problem complexity, [Wood79b]

testing complexity, [Tai8O]
program complexity, [Bell74], [McTaXX]
as integral part of development, [McC176]
contributing factors, [GorsS0], [McC178aI, [Unde63]

* experiment in, [Zoln76]
program structure, [Gree76], [Piwo82], [Schn77c]
results from a Delphi Survey, [Zoln8l]

control of, [Dijk76b], [McC178a], [McC178b]
impact on,
error characteristics, [Basi82d], [Grem84]

• error detectability, [Gree76]
maintainability, (Vess83], [Wake88]
programmer productivity, [Chen78a]

relationship with,
information content, [Shoo79]
psychological complexity, [Evan83b]

* statistical language theory and, [Laem78]
psychological complexity, [Love7Th]
of programs, [Weis74]

* 9



August 9, 1989

relationship with program complexity, [Evan83bI
resource complexity,

coordinating personnel activities, [Theb84]
statistical theory, [Shoo77bI

Complexit Measures, see also Software Science, Cyclomatic Complexity [SaUl75]
a characteristic set, [Elsh84]
applications of, [Kear86]
assessing module accessibility/testability, [Moha76b]
cost estimation, [Ducl82]

automated support for,
FORTRANL static source code analyzer, [Li87I

classification of, [Gors8O]
comparison of, [Li871
major properties, [Bake8O]

evaluation and validation of, [Elsh84], [Kafug5a], [Zoln76]
code and structure metrics, [Cann85]
factor analysis of dimensionality of metrics, [Muns89]
for assessing maintainability,

effectiveness of subjective/objective measures, [Gibs89]
measurement scales for characteristics, [Harr82]

framework for, [Basi8Ob]
predictive value, [Davi88]

for Ada see also Ada,
problems with, [Kear&5]
relationships,
among measures, [Basi83c], [Lind89], [Muns89]
sensitivity to program structuring, [Evan83a], [Evan84c]
with development effort, [CannS5], [Lind89]
with error characteristics, [Basi83c], [Cann8S], [Schn79a]

specific measures,
Chapin's measure, [Chap79)
Harrison-Magel's nesting level, [Evan84a]
Information Flow Complexity, [Henr79], [Henr8laI, [Kafu88]
evaluation of, [Cann85]

Invocation Complexity, [Kafu88], [McCl78a]
evaluation of, [Cann85]

Program Analysis Complexity Model, [McCI76I
Scope Complexity Ratio, [Harr8lb]
Syntactic Interconnection Model, (Wood81c]
evaluation of, [Cann85]

based on information theory, [BerI8O], [Chen78a], [Shoo79]
based on nesting level, (Harr8la], [Piwo82]
localization of variables, [Rich76]

control flow measures, [Howa8S]
derived metrics slope and r square, [Basi83c]
for clarity measurement, [Gord79aJ, [Gord79b]
for maintenance,
figure-of-merit for modification complexity, [Yau78]
knot count measure, [Blai85a]

for productivity prediction,
model of programming effort, [Wood8la]

10



August 9, 1989

primitive level instructions, [Kitc8l]
for project management,
assessment of, [Suno82I
step count, [Suno82]

for unstructuredness, [Wood79a]
* hybrid metric with context sensitivity, [Li87]

internal and external module complexity, [Lew88]
knot count measures, [Bake80]

evaluation of, [Bake79a]
program bandwidth, [Lind89]
stability measures, [Yau78], [Yau79]
evaluation of, [Cann85]

sum of the difficulty of constitutent elements, [Bern84]
system measures,
quantifying complexity of clustering partitions, [Bela8l]

theoretical limitations, [Leac87]
Computational Testing,

* as a debugging aid, [Clar83b]
Computational Work Measurement, [Hell72]
Concurrent Systems,
different ways of using parallelism,
axiomatic proof rules for, [Hoar75]

formal verification of,
nonassertional approach, [Lamp79a]
survey of verification techniques, [Barr85]

models of concurrency, Constrained Expressions, CSP
abstract conceptual model, [Keli76]
geometric models, [Carr82], [Cars84]
notion of synchronization structure,

* complexity of analysis, [Tayl83b]
parallel-program model, [Kell76]
relation of parallel/nondeterministic, [Flon78a], [Flon8l]
semantics of concurrency, nondeterminism, communication, [Fran79]

specification of,
language based on process interactions,
denotational semantics, [Kahn77]

using temporal assertions, [Lamp83]
synchronization structures,
based on rendezvous,
formalism of, [Tayl83b]

testing and analysis, Static Concurrency Analysis
* IN-SYM test for synchronization errors, [Tai85c]

algebraic techniques, [Avru83]
anomaly detection, (Bris79]
automated support for, [Manc83]
combining static and dynamic analysis, [Tayl83c]
data flow analysis, [Tayl80b], [Tayl8Oc]

* automated support for HAL/S programs, [Tayl78b]
error-based testing, [Long88]
examples from RC 4000 multiprogramming system, [Brin73]
of specifications and design, [Tai85a]

* 11



August 9, 1989

structural testing, [Tayl86a]
support for static analysis, [Tayl83b]
timing analysis,
based on path expressions, [Hsie89]

theory of testing, [Weis88a]
Constrained Expressions,

DC DYMOL translator, [Ho79]
behavior generator for, [Aver84]
design language, [Di1186]
for analysis of concurrent/distributed systems, [DiU85], [Dill88c]
automated support for, see ATTEST, [Dil81]
design analysis, [Dil84]

automated support for, [Avru86]
Constraint Logic Programming,
for specification-based testing, [Gerh88b], [Gorl87]
LEONARDO project, [Gerh88a]

Control Flow Analysis, [Carr82], [Wood77]
algorithms for, [Hech77a]

Cost Estimation,
approaches, [Jame77], [McGa84], [Nels66]
conversion cost-estimation techniques,
review and analysis of, [Hout8l]

macromethodology for, [Putn78]
size estimation based on data structure metrics,

effort estimation based on metric evolution, [Wang84)
structural forecasting, [Wolv74]

comparison of techniques, [Roac8O]
data requirements for, [Wolv74]
effort estimation, [Schn78], [Wals77a], [Zelk79]
back-to-front programming prediction, [Wang83]
relationship with other variables, [Basi85e]
using 1 programmer, 4 program characteristics, [Chry78]

examples of,
deep space networking, (Taus8l]
from SEL resource forecasting, [Basi78a]

resource utilization curves,
Parr curve, [Basi8lf]
Rayleigh curve, [Pica8l]
adjustments for maintenance effort, [Wien84]

based on system structure, [Parr8O]
separated as work and cost units, [Jone78]
software cost estimation study, [Herd79]
to support management, [Putn77], [Putn78], [Putn79]

Cost Models, [DACS79a]
COCOMO, evaluation and tailoring of, [Miya85]
Jensen macrolevel model, [Jens83a]

sensitivity analysis of, [Jens83b]
PRICE, [Frei79]
in a life cycle case study, [Kuhn82]

SOFCOST: Grumman's cost estimating model, [Dirc8l]
WICOMOM: Wang Institute cost model, [Dems82]

12



August 9, 1989

• avionics software support cost model, [SYSC83]
classification of,
evaluation of classes, [Ducl82]

evaluation of, [CookSO], [Thib8l]
extending to include modularity factors, [Wood8Oa]
for fault tolerance strategies, [Scot87]

* for test planning, [Brow89], [Goel8l]
meta-model for resource expenditures, [Bail80]
program size estimation model, (ItakS2]
reflecting complexity of personnel coordination, [Theb84]
review of, [Ducl82]
simulation models,
TSL: Total Software Life-Cycle Model, [Ducl82]

size, complexity, personnel skill, specification volatility, [Okad82]
staffing implications, [Taus82]

Coupling,
applications of,
measuring the design process, [Crui80]

* for generation of hierarchical system descriptions,
based on data bindings, [Selb88a], [Selb88b]

Coverage Monitors,
Program Testing Translator, [Stuc72]
for Ada, see Ada, [Pout87]
principles and practices for, [Paig77a]

* self-metric software see also PET
Cyclomatic Complexity, [McCa76]
adaptations of, [Bake79a], [Hans78]
applications of,
aid to testing, [McCa82a], [McCa82c], [Perr88]
complexity measurement, [Elsh78c], [Hans78]

0 measure of program structuredness, [McCa76]
productivity prediction, [Blai85a], [Curt79a], [Curt79b], [Curt8l], [Wood8la]
program size estimation, [Gaff79]
project management, [Suno82]
support for regression analysis, [McCa82a]

comparison with other measures, [Bake8O], [Gaff79], [Harr8lb], [Kitc8l], [Wood79a], [Wood8lal
evaluation of, [Bake79a], [Basi8lg], [Evan84a], [Harr81a]
ability to provide objective measure of effort, [Kitc8l]
anomalies and extension to overcome, [Myer77]
measures of comprehensibility, [Boys79]
validation of across FORTRAN programs, [Basi83b]

for Ada, see Ada, [Taus87a]
relationships,
with development effort, [Lind89]
with other measures, [Henr8la], [Lind89]

DACC: Design Assertion Consistency Checker,
cost-effectiveness of, [Boeh75a]

0 DACS,
glossary of software engineering terms, [DACS79b]
quantitative software models, [DACS79a]

* 13



August 9, 1989

software life cycle tools directory, [DAC S85]
DAISTS: Data Abstraction, Implementation, Specification and Testing System, [Gann8O], [Gann8l], [Haml79],
[McMu82]
evaluation of, [McMu8O]

DARTS: Design Aids for Real-Time Systems, [CSDL8O], [Furt8l]
DAVE, [Oste75a], [Oste75b], [Oste76a]
experience with, [Fosd76a], [Oste76b]

DISSECT, [Howd77b]
advantages, limitations, and uses of, [Howd76eI

DREAM: Design Realization, Evaluation and Modeling System, [Ridd7g], [Ridd791
DDN: DREAM Design Notation, [Ridd78]

Data Based Program Testing, [Lask86]
Data Bases,
development data,
BCS software production data, [Blac771
comparison of RADC and SEL, [Turn8la]

software engineering, [Rombg7c]
Data Collection and Analysis, see also SEL
applications of,
experimental research, [Basi84b]
for experimental research, [ZelkS2]
management, [Basi84b]

approaches,
SARE: Software Acquisition Resource Expenditure, [Duma83I

data requirements for,
cost estimating, [Wolv74]
reliability measurement, [Litt8Ob], [McCa87a], [Thayl5]

examples of, [Bake771
ASTROS measurement program, [John75]

for error data, [Fung85], [Rube75], [Thib78]
goal-directed data collection,
based on change data, [Basi8lb]
four applications of, [Basi85fl
to evaluate development methodologies, [Basi82c]

methodologies for evaluating failure databases, [DuvaSo]
techniques, [RADC76a]
validation and analysis, [BasiSOc]

Data Flow Analysis, [Carr82I, [Fosd76b], [Herm76]
algorithms for, [Alle74], [Alle76], [Bart78], [Fosd76a], [Hech75], [Hech77a], [Jach84]
app~lications of, [Oste8la]
detection of some unexecutable paths, [Oste77]
required element testing, [Ntaf8laJ, [Ntaf 82]
support for automatic program slicing, [Weis841

automated support for see also DAVE, ASSET, FORThST, STAD
block testing, [Lask82]
criteria,
Laski-Korel criteria, [Lask83]
Rapps-Weyuker criteria, [RappSO]
complexity of, [Weyu84a]

comparison of, [Clar8Sa], [Clar86a], [Lask87]
error detection ability, [Girg86a]

14



August 9, 1989

0 selectivity of path selection criteria, [Zeil88aJ
feasible criteria for nonexecutable paths, [Fran86], (Fran88]

d-tree testing, [Lask82]
data flow classification, [Fosd76a]
for concurrent systems, [Reif79cI, [Tayl8Ob], [Tayl8Oc]
for recursive PLi programs, [Rose75]
formalism for specifying diverse range of sequences, [01en86]
using node listings, [Kenn75]

Data Space Analysis, [Paig8l]
Debugging, [Brow73b], [Rust7l]

and understanding, [Luke8O]
architectural support for,
requirements for, [John82a]

automated support for,
applications of,
generation of program traces/profiles, [Satt75l

desirable features,
concurrent systems, [Baia&5], [Webe83]
distributed systems, [Garc84I

real-time systems,
reconstructing execution host/target, [Tayl82b]

survey of, [Schw7Oa]
techniques for improving efficiency, [Laue79], [Satt7S]

automated tools,
AIEDS: Advanced Interactive Debugging System, lHart79]
ALADDIN for assembly language, [Fair791
ECSP Concurrent Debugger, [Baia85], [DeFr85], [Late84]
EXDAMS, [Balz69]
FORTRAN post mortem dump system, [Ng781
Incense for displaying data structures, [Myer831
PEBUG: Purdue Extendable Debugging System, [Blai7l]
for Ada see also Ada,
for Algol W, [Satt72], [Satt75]
for dataflow machines, [Wahl88]
for distributed systems, [Schi8l]
TAP, [Gord86], [Gord88]
based on EDL see also EDL,
debugging commands, [Stan8O1

for real-time systems,
RED and implementation schemes for, [111183]

knowledge-based, [Hara83], [Shap8l]
LAURA, [Adam8O]
PROUST, [John84]

symbolic debugger, [Brue831, [John79]
RAIDE language independent system, (John78]
Symbolic Debug/1000, [HCP82]
source level debugger for HP-1000, [John83]

* by independent persons, [Musa76]
empirical stopping rule, [Form77l
hierarchical approach, [Lask79]
models for assessing effects of process imperfections, [Down85a], [Down86l



August 9, 1989

psychological study of, [Goul72], [Goul74], [Goul751
role of, [Schw70a]
strategies, [Laue79]
supported by,
computational and domain testing, [Clar83b]
error-sensitive testing, [Fost83]
knowledge-based model of fault localization, [Sedl83]
program slicing, [Weis84]

Decision Tables, [Pooc74]
checks for redundancy, consistency, completeness, [Pooc74]

Deductive Reasoning, [Dijk68]
Dependability Measurement, see also Reliability Measurement, Availability Measurement
Design Analysis, [Balz81], [Gerr85]

automated support for, DREAM
DECA, [Carp75]
SAMM modeling tool, [Lamb78]
TINKER: interleaving testing/design, [Lieb8O]

based on formal specification, [Gutt80]
concurrent systems,
to detect synchronization errors, [Tai85a]

inspections, see Code Reading and Inspections, [Faga76]
testability analysis,
automated support for, [Yin8O]

using assertions see also DACC,
using executable specifications, [Davi82b]
using finite state machines see also Automata Theoretic,

Design Evaluation, see also Coupling, Cohesion
application of Software Science, [Szul8l]
application of software science,
for Ada, [Szu184]

evolution of design metrics research, [Romb88f]
measures of complexity, [WhitSO]
measures of quality, [HenrXX], [Troy8l]
Design Indicators, [Ross88]
System Entropy Function, [Moha79]
System Work Function, [Moha79]
automated support for, [Szu183], [Yin78], [Yin79], [Yin80]

metrics for embedded real-time designs, [SzulSO]
Development Environments,
ARROWSMITH-P expert system for management, [Basi85g]
Cedar Programming Environment, [Teit84]
Hughes design analysis and testability system, [Yin8O]
IPE: Incremental Programming Environment, [Medi8l]
Interlisp programming environment, [Teit8l]
LEONARDO project, [Conk86]
PDS 2: Process Design System 2, [Kopp76]
SOFTING Software Engineering Environment, [Snee85]
SPS: Software Productivity System, [Boeh84b]
SSAGS: Syntax and Semantics Analysis and Generation System, [Payt82]
SSES: Software Specification, Evaluation System, [Hodg76]
Toolpack, [Oste83], [Oste84]

16



August 9, 1989

0 design principles, [Tayl85], [Tayl86b], [Tayl87]
guidelines for incorporating metrics, [Selb87a]
improvement-oriented, [Basi88]
integrated tool sets, [Oste83]

sharing intermediate representations, [Lamb83]
persistent typed object management,
PGRAPHrrE model, [Wile88]

tool fragment approach, [Zeil87]
user interfaces, [YounS8b]

evaluation of,
methodology for, [Weid86]
workstations, [Koer84]

for Ada, Arcadia
ARCTURUS, [Stan83], [Stan84a], [Tayl85]
Alsys tool set,
Ada program VIEWer, [Maug85]
event-driven, symbolic debugger, [Maug85]

GRAPHITE: a meta-tool for development, [Clar86c]
based on wide-spectrum languages, [Luck86a]
programming-in-the-large, [Wolf85a]

for concurrent/distributed systems,
MUST flight software production environment, fTayl78b]
automated support under UNIX, DEMOS/MP, [Mi184]

reverse engineering,
ADDS: Automated Design Description System, [Arth88]

role in quality assurance, [Cher8Oa], [Cher8Ob]
Distributed Systems,
analysis of designs, [Avru85], Constrained Expressions
based on modified Petri nets, [Cagl82]

* debugging, (Schi8l]
measurement of,
guidelines and standards for,

quality measurement, [Bowe83]
model for distributed computations,

FA/C Functionally Accurate/Cooperative, [Less8l]
* computation-communication model,

automated support under UNIX, DEMOS/MP, [Mi1184]
to support distributed termination, [FranS0]

trace analysis, [Jard87]
DoD Guidelines and Standards, [DeMi87a]
Defense System Software Quality Program, [DODS86]

* process-product relationships with STD-2167, [Lave88]
Defense Systems Software Development, [DOD88]
Technical Review/Audits for Systems, Equipment, Computer Programs. [MIL85]
independent verification and validation, [AFSC88a]
management indicators, [AFSC86a]
quality,

* quality assurance, [Army84], [McWe84]
specification/measurement, [AFSC86b], [McCa77a]
survey of military standards, [Bowe79]

risk abatement, [AFSC88b]

• 17



August 9, 1989

test and evaluation,
Software Test and Evaluation Manual, [DODD87]
Test and Evaluation Master Plan guidelines, [DODD86b]
Test and Evaluation, [DODD86a]
guidelines for, (Army87]
operational testing,

maintainability, [AFOT87]
management guidelines, [AFOT86]
supportability, [AFOT88a], [AFOT88b]
usability, [AFOT82]

Domain Testing, [Wlhit78b]
as a debugging aid, [Clar83b]
error analysis of, [Wbit78a], [Zeil89]
loop analysis problems, [Whit88a], [Wisz87]
test data selection strategies and error bounds,

Clarke-Richardson, complexity of, [HassS0]
White-Cohen, [Cohe78], [Pere85], [Whit86]
complexity of testing iterated borders, [Whit88a]
evaluation and complexity of, [Hass80]

EDL: Event Definition Language, [Bate8l]
BA: behavioral abstraction approach, [Bate83a]
a basis for distributed system debugging tools, [Bate82]
automated support for, [Bate83b]

EQUATE, [Zeil86j
complexity of, [Zeil88b]

ESTCA: Error Sensitive Test Case Analysis, [Fost8O], [Fost85]
application to debugging, [Fost83]
sensitive test data for logical expressions, [Fost84]

Economics, [Boeh8l]
of fault-tolerance, [Mign82]
of modularization, [Camp76]
of quality assurance, [Albe76]
programming cost factors, [Boeh73], [Boeh75b], (Farr65], [Putn82]

Encryption Protocols,
formal verification,
examples of,
RSA Public Key Encryption Algorithm, [Boye84b]

testing and analysis,
Inatest, [Kemm87]

Environment Characteristics,
characteristic set,
customizing to an environment, [Basi85a]
forecasting productivity, [Basi85a]

Equivalence Partitioning, [Selb86]
automated support for,
AutoParts, [Soli85]

Error-Based Testing, [Clar83a], [Ostr79], [Weyu8l]
extension to real-time, concurrent systems, [Long88]
formalism for,
characterizing completeness of tests, [Howd82a]

18



August 9, 1989

* contrasting with other approaches, [Howd82a]
theory of, [More84]

Error Seeding,
capture-recapture sampling, [Dura81b]
evaluation of seeding methods, [Knig85a]
failure characteristics of syntactic changes, [Knig85a]

• issues involved, [Knig85a]
Errors,

classification of, [Beiz83], [Mend79], [Ostr84], [RADC76a]
error causes, [Boeh75a]
error complexity (measure of detectability), [Naka89]
errors occuring in real-time systems, [Ande83]
errors occuring in system programs methods, [Endr75]
for all development phases, [Bowe8O]
method for, [Amor75]
problems in, [Jeli72]
review of classification schemes, [Bowe80]
taking the programmer into account, [JohnXX]

* data collection and analysis needs, [Fung85], [Rube75]
examples of, [Garm8l]
errors from DOS/VS operating system, [Endr75]
errors, error-proneness, diagnosis in COBOL, [Lite76]
from IV&V projects, [Fuji77]
from special-purpose editor system, [Ostr84]

experiments in,
error occurence and detection, [Hoff77]

in distributed systems,
ordering errors, [Gord85b]

influencing factors, [Feue79a], [Gerh76a]
comments, [Howd88]
complexity, [Basi82d]
language factors, [Nage84]
program structure and complexity, [Brad75], [Gree76]
programmer and problem, [Nage82], [Nage84]

reasoning errors made in software construction, [Howd89a]
statistics,
across environments, [Weis82]
algorithm implementation errors, [Bulu74]
design errors, [Boeh75a]
error types, frequencies and habitats, [Schw70a]
errors detected in development/IV&V, [Rube75]
from a testing service, [Min79b]

0 persistent errors, [Glas8l]
recurrent errors in real-time systems, [Goel78]
syntactical errors, [Boie72]
system program errors, [Endr75]
types, distribution, test/correction times, [Shoo75]

Evaluation Approaches,
* for evaluation of,

computer models, [PratSO]
development practices, [Basi8lc], [McGa82]

* 19



August 9, 1989

Reduced Form for sharing complexity data, [Harr85]
analysis of change data, [Basi8lb], [Basi8le], [Bas.82a], [Weis8l], [Weis85c]
automatic generation of artificial systems, [Rowl88]
cluster analysis, [Chen8l]
coupling evaluation with measurement, [Selb85]
effectiveness of elimination of faults, (Curr76]
error analysis, [Glas8O], [Howd80b], [Weis78], [Weis82]
game theoretic testing, [Cher88]
goal-based paradigm for, [Basi82c], [Basi85c]
mutation analysis for test data adequacy, [Ntaf8la]
other, [Panz8lb]
procedural approach, [Henr85]
statistical model for evaluating effectiveness, [Card87b]

environments, [Weid86]
error relationships,
analysis of change data, [Basi82d]

experimental work in software engineering, [Basi86a]
human understanding, cloze tests, [Hall86]
metrics (example from STARS program), [Gord85a]
reliability models,
replicated experiments, [Nage82], [Nage84]
stepwise statistical methodology, [Troy86]

software prototypes, [Chur86]
test data selection criteria,
RELAY model of error detection, [Rich86al

Examples of,
compiler validation,
ACVC: Ada Compiler Validation Capability, [Wi1189]

measurement,
metrics applied to relational data base, [Redd84a], [Redd84b]

safe/reliable computing on Airbus/ATR Aircraft, [Roqu86]
testing a multiprogramming system, (Hans73]
testing and analysis approaches, [Mil175e], [Muno88]
PEI Testing Methodology, [Post87]
for nuclear reactor protection systems, [Geig79]
case studies, [Uren87]

testing and validation, [Ho78]
testing of the TRIDENT CC system, [Oxma78]

Exhaustive Testing, [Brow72a], [Shoo74I
Experimental Design, [Coch5O]
beat the system, [Budd8Oa]
behavioral or psychological approaches, [Broo8Oa]
designing a measurement experiment, [Basi77b]
reproducible experiments, [Come79]
sampling theory and applications, [Coch53]

Extremal-Special Value (ESV) Testing,
for fault-tolerant systems, [Vouk86b]

Extremal-Special Values (ESV) Testing,
for fault-tolerant systems, [Vouk86a]

FAST: Fortran Analysis System, [Brow78]

20



August 9, 1989

* FDM: Formal Development Methodology, [Kemm80]
na Jo, [Kemm80], [Sche85]
abstract machine model of a specification, [Berr87]
language reference manual, [Loca80]
testing of specifications,
Inatest, [Eckm84], [Eckm85], [Kemm85a]
example of analyzing encryption protocols, [Kemm87]

with temporal logic for concurrency properties, [Wing89]
comparison with other techniques, [Cheh8l]
status and future directions, [Kemm8l], [Kemm86]
theory of, [Berr87]

FORTEST, [Girg85]
experiments in error detection ability, [Girg86a]

FORTRAN,
automated support for, see also FAST, Mothra, FORTEST, DISSECT, DAVE, PET

Automatic Code Evaluation System, [Hall73], [Hall74], [Rama73], [Rama74a]
BRANANL for identifying basic blocks, [Fosd74]
FAVS, [GRC79]
RXVP verification system, [Mil174d], [Mili75f]

FETE: execution time estimator, [Igna7l]
FORTRANL static source code analyzer, [Li87J
FORTVER documentation and error diagnosis, [Conr85]
NBS test programs, [NBS74]
SAP: Static Source Code Analyzer Program, [Deck82a]
SELFMET for self-metric instrumentation, [Urba73]
application of Software Science, [Otte761
post mortem dump system, [Ng781
static analyzer, [Slav75]
symbolic execution, [Clar76b], [Fava79], [Rama76]

SADAT, [Voge8O]
test drivers,

test procedure language/processor, [GE77a], [GE77b], [Panz76], [Panz78a], [Panz78b], [Panz78c]
use of software probes, [Page74]

how it's used and needed compiler support, [Knut7l]
impact on reliability, [Goel88]

Failure Mode and Effects Analysis (FMEA), [Bunc80], [Laws83], [Reif79a]
example for satellite, launch vehicle, reentry systems, [SAMS77]

Fault-Based Testing,
RELAY model of error detection, [Rich86b]
applications of, [Rich88]
for analysis of test data selection criteria, [Rich86a]
for testing, [Rich87a]

classification of techniques, [More88]
symbolic testing, [More87j, [More88]
theory of, [More87], [More88]

Fault-Tolerance, [Aviz78]
and fault-intolerance, [Aviz75]
as a basis for system structuring, [Rand75]
automated support for, [Wild87]
evaluation of technology, [Ande85], [Sliv84]
examples of,

• 21



August 9, 1989

air traffic control system, [Aviz87]

experiments in, [Dunh85]
with the SIFT operating system, [Brun85]

for dataflow machines, [Srin85]
principles and practices, [Ande81]
queuing analysis of, [Nico87]
real-time systems, [Ande83]
relationship of fault tolerance/elimination techniques, [Shim88]
reliability evaluation,
based on directed acyclic graphs, [Sahn87]

strategies, see also Recovery Blocks, N-Version Software
comparison of, [Grna8Oa], [Scot84b], [Scot87]
correspondent computing,
implementation for Ada, [Lee89a]

cost model for, [Mign82], [Scot87]
detector redundant scheme, [Han76I
modeling of, [Grna8Ob]
redundant data structures, [Blac8l], [Tayl8Oa]
repetitive run modeling for failure/fault estimation, [Dunh86]

Fault-Tree Analysis, [Harv82], [Leve83b], [McIn83], [Vese8l]
automated support for, [Rola86], [Sto184]
for Ada, [Leve83c]
for both hardware and software, [Han76]

Finite State Machines,
applications of, Communication Protocols
interpretation correctness, [Ferr77]
model environment for validation, [Hend75]
requirements modeling for testability, [Chan85]
specifying/verifying data abstractions, [Shan82]
testing correctness of control structures, [Chow78]

estimates of software size from, [Brit82]
state machine specification technique, [Prin78]

Flavor Analysis, [Howd87], [Howd89a]
Flow Expressions,

for specification of concurrent systems, [Shaw78]
Fornal Verification (Hardware),
examples of,
FM8501 verified microprocessor, [Hunt85], [Hunt87]

reusable library, [Bevi88]
test vector generation, [Vose88]

Formal Verification, see also Invariant Assertion, Intermittent Assertion, Induction
automated support for,
modification of first-order rules for algebraic expresssions, [Sark89]
practical problems, [Boye84a], [Luck77]
state of the art, [Crai86], [Crai87a]
survey of,
mechanical support for formal reasoning, [Lind88d]
theorem provers, [Elsp72a]

automated tools see also m-EVES, AFFIRM, Gypsy, HDM, Boyer-Moore Computational Logic, Boyer-
Moore Computational Logic, FDM, Stanford Pascal Verifier
interactive program verification system, [Deut73]

22



August 9, 1989

logical basis and implementation, [Igar73]
program verifier, [King69], [King7O]

concurrent/distributed systems see also Temporal Logic,
EBS: Event-Based Specification Language,
comparison of,
EBS with temporal logic and trace approaches, [Chen83]

0 Misra-Chandy's proof method, [Misr8l]
nonassertional approach, (Lamp79a]
problems in, [Grie77]
proving total correctness, [Flon78b], [Flon8l], [Misr82]
proving weak correctness, [Flon78a]

examples of,
Byzantine Generals problem, [Lamp82]
Dijkstra's garbage collector, [Grie77]
for a reactor protection system, [Ehre73]
proof of a calendar program, [Lamp79b]
proof of a program: FIND, [Hoar7lb]
proof of computer interval arithmetic, [Good70]

for Ada, see also Ada
impact of language design, [Wulf6]
interpretation correctness, [Ferr77]
introduction to, [Berg82], [Grie76], [Lond75]
methods,
classification of, [Mili84]
constructive approach, [Good75e], [Hoar72), [Wegb7T7]
in support of transformational programming, [Krie86]

heuristic approach, [Katz73]
stacking approaches, [Hunt87], [Moor88]
survey of theory and techniques, [Elsp72a]

of compilers,
for micro Gypsy, [Moor88]

of structured programs, [Ling79]
principles of, [Good79b]
proofs, completeness, transcendentals and sampling, [Davi77]
state of the art, [Kemm86], [Oste8O]
prospects for, [Dahl78], [DeMi79a], [Fetz88]

supported by,
abstract data types, [Flon77]

automated support for, [Gutt78a]
control structure abstraction, [Gerh76b]
program traces, [Howd78c]
state machines for interpretation, program, implementation correctness, [Ferr77]
symbolic execution, [Burs74], [Dill871
for communication protocols, [Bran78]
limitations, (dis)advantages of methods, [Dill88a]

Function Point Analysis,
applications of, [Symo88]

• productivity measurement, [Albr79J, [Albr8l]
with a productivity index, [Behr83]

comparison with other measures, [Albr83]
estimating handbook, [Zwan84]

* 23



August 9, 1989

partial alternative method, [Symo88]
review of metric derivation/calibration, [Vern89]

Functional Analysis, [Howd87]
data type transformation analysis, [Howd86]
functional trace analysis, [Howd86]
operator sequence analysis, [Howd86]

Functional Testing, [Elme7l], [Howd8la], [Howd86], [Howd87]
applications of,
module and integration testing, [Howd85]
security testing, [Glig87j

based on,
Basic User Perceived functions, [HennXX]
algebraic data type specifications, [Boug86], [Choq86]

Prolog interpreter, [Boug86], [Choq86]
design abstractions, [Howd8Oa]
formal specification, [Lask88a]

backtracking issues, [Mil175c]
category-partition method,
automated support for, [Ostr86], [Ostr88]

comparison with other techniques, [Basi85b], [Howd8Oc], [Hwan8l], [Selb86]
reliability of, [Howd8Oc]
relationship of test data to operational usage, [Basi84a]

test control process for, [Elme69]

General,
analysis of validation techniques for scientific programs, [Howd79], [Howd8Ob]
basic text on testing, [Myer79]
effectiveness of static, dynamic techniques, [Howd80b]
formal methods,
prospects for, [Levi78]

formal program testing, [Cart81]
issues of liability, [Joyc87a]
number of tests necessary to verify a program, [Shoo79]
problems in large-scale system development, [Broo75]
program test methods, [Hetz73]
software validation, [Carr8O]
testing for an individual programmer with limited resources, [Bran8O]
why does software die, [Brow8Oa]

Glossary for,
debugging, [John82b]
software engineering, [Babs83], [DACS79b], [IEEE83a]
software tools and techniques, [Reif79b]

Grammars,
attribute grammars,
for test data generation, [Dunc78], (Dunc8l]
relating logic programs with, (Dera85]

context-free grammars,
for test data generation,
Mockingbird, [Gorl87]
for compiler testing, [Bazz82]
for testing parsers/debugging grammars, [Purd72]

24



August 9, 1989

* for test plan generation, [Baue79a]
formal grammars,
for compiler testing,
example of verification, [Hous77]

Graph Theory, [Cant89], [Stig74]
Dilworth's theorem for acyclic digraphs, [Ntaf79], [Ntaf8lb]

• algorithms for,
available expressions at entrance, [UUm73]
path building, complexity of, [Gabo76]

applications of,
control flow analysis,
graph-theoretic constructs for, [Alle7l]

• data flow analysis, [Hech75]
design simulation, [Schn77b]
partitioning to highlight element relationships, [Paig75]
performance and reliability analysis, [Sahn87]
predicting execution behavior, [Olde83]
program design and debugging, [Schn79b]
testing, [Beiz83], [Fosd76a], (Jach84], [Paig72], [Paig78a], [Stic78]

path cover problems, [Ntaf81b]
reducible flow graphs, [Hech72]
review of partitioning methods, [Paig77b]

Gypsy Verification Environment, [Good75c], [Good84b]
Gypsy language, [Amb176a], [Ambl76b]

* verified compiler for micro Gypsy, [Youn86c]
comparison with other techniques, [Cheh8l], [Crai88a], fKauf87a], [Kauf87b]
examples of,
message flow modulator, [Good82b]
proof of a distributed system, [Good82a]
verification of communication protocols, [DiVi82]

• verification of security kernels, [EPI821
status and future directions, [Good86a], [Kemm86]
symbolic execution of concurrent systems, [Eckm83a]

HDM: Hierarchical Development Methodology, [Elsp72b], [Elsp73], [Elsp74], [Robi79I, (Silv79
EHDM, [Crow85a]
specification language, [Crow85b]

Muse to enhance HDM for Al certification, [Halp87]
SPECIAL: SPECIfication and Assertion Language, [Robi77], [Roub77], [Rush84]
comparison with other techniques, [Cheh8l], [Gogu80], [Mill8lb]
examples of,
verification of the Provably Secure Operating System, [Neum75]
verification of the SIFT operating system, [Gold80], [Mel182], [Stan84b]

status and future directions, [Kemm86]
Hoare's Logic,
generalized to concurrent programs,

relation to Pnueli's temporal logic formalism, [LampS0]
the Decomposition Principle meta-rule, [Lamp84]

survey of results of application, [Apt8l]
Human Factors,
behavioral analysis of programming,

* 25



August 9, 1989

frequency of syntactical errors, [Boie72]
cognitive psychology,
and Software Science, [Coul83]
cognitive science of programming, [Curt83]
display techniques to facilite comprehension, [Vemu8O]
problem solving capabilities/performance, [Grif72], [Love77a]
theory of the learnable, [Vali84]
types of programming knowledge, [Solo84]

experiments in, [Basi79b]
effects of modern coding practices, [Shep79]
for developing quality software, [Shne77c]
impact of degree of discipline, [Basi78b]
impact of flowcharts, [Shne77a]
impact of specification symbology/spatial arrangement, [Shep8]
influences on understanding, [Shep77]
methods for, cloze tests, [Hall86]
program comprehension, [Boys79]
psychological study of debugging, [Goul72], [Goul74], [Goul75]
team design, [Basi78b], [Reit79]

factors in team programming, [Theb83]
fault tolerance,
influence of programmer profiles on coincident errors, [Vouk85b]

human errors in programming, [Youn74]
mental effort related to program clarity, a measure of, [Gord77]
program structure,

impact on program understanding, [Love77b], [Miar83]
psychological complexity,

of maintenance tasks, [Curt79a], [Curt79b], [Curt8l]
relationship with software complexity, [Evan83b]

psychology of programming, [ShneS0], [Wein7l]
review of research, [Shei8l]

IEEE Guidelines and Standards,
configuration management, [IEEE83c]
measures to produce reliable software, [IEEE87]
quality assurance plans, [IEEE84]
software engineering terms, [IEEE83a]
software quality metrics methodology, [IEEE88]
test documentation, [IEEE83b]

IOGen, [Jenk86], (Lind85], [Lind88a], [Lind88b], [Lind88c]
TESTgen, [Coff87]
typing mechanism for CAIS, [Lind87]

ISO-OSI,
conformance testing methodology/framework,

abstract test suite specification, [IS087b]
general concepts, [ISO87a]

Incremental Analysis,
automated support for see also PIC, AdaPIC Toolset
for logic programming,
GCLP: Generic Constraint Logic Programming, [Wild88]

sources of incompleteness, [Wild88]

26



August 9, 1989

Independent Verification and Validation, (JLC84]
DoD guidelines and standards, [AFSC88a]
evaluation of methodology for flight dynamics, [Page85]
for certification of minimum testing criteria, [Sork79]
planning and conduct, [Fuji77]
practical experience with, [Page84]
role of independent validation agency, [Agil76]

Induction, [Ande79a]
computational induction,

subgoal induction, [Morr77]
generator induction for data structures, [Wegb76]
inductive assertion, [GaU81], [Hant76], [Kell76], [Lamp77], [Lond75]
automated support for see also HDM, Gypsy Verification Environment

inductive inference, [Angl8O], [Angl83], [Blum75]
computational complexity of, [Angl76]
to support investigation of program testing, [Cher86]

proofs of equational theories with constructors, [Huet8O]
Information Flow Analysis, [Carr82]
Instrumentation, [Prob80]

SELFMET for self-metric FORTRAN instrumentation, [Urba73]
applications of, Coverage Monitors, Run-Time Monitoring
collecting program attribute values, [Huan78]
detection of data flow anomalies, [Huan79]

* profile keeping, [Knut7l]
optimal measurements for frequency counts, [Knut73]

distributed environments,
METRIC: a kernel instrumentation system, [McDa77]

software probes,
for testing FORTRAN, [Page74]

* optimal placement of monitors, [Rama75b]
statement contrasted with branch probes, [Prob82c]

Integrated Application of Techniques,
automated support for see also Toolpack, TEAM
benefits of,

achieved in the PIMS Trending Project, [Post87
* experiments in, [Selb86]

formal verification, testing, analysis, [OsteSO], Partition Analysis
investigative approaches,
state-space exploration, [Youn89c]

measurement, [Kafu81]
and documentation, [Schr84]

• proofs, analytic models, testing, [Triv80]
testing and analysis, [Clar82], [Howd82b], [Oste8lb], [Oste84]
combining static and dynamic analysis, [Tayl83c]
with symbolic execution and formal verification, [Oste80]

fault-based techniques, [Youn88a]
functional and structural testing, [Clar78a]
functional testing, [Howd85], [Howd87]
mutation and perturbation testing see also EQUATE,
test generation with design, [Lask88a]

Integration Testing,

* 27



August 9, 1989

auditing of SOFTING, [Snee&5]
genesis of discrepancies, [Jeli72]
military standards and metrics, [Bowe79]
white box approach, [Hale82]

Interface Analysis,
automated support for see also IOGen, SADMT, PIC, AdaPIC Toolset
comparison with other techniques, [Howd77c]
for program structuring, [Trio86]
interface control,
formal model for, [Wolf85b], [Wolf86a]

modeling stabilization of a large system, [Hane72]
Interface Specifications,
input-output specifications, [Haml77a]
organization for specifying abstract interfaces, [Clem84]

Intermittent Assertion,
correctness of continually operating programs, [Mann78]
total correctness, [Grie79]
translating other proofs into, [Grie79]
validity of program transformations, [Mann78]

LISP,
Metric for analysis of program performance, [Wegb75]
formal verification,
Turing completeness of pure Lisp, [Boye83]

test data for proving LISP programs, [Budd78c]
testing and analysis,
mutation analysis, (Budd8a]

Language Design,
approaches for improved testing/analysis, [Kosy73]
experiments in,
design principles to promote reliability, (Gann75]
effects of high- and low-level languages, [Bish86]
graphical vs textual design languages, [HenrXX]
impact of static typing and typeless, [Gann76], [Gann77]
language features, stylistic/design techniques, [Shne75]
nonprocedural languages and productivity, (Hare82]

requirements for,
exception handling, [Good75d]
formal verification, [DeMi79a], [Wulf76]
module interconnection languages, [DeRe76]
powerful checking by compilers, [Will79]

Language Specification,
denotational semantics: Scott-Strachey approach, [Stoy77]
dynamic grammar, [Hanf70]
semantics of programming languages,
expressed in SEMANOL(73), [Ande76b]

using Petri nets (for Ada tasking), [Mand85]
Lines of Code (LOC),
applications of,
predicting productivity, (Curt79a], [Curt79b], [Curt8l], [Hals77d], [Wood8la]

comparison with other measures, (Albr83], [Wood8la]

28



August 9, 1989

Loop Analysis,
automated support for, [Wate79]
by solving first order recurrence relations, (Chea78]
determining provability/unprovabiity, [Meye67]
heuristic/extraction for predicate synthesis, [Wegb74]

MAP, [Warr82]
using static analysis to support debugging, [Tisc83]

Machine Architectures,
dataflow machines,
distributed debugging methodology/simulator, [Wahl88]
simulated program execution, [Land79]
software development tools for, [Jarr841
support for fault tolerance, dataflow graphs, [Srin85]

vector processors,
for mutation analysis, [Galig7a], [Gali87b], [Gree87], fKrau86], (Ligo871, (Math86)

mutant unification, [Math88a], [Math88bJ, [RegoX'X]
transformation techniques, [Math87a], [Matb87b]
unified scheduling of mutants, [Krau881

Maintainability,
definitions of, [Gelp79], [Gilb79]
experiments in,
effectiveness of subjective/objective measures, [Gibs89]

* relationship with system structure, [Gibs89]
infuencing factors, [Grad87a], tGrem84), [Lohs841, lRomb87a], tRomb87b], lShep78), tVess83), lvanH68)
measurement of, [Feue79aJ, [Romb89a]
a case study, [Blai85bJ
figure-of-merit for modification complexity, [Yau78]
stability and modifiability, [Rombg7a], fRombS7b]
characteristic metric set, [Romb84]

stability measure, [Yau79]
using complexity metrics, [Bern84], [Harr82], [Wake88]
using quality metrics, [Henr8SaI, [Kafu85bl
via questionnaires, [AFOT87I

ripple analysis, [Hane72], [Hsie82I, [Yau78l
* testing of, [Gelp79]

Mathematical Foundations,
boolean algebra, [BeizS3]
fallibility in mathematics and programming, [Gerh76a]
for structured programming, [Mil72b]
formal notations for design, [Hoar87]
mathematical theory of computation, [Mann741
predicate calculus,
notions of extension and equivalence, [Gall81I

regression analysis,
analysis of variance and regression, [Dunn74]
multiple linear regression, [Drap66]

* sampling theory, [Haml87]
problems in, [Haxnl86I

statistical theory,
in information content and complexity, [Shoo77b]

* 29



August 9, 1989

stochastic processes, [Cinl75]
Measurement and Evaluation Systems,
AMS: Automated Measurement System, [Sief88]
Mentor for measurement/documentation, [Schr84]
SMDC: Software Metrics Data Collection System, [Yu88a]
for Ada, see also TAME, ADAMAT

Metrics, [Gilb76] see also Quality Measures
applications of,
identifying error-prone software,
decision tree framework, [Selb87c]
review of process, product measures, [Shen85]

performance evaluation, [Lync8l]
reliability measurement of military systems, [Koss881
size and effort estimation, [Wang84]
software development management, [Gaff8la]
support for allocation of resources, [Shen85]
team design, [Theb83]

candidate top 10 list of metric relationships, [Boeh87]
characteristics set of cost/quality metrics, 1Selb851
classification of, [Basi86c]
critical issues, [Ejio87]
frameworks for,
decision trees, [Selb87c], [Selb89]

introduction and overview, [Cook82], [Duns83]
metrics and models, [Cont86I
selection of,
supported by measures of yield and coverage, [Kafu85a]

units of measure, [Jone78]
alternative to lines of code,
based on Deviation-values (D-values), [Miya87]

validation of, [Kafu88], [Perk86]
difficulties in evolving and validating, [Gaff8la]
framework for evaluation of,
example from the DoD STARS program, [Gord85a]

Modal Logic,
relation of Manna's and Floyd's techniques, [Burs74]

Mothra, [DeMi86b], [DeMi87d], [DeMi88a]
design principles, [DeMi87b]
functional capabilities, (DeMi86a]
interpreter requirements, [Offu87]
testing of Mothra, [BowsXX]
thematic tools for testing, [DeMi87b]
user manual, [Guin87], [SERC87]

Multiple Domain Test Coverage, [Redw83]
Mutation Analysis, [Acre79], [Budd78a], [DeMi79b], [DeMi8Th]
a measure of test data adequacy,
used in comparison of testing techniques, [Ntaf8la]

applied to,
Ada see also Ada,
LISP, [Budd8Oa]
decision table programs, [Budd78b], [Budd80a]

30



August 9, 1989

* numerical software, [Henn8l]
automated support for, Mothra
Ada and FORTRAN, [AppeS8]
CMS1 for COBOL, [Hank8O]
EXPER for FORTRAN, [Budd8Oa], [Budd8Oc]
portable mutation testing suite, [Budd83a]
users guide to the pilot mutation system, [Budd77]
using vector processors, [Gali87b], [Gree87], [Krau86], [Ligo87], [Math86]
mutant unification, [Math88a], [Math88b], [RegoXX]
transformation techniques, [Math87a], [Math87b]
unified scheduling of mutants, [Krau88]
vectorization over multiple data sets, [Gali87a]

competent programmer hypothesis,
formal analysis of, [Gour8l], [Gour83]
theoretical and empirical studies, [Budd8Oa]

constraint based test data generation, [DeMi87c]
coupling effect hypothesis, [DeMi78]
theoretical and empirical studies, [Budd8Oa], [Budd8Ob]

* different forms of,
firm mutation analysis, [Wood88]
see Weak Mutation Analysis, [Girg85]
see also Specification Mutation see also Specification Mutation,
syntax directed/semant;cb aided, [Wu87a], [Wu8Th], [Wu88]

effectiveness of, [/ ,'. JJ
• integrated with -e-fii bation testing,

automated support for see also EQUATE
problems add solutions, [Budd8l], [Ridd8O]
determining dead or alive, [Wood88]
determining equivalence, [Budd8Ob]

heuristics for, [Bald79]
• generation of mutation-adequate test data, [DeMi88a]

stability of test data, [Burn78]
state of the art, [Lipt78]

N-Version Software, [Chen78b]
advantages and limitations, [Aviz84], [Bish86]

* applications of,
for tolerance of design faults, [Aviz85]
software testing, [Bril87], [Shim88]

automated support for,
DEDIX distributed supervisor/testbed, [Aviz85]

coincident errors, [Eckh85]
computing reference/observed distribution, [Vouk85c]
evaluation of assumption of independence, [Knig86a]
influence of programmer profiles, [Vouk85b]
testing for version independence, [StJe85]

experiments in, [Aviz77], [Gmei79], [Knig84]
analysis of faults in, [Bril84]

* failure probabilities, [Knig86b]
specification of, [KeUl82], [KeUl83]

reliability evaluation, [Dunh86]

• 31



August 9, 1989

Markov model for, [Sone80]
data domain model for, [Scot83a], [Scot83b], [Scot87]
validation of, [Scot84a], [Scot84b]

testing and analysis,
back-to-back testing, [Bish86]
based on use of VDM and Prolog, [Bloo86]

extremal-special value testing, [Vouk86b]
extremal-special values testing, [Vouk86a]
random testing, [Vouk86a], [Vouk86b]
effectiveness of, [Vouk85a], [Vouk85c]

structural testing, [Vouk86a], [Vouk86b]
theoretical basis for study of redundant software,
choice of "n", [Eckh85]
effectiveness of, [Eckh85]

Operating Systems,
FTOS: Fault Tolerant Operating Systems, [Sone8l]
performance evaluation of, [Rums77]
security verification, see also FDM, Gypsy, AFFIRM
comparison of techniques, [Cheh8l]
specification for, [Kore84]
requirements for, [Step74]

structure of,
evaluation of based on information flow, [Henr79]
modularity considerations, [Schn77c]
monitors as a structuring method, [Hoar74]

test control process for functional testing of, [Elme69]
Operational Usage Profiles,
measures of testing representativeness,
estimator for operational usage reliability, [Brow75]

representativeness of functional test data, [Basi84a]
sampling theory,
problems in, [Haml86], [Haml87]

specification of, [Brow75]
test cases to cover entire input domain, [Nels78]

Oracles,
based on specifications, [Ande76b]

T-3 Testing Tool, [Lawr87]
using algebraic axioms see also DAISTS,

pseudo oracles, [Davi8l]
the oracle assumption, (Weyu8Oa]
reasonableness of and consequences, [Weyu82]

PACE: Product Assurance Confidence Evaluator,
FLOW, part of the PACE system, [Brow72a]

PET, [Stuc73], [Stuc74], [Stuc75a], [Stuc77]
PIC: Precise Interface Control, [Wolf85b], [Wolf85c], [Wolf86a]
for Ada see also AdaPIC Toolset

PLI,
automated support for,
EFFIGY for symbolic execution, [King75a], [King76]

32



August 9, 1989

* data flow analysis, [Rose75]
path testing, [Bagg80]

numerical profile,
using Software Science, [Elsh76a], [Elsh76b], [Zweb79]

PSL PSA, [Teic74], [Teic77]
Partial Evaluation,

* applications of, [Beck76]
interpretive and compiling methods, [Beck76]

Partition Analysis, [Clar84], [Rich8la], [Rich81c], [Rich85b]
effectiveness of, [Rich82]
examples of application, [Rich8lb]
specifications for, [Rich8ld]

Pascal,
automated support for, [Kern8l]

GRAPHTRACE interactive trace of heap, [Getz83]
Pascal validation suite, [Wich79]
data flow analysis see also ASSET,
formal verification see also Stanford Pascal Verifier,

* knowledge-based debugging,
PROUST, [John84]

symbolic execution,
UNISEX: a Unix-based executor, [Eckm83b], [Kemm85b], [Soli83]

with path expressions, [Camp79]
Path Analysis,

* constrained path problems, [Ntaf79]
effectiveness of,
for testing predicates, [Zeil8lb]

finding minimum path cover, [Ntaf79l, [Ntaf8lb]
solving nonlinear inequalities, [ElspXX]
unexecutable paths,
allegations to avoid unfeasibility problems, [Wood8Ob]
detection supported by data flow analysis,

heuristics for detecting some classes of, [Oste77]
Path Expressions,

applications of,
specification of process synchronization, [Camp74], [Camp79]
for timing analysis, [Hsie89]

path rules variant for debugging, [Brue83]
Path Testing, [Beiz83]
automated support for,
PLI programs, [Bagg8O]
test drivers, [Shoo79]

comparison with other techniques, [Dura8la]
generation of test data, [Howd75a]
path prefix testing strategy, [Prat87]
reliability of, [Howd76c], [Pimo75]

Performance Evaluation,
a metrics success story, [Lync8l]
applications of,
as a design tool, [GilkXXI
modeling for program optimization, [Shol75]

* 33



August 9, 1989

automated support for,
performance modeling, [Ches77]

basic quantities,
computing based on queuing network models, [Denn78]
definitions of, [Denn78]
operational relationships between, [Denn78]

determining upper bound on running time, [Meye67]
for operating systems, [Rums77]
issues faced and alternative techniques, [Warn72]
of Ada programs, [Lee89b], [Stan83]
of compilers,
discrimination rate, [Shaw89]
relation between compile time and modularity, [Shaw89]
test generator, [Bazz82]

of concurrent systems,
based on directed acyclic graphs, [Sahn87]

of real-time system programs, [Ginz65]
response times of level structured systems, [Hart84]
state transition balance, one-step behavior and homogeneity concepts, [Denn78]
supported by,
abstract data types with performance data, [Boot8O]
closed-form expressions, [Wegb75]

Metric for LISP, [Wegb75]
formal methods, [Levi78]
model simulation, [Lee89b]
operational analysis,
quantifying errors in assumptions, [Beng87]

petri net and queuing network models, [Chan89]
state model of computation, probabilistic grammar-based input, [GilkXX]
timed Petri nets, [Razo85]

Perturbation Testing, [Zeil8la], [Zeil8lb], [Zeil83a]
comparison with other techniques, [ZeiI84]
for computation errors, [Zei184]
for domain errors, [Zeil83b], [Zeil89]
integrated with mutation analysis,
automated support for see also EQUATE,

Petri Nets, [Pete77], (Pete8l]
applications of,
analysis of concurrent/distributed systems, [Cagl82], Static Concurrency Analysis
performance analysis, [Razo85]

analysis of real-time systems,
performance analysis,
automated support for, [Chan89]

safety, recoverability, fault-tolerance, [Leve87]
language description (for Ada tasking), [Mand85]
static concurrency analysis,
for Ada, see Ada, [Mura89], [Shat88]

Process Programming, [Oste87]
applications of, [Romb88c]
generating information bases, [Romb88a], [Romb89b

automated support for see also Arcadia

34



August 9, 1989

based on software development graphs, fBjor87]
specification language for, [Romb88a], [Romb88c], [Romb88d]

Productivity,
estimation, [Wals77a]
using complexity metrics, [Curt79a], [Curt79b], [Curt8l]

influencing factors, [Chry78], [Lawr8l], [Vosb84]
classification of, [Vosb841
complexity, [Chen78a]
human, [Grif72], [Love77a]

saturation in team-oriented development, [Theb83]
language design, (Bish86I, [Hare82l

* programming/organizational, fCard87b], [DunsSO], [Jeff85], [Sack68]
issues of the 80's, [Jone8l]
limits to, [Jone79]

Program Slicing,
methods for, properties and applications of, [Weis84]

Program Structure,
classification of structure types, [TuruSO]
consideration for,
ease of error detection, using simulation, [Schn7ThI
error detection and recovery, [Horn74]
reliability prediction, [Shoo76]

impact on,
complexity measures, [Evan83a], [Evan84c]
error detectability, lGree76)
understanding, [Love77b], [Wood81b]

measures for, [Gide74]
stability measure, [Soon77], [Yau791

properties of "good" structure, [Chan731
Program Traces,
applications of,
debugging Ada programs,

trace database model, [LeDo85]
proving properties of programs, (Howd78c]
specification, [MacL82]

IP automated support for,
selective trace using frequency counts, [Satt72], [Satt75]

symbolic traces, [Howd7&1
value traces, [Howd7ScJ

Quality,
correlation with testing effort, [Tuck65]
data sheets, [Besh85]
factors in, [Press83], [Walt79]
software quality framework, (Boeh781, [Bowe85j, [Cava781

impact of,
structured programming, [Bake72a]
team design, [Reit79]
chief programmer teams, (Bake72aJ

user's view, [Davi85]
Quality Assurance, [Dunn82]

35



August 9, 1989

automated support for, [Brow73a]
experience with, [Ande88]
management and development tools, [CherSOb]
role of programming environments, [Cher8Oa], [CherSOb]

based on inspections, [Bark89]
economics of,
impact of approaches on quality and cost, [Albe76]

examples of, [Krac78]
planning for Ada development with 2167, [Bark89]

guidelines and standards, [Press83]
Computer Society standard for SQA plans, [Buck79]
Defense System Software Quality Program, [DODS86]
DoD guidelines and standards, [Army84]
DoD quality indicators, [AFSC86b]
IEEE software quality metrics methodology, [IEEE88]
IEEE standard for quality assurance plans, [IEEE84]
RADC measurement manual, [McCa8Oa], [McCa8Ob]
distributed systems, [Bowe83]
engineering handbook, [McWe84]
example from AT&T Bell Laboratories, [Ing186]
example of telecommunication requirements, [Eric85]
for embedded real-time designs, fSzul8O]
for flight dynamics software, [Perr87]
handbook for specification/measurement, [McCa77a]
industry and government requirements, [Land861
measures to produce reliable software, [IEEE87I
metrics standard (concept of), [Sing86]
operational testing,
maintainability, [AFOT87]
supportability, [AFOT88a], [AFOT88b]
usability, [AFOT82]

quality specification and evaluation, [Bowe85]
survey of military standards and metrics, [Bowe79]

human incentives, [Mizu83]
in a quality management program, [McCa79], [Walt79]
practices, [BryaSO], [Ligh76]
statistical quality control, [Gran72]

Quality Measures, [Gaff8lb] see also Design Evaluation
Procedural Approach to the Evaluation of Software,
Design and Management Indicators, [Ross88]

applications of,
cost estimation, [Ducl82]

based on pattern recognition methods, [McGi77]
for distributed systems, [Bowe83]
metrics for, [Evan87]
anomaly detection, prediction, acceptance, [McCa8Oa
based on interconnectivity, [Kafu81]
evaluation and prediction, [McCa77b]
products and process, STARS metrics, [Szu184]
testability and testedness, [Moha76a], [Moha76b]
user satisfaction,

36



August 9, 1989

* automated support for, [Bail83]
review of, [lives83]

models and metrics for management/engineering, [BasiSOa]
prediction formulae,

automated support for, [Amst76]
utility of, [McCa78]

* validation of, [Kafu85a]
Queueing Analysis,
applications of,
performance analysis, [Denn78]
automated support for, [Chan89]

for fault-tolerant systems, [Nico87]

Random Testing,
comparison with other techniques, [Dura8la], [Ham188], [Ntaf8la]
for fault-tolerant systems, (Vouk86a], [Vouk86b]
effectiveness of, [Vouk85a], [Vouk85c], [Vouk86a]

Recovery Blocks, [Hech76]
* automated support for, [Ande76a]

consensus recovery block method,
reliability evaluation,
data domain model for, [Scot83a], [Scot83b], [Scot87]
validation of, [Scot84a], [Scot84b]

for concurrent systems,
* sufficient conditions for limiting rollback, lKant80)

performance of, [Wels83]
data domain model for,
validation of, [Scot84b]

reliability evaluation,
data domain model for, [Scot83a], [Scot83b], [Scot87]

* validation of, [Scot84a]
reliability model for, [Hech76], [Hech79]

techniques for constructing acceptance tests, [Hech79]
Regression Analysis, [Lee88I, [Leun88]
0-1 integer programming, [Fisc77]
alternative retest philosophies, [Fisc77]

* automated support requirements, [Panz78a]
based on Cyclomatic Complexity, [McCa82a]
data structure for storing information, [Leun88]
measure of tests affected by instruction change, [Leun88]
test selection, [Cox8l]

Reliability, [Bend86], [Jeli72]
concepts and concerns, [Rose85b]
definitions of, [Jeli72], [Musa79b], [Shoo77a], [Weis85b], [Weis88b]
designing/implementing a reliability program, [Rose85b]
influencing factors, [Jeli72]
Ada and FORTRAN, [Goe188]
development practices, [Card87b]
effects of field service on multisite software, [Bake88]
language design, [Bish86], [Gann75], [Gann76], [Gann77]

investigative approaches,

* 37



August 9, 1989

stepwise statistical methodology, [Troy86]
issues in software engineering, [Down85b]
principles and practices, [Mora78a], [Myer76], [Myer78b]
relationship to hardware reliability, [Piku76]
study of radar system software reliability, [Bowe78]
theory of,
MTSR: Mathematical Theory of Software Reliability, [RADC76a]
critique of, [Ham178b]

user's view, [Davi85]
Reliability Measurement, [Musa8Oa], [Musa87], [Thay78]
Software Reliability Measurement Framework, [McCa87a], [McCa87b]
reliability and estimation studies, [Goel82]

applications of, [Musa8Ob], [Musa87], [Shoo77c]
acceptance testing, [Thom80]
determine continuation/termination of testing, [Thom8O]
supporting system engineering, [Musa79b]
warranty provision, [ThomS0]

comparison of,
methods for obtaining confidence intervals, [Myhr68]

during development, [Shoo73]
error rate forecasting methods, [Nage82], [Nage84]
examples of,
from a space shuttle software project, [Misr83]
plan for the Air Force ASTROS project, [John75]

execution-time theory of, [Musa79a]
guidelines and standards,
RADC guidebook, [Goel83], [McCa87b]
example of telecommunication requirements, [Eric85]
management guidebook, [Glas79]

measurement, estimation and prediction, [Hech77b]
metrics for military systems, [Koss88]
operational reliability, [Brow75], [Litt78], [Mora75], [Nels73], [Nels78], [Weis85b], [Weis86], [Weis88b]
certifying from statistical testing, [Curr86], [Mill87a]
methods for determining confidence bounds, [Dura8O]
supported by statistical sampling, [Dura8lb], [East72]
supported by statistical testing, [Dyer85a]

others, [Hech77c], [Krus78], [Mora72]
principles and practices, [Hoer74]
quantitative measurement of, [Brow76]
review of prediction methods, [Misr83]
state of the art, [LittSOa], [Litt8Ob], [MiyaXX]
research directions, [Litt78]

system reliability, [Ande79b], [Han76], [Land77]
Bayesian software-hardware estimation, [Thom8O]
comparison of hardware/software reliability, [MusaS0bI

tutorials, [HechSO]
Reliability Models, [Dale86], [Musa8Ob]
Poisson model for Markov and semi-Markov structured software, [Litt76]
accounting for service organization characteristics, [Bake88]
analysis and validation of, [Scha79], [Wigg84]
Poisson and binomial models, [Angu8O]

38



0

August 9, 1989

* continuous probability distribution models, [Goel8Oc], [Schi78]
discrete models, [Broo8Ob]
discrete probability distribution models, [Goel80c], [Schi78]
time and data domain models, [Goel8Oc], [Schi78]

applications of, [Goel83], [Goe85]
Markov models,

* validation, [Triv8O]
probability-based model applied to code reading experiment, [Jeli73]
reliability growth models to support management, [Krug88]

automated support for,
SMERFS: Statistical Modeling and EStimation of Reliability Functions for Software, [Farr88]

classification of,
* based on residual error size and testing process, [Rama82]

comparison of, [Farr83], [Musa87], [Suke77a], [Suke77b], [Suke79]
criteria for, [Iann84]

data requirements, [Duva80], [Farr83], [Litt8Ob], [Thay75]
de-eutrophication process model, [Jei72l
deterministic and statistical models, [Moha79]

• elimination of perfect debugging assumption, [Ohba89]
experiments in,

6 models applied to a C31 project, [Angu83]
failure rate assumption,

relaxation of, [Giam86]
for prediction,

* analysis of quality of,
comparison of models, inference procedures, [Keil87]

micro model based on program structure, [Shoo76], [Shoo77a]
number of errors at start of testing,
based on development characteristics, [Taka89]

probabilistic model, [Shoo72], [Shoo77a]
* for probabilistic program correctness, [Dura78]

supported by error reducing performance of development processes, [Dura78]
growth models,
for project management, [Krug88]

historical development of, [Schi78]
metrics,
incorporating into, [Henr88b]

parameter estimation,
examples of,

application of methods on a C3 project, [Angu83]
validation of methods, [AnguSO]

resolving constraints from availability of data,
S-shaped and hyperexponential models, [Ohba84]

review of, [Farr83], [Goel83], [Goe185], [RADC76a]
selection of, [Abde86], [Goe83]
specific models, [Litt75]
Bayesian differential debugging model, [Litt8Oc]
Error Complexity Model, [Naka89]

• Goel-Okumoto model,
for estimation of optimal test time, [Goel8l]

Jelinski-Moranda model, [Litt8lb]

• 39



August 9, 1989

comparison with other models, (Suke79]
experiments in, [Rowl88]
variations for early error estimation, [MoraS0]

Poisson model for Markov and semi-Markov structured software, [Litt79]
S-shaped reliability growth model, [Yama83]
Schick-Wolverton model,
comparison with other models, [Suke79]
modified Schick-Wolverton model, [Suke79]

data domain models,
for fault-tolerant systems, [Scot83a], [Scot83b], [Scot84a], [Scot84b], [Scct87]
Markov model, [Sonea0]

for fault-tolerant systems, [Hech79]
non-homogeneous Poisson process, [Schn75]
probabilistic model and stopping rule for debugging, [Form77]
stochastic Markov process for hardware/software, [Bene85]
automated support for, [Bene85]

stochastic growth model, [Litt8la]
stochastic model based on a non-homogeneous Poisson process, [Goel79]
with applications, [Goel80a], [Goel80b]

time-based models,
Musa's execution time-based model, [Musa84]
application in a computation center software, [Han78c]
evaluation of, [Mil8Oc]

state/time-dependent failure rate, imperfect debugging,
binomial model for error occurrences, [Shan8l]
maximum likelihood estimates for parameters, (Shan8l]
relationship with other models, [Shan8l]

survey of, [Shoo77a]
time-based models,
Bayesian growth model, [Litt73]
Musa's execution time-based model, [Musa75], [Musa79a]
Poisson-process models,

impact of test process, [Ehrl87]
completely monotonic regression estimates, [MiUl85], [Mill86]

Reproducible Testing, [Weis88a]
approaches, [Tai85c], [Tai86]
for host-target environment, [Tayl82b]
for testing monitors, [Brin78]

automated support for dataflow machines, tWah188]
for Ada, [Tai85b]

Required Element Testing,
comparison with other techniques, [Ntaf8la]
strategies for, [Ntaf82]
evaluation of, [Ntaf84]

Requirements Analysis,
SAMM modeling tool, [Lamb78]
testability modeling using finite state machines, [Chan85]

Resource Estimation, see Cost Estimation, [Bail80]
Reusable LIbraries,
software,
Ada Software Repository,

40



August 9, 1989

metric analysis of, [Leac89J
Reusable Libraries,
hardware,
for hardware verification, [Bevi88]

software,
Ada Software Repository, [Conn871
RLF: Reusability Library Framework project, [Sold89J
repository management, [Sold89]

Reuse,
analysis of, [Selb87dI, [Selb88c]
domain modeling, [Sold891
for Ada, see Ada, [Romb88hI
investigation of reuse and complexity, [Basi82d]
measurement of reusability, [Hess88]
research framework for, [BasiS7dJ
software,
evaluation of life cycle models for, [Guin89]

Reuse Libraries,
software,
Moorehouse object-oriented reuse library, [Jone89]

Revealing Subdomains, [Weyu8Oc]
Review of, [NBS82a]
automated support tools, [Perr88], [Rama75a], [Reif75]
cost estimating,
conversion cost estimating techniques, [Hout8l)
models, [Ducl82]

formal functional specifications for modules, (Lisk79]
formal verification, [Dunn84]
graph partitioning methods, [Paig77b]
human factors,
psychological research on programming, [Shei8l]

measurement,
studies at General Motors, [Elsh78a]

metrics,
Software Science, supporting evidence, [Fitz78aJ

* complexity metrics, [DuclS2I
for user information satisfaction, [lves83]
process/product measures for error-prone software, [Shen85]
quality metrics, [Ducl821
testing metrics, [Perr88]

reliability,
models, [Farr83l, [Goel83], [Goel85], [RADC76a]
prediction methods, [Misr83]

testing and analysis techniques, [Clar7ga], [DunnS4]
for real-time software, [Quir85]

testing environments, [Rama75a]
testing strategies, [Dunn841

Risk Analysis, see also FMEA
DoD guielines and standards,
risk abatement, [AFSC88b]

cost/benefit analysis,

* 41



August 9, 1989

using Bayesian decision model, [Wein8O]
Risk Reduction Approaches,
dual programming, [Long77]
multi-specification, [Long77]

Run-Time Monitoring, see also Instrumentation
automated support for,

Algol68 numerical algorithms testbed, [Henn76a]
for Ada see also Ada,
for concurrent/distributed systems, EDL [Yau8O]

Observer, [Ayac79l
problems, practices, roles, tools, [Joyc87b]

inquiry language and processor, [Cohe77]

SADMT, [Linn88]
automated support for,
SADMT/SF: SADMT Simulation Facility, [Linn88]
SAGEN user's guide, [Kapp88]

example of an architecture specification, [Ardo88]
interface to SADMT/SF, [Linn88]

SEL, [Basi77a], [Basi78a], [Card82]
Composite Specification Model (CSM), [Agre87]
compendium of tools, [Deck82b]
cost estimation, [McGa84]
data collection and analysis,
analyzing error data, [Basi8le
automated support for, [Gree8l]
database,

organization and user's guide, [Lo83], [NASA81]
procedures for the rehosted SEL database, [Heil87]

guide to data collection, [Chur82]
data compendium, [Turn8lb]
glossary of software engineering terms, [Babs83]
operation of, [Basi78c]
recent studies, [McGa85a]
relationship equations, [Freb79]
specification measures for, [Agre84a], [AgreS4c]

SEL Comparisons,
RADC and SEL software development data, [Turn8la]
resource utilization curves, [Basi8lf]

SELECT a symbolic execution system, [Boye75]
SEL Evaluations and Experiments, [Card85b]
Ada, [Agre86], [Godf87]
IV&V methodology for flight dynamics, [Page85]
complexity measures, [Basi83b]
fault prediction and reliability assessment, [Basi86e]
resource forecasting, [Basi78a]
resource quality impact on product and process, [McGa85b]
software development practices, [Agre84b], [Chen8l]
designing a measurement experiment, [Basi77b]
impact of design practices, [Card86a], [Card86b]
impact on productivity and reliability, [Card87b]

42



August 9, 1989

* lessons learned, [Basi85d]
statistical model for evaluating effectiveness, [Card87b]
statistics on errors, [Basi82a], [Weis85c]

software metrics, [Basi8lg]
structural coverage in SEL environment, [Basi84a]
study of Musa's reliability model, [Mill8Oc]
summary of software measurement experiences, [ValeS9]

SEL Software Development Characteristics,
development measures, [Card84], [Heil87]
dynamic variables, [Basi83d], [Doer85]
evaluation of management measure, [Page82]
evaluation of, [Basi79c], [Basi8ld], [Card8l]

* relationship among development variables, [Basi8la], [Basi85e]
environment characteristics, [Basi79a]
calculation and use of, [Basi85a]
use and interpretation, [Romb85b]

STAD: System for Testing and Debugging, [Kore85], [Kore86a], [Kore88]
YODA: Your Own Ada Debugger, [Lask88b]

* trace database model, [LeDo85]
dependence-based modeling, [Kore86b], [Kore87]

Safety Analysis, see also Fault-Tree Analysis [Leve83d]
based on constrained expressions, see Constrained Expressions, [Leve87]
evaluation standards for safety critical software, [Parn88]
issues and research directions, [Leve86b]

• of timing properties in real-time systems,
based on RTL: Real-Time Logic, [Jaha86]

quantitative measurement of safety, [Brow76]
Security Analysis,
basic security concepts, [HaliSO]

Security Verification, see also FDM, Gypsy, AFFIRM, Al Certification, HDM
0 comparison of specification paradigms, [Kauf87b]

comparison of techniques, [MiUSib]
requirements for secure operating systems, [Step 74]
specification/verification of o/s security, [Feie8O], [Kore84]

Self-Checking,
experiments in, [Cha87]

0 Simulation,
applications of,
design and validation aid, [Jack7l]
evaluate designs/ease of error detection, [Schn77b]
performance evaluation, [Lee89b]
testbed for cooperative distributed problem solving, [Less80]

* automated support for, SADMT, DARTS
TASKIT: Tasking Ada Simulation Kit), [Ange89]

Sneak Analysis, [Godo77]
Software Development Management, [Daly77]
control over software engineering process, [Dyer80]
designing/implementing a reliability program, [Rose85b]
guidelines and standards,
configuration management, [IEEE83c]
management indicators, [AFSC86a]

* 43



August 9, 1989

maintenance, [Adam84]
relationships of strategies to repair maintenance, [Grad87a]
state of the art, [Thay80]
supported by, SEL Software Development Characteristics
cost estimation, [Putn77], [Putn78], [Putn79]
macro variable models, [Gaff8O]
management indicators, [Ross88]
models and metrics for, [BasiSOa], [Gaff8la]
process-related productivity factors, [Vosb84]
productivity, performance, progress measurement, [Howe84]
reliability growth models, [Krug88]

Software Development Practices, see also Chief Programmer Teams, Structured Programming
a rigorous approach, [JoneS0]
design,
evaluation of technology and practices, [Brun86]
overview of formal methods, [Hoar87J
parallel program design, [Chan88]
structured design, [Stev74], [Your76]
with constant evaluation by, [Ches77]

evaluation of, see also SEL Evaluations and Experiments
impact on understandability and modifiability, [Shep78]
lessons learned, [Basi85d]
through application to real projects, [Snee84]

problems and proposed solutions, [Zelk78]
programming,

by action clusters, [Naur69]
programming style, [Kern74a], [Kern74b]

Software Development Process,
guidelines and standards,
Defense Systems Software Development, [DOD88]

life cycle approaches,
evaluation wrt reuse, [Guin89]
evaluation wrt validation and verification, [Guin89]
iterative enhancement, [Basi75]

cost model for, [Duc182]
paradigmatic approach, [Walk8l]
risk-driven approach, Spiral Model, [Boeh86]
transformational approach, [Baue79b], [Baue89]
PROSPECTRA project, [Krie86]

model of construction/reasoning errors, [Howd89a]
prototyping,
evaluation of software prototypes, [Chur86]
operational specification as a basis for, [Baz82J
prototyping versus specifying, [Boeh84a]
uses of and techniques, [Tayl82a]

tailoring and improving process see also TAME,
Software Physics, [Hals75a], [Knij78]
analysis of Akiyama's debugging data, (Funa75]
evaluation of, [Love76]
experiments in, [Gord76]

Software Science, [Chri8l], [Fitz78a] see also Software Physics, [Hals77a], [Hals78], [Harr88b], [Yeh79]

44



August 9, 1989

* APL and Halstead's theory of metrics, [Deke8l]
Halstead's criteria and statistical algorithms, [Bohr75]
adaptations of, [Bake79a]
applications of, [Smit79]
compiler performance evaluation, [Shaw89]
error prediction prior to testing, [Corn76], [Otte78], [Otte79], [Otte8i]

* evaluating modularity concepts, [Bake79b]
productivity prediction, [Come79], [Curt79a], [Curt79b], [Curt8l], [Grem84], [Hals77d], [Moha79I
project management, [Hals77b], [Suno82]

automated support for, [Otte76]
comparison with other measures, [Albr83], [Bake80], [Blai85a], [Gaff79], [Kitc8l], [Wood8la]
correlation with other measures, [Lind89]

* counting strategies, [Fits79]
description and example of, [Salt82]

evaluation of, [Bake79a], [Basi8lg], [Fitz78b], [Hame82], [Lass8l], [List82], [Mora78c], [Shen83]
relationship between estimated/actual size, [Card87a]
relationship with development effort, [Kitc8l], [Lind89]
review of supporting evidence, [Fitz78a], [Shen83]

• validation across FORTRAN programs, [Basi83b]
with respect to cognitive psychology, [Cou183]

example analysis,
from technical writing, [Hals77c]
of COBOL programs, [Shen8O]
of IBM programming products, [Smit8Oa]

* of PL1 programs, [Elsh76a], [Zweb79]
of programming size, [Smit80b]
real-time switching system, [Bail8l]

experiments in, [Come79]
for designs, [Szul81, [Szul84]
foundations, [Hals72a], [Hals73a], [Hals73b], [Hals76]

* influencing factors,
basic constructs, [Lass79]
effect of the counting method, [Elsh78b]
vocabulary effects, [Fits8O]

language level metric, [Cont8l], [Olde77]
length equation, [John8l]

* theory, [Hals75b]
Special Values Testing,
comparison with other techniques, [Howd77c]

Specification-Based Testing, see also Constraint Logic Programming
comparison with other techniques, [Hetz76]
for test data generation, [Gour8l], [Gour83], [Lask88a]

• T-3 Testing Tool, [Lawr87]
state of the art, [Gour8l]
using Prolog, (Boug85a]

Specification,
applications of, [Parn79]
transformational programming, [Baue89]

• evaluation of techniques,
criteria for, [Lisk75]

formal methods of, [Berg82]

• 45



August 9, 1989

review of functional specifications techniques, [Lisk79]
incremental construction by combining of parallel elaborations, [Feat89]
research directions, [Lisk75]
role of, [Lisk75], [Lisk79]
testing, verification and analysis,
the LEONARDO project, [Gerh88a]

Specification Languages, see also Finite State Machines, Abstract Data Types, PSLIPSA
ASLAN, [Auer85]
Lotos, [Brin87], [ISO87c], [Najm87]

executing Lotos specifications, [Bria86]
PSL/PSA: Problem Statement Language/Problem Statement Analyzer,

modeled using axiomatic methods, [Gerh84]
SEMANOL(73), [Ande76b]
SEQuIFY sequence model system, [Gerh88a]
X a computer-based specification language, [Bish86]
.bstract specifications,
roles and examples of, [Parn77]

algebraic axioms,
combined with predicate transformers, [Gutt80]
example from a text editor, [McMu83]
used as a test driver see also DAISTS,

algebraic specifications, [Ehri85]
OBJ: a language for writing and testing, [Gogu79a]
testing of, [Gogu79b]
theory and application to testing, [GaudXXI

applications of,
defining abstract models of a system, [Ches77]
describing program behavior,
using time sequences, [Dahl79a]

documenting hierarchical design process, [Ches77]
for monitoring and debugging Ada,
relational algebra, [DiMa85]

for oracles, SEMANOL(73), [Ande76b]
runnable specifications as a design tool, [Davi82b]
testing communication protocols, [Dsso86]
to facilitate proof of correctness, [Noon75]

automated support for, [Pate89]
behavioral abstraction approach see also EDL,
desirable features of, [Gogu8O]
distributed systems,
EBS: Event-Based Specification Language, [Chen83]

for Ada see also Ada,
for data types,
final data type specifications, [Kami8O]

for hardware, VHSIC
HDL: Hardware Design Language, [Luck86a]

for real-time systems,
RT-ASLAN, [Auer86]
based on Lucid, [Skil89]
temporal assertions, [Lamp83]

larch family, [Gutt85]

46



0i

August 9, 1989

*w predicate calculus,
for testing programs by specification mutation, [Budd85]

semi-formal approaches,
design conversations, [Conk88]
role-activity models, [Conk86]
scenarios, [Wexe87]

* using traces to write abstract specifications, [Bart77]
a formal foundation, [MacL82]

Specification Mutation,
applications of,
for program testing, [Budd85]

Specification Testing and Analysis, [Gerr85], [Prob82b]
* automated support for,

Inatest, [Eckm84], [Eckm85], [Kemm85a]
concurrent systems,
to detect synchronization errors, [Tai85a]

dual specification comparison based on symbolic execution, [Rama81]
Standards Checking,

* automated support for, [Henn84]
Program Testing Translator, [Stuc72]

for Ada, based on DIANA intermediate form, [Byrn89]
Stanford Pascal Verifier, [Luck79a], [Luck79b]
survey of applications, [Luck77]

State Transition Models,
* applications of,

axiomatic approaches, [Gutt77]
specification/verification of communication protocols, [Suns77], [Suns82]

automated support for see also AFFIRM,
Statement Testing,
automated support for see also DAISTS,

• comparison with other techniques, [Selb86]
procedure coverage as an alternative, [Basi84a]

State of the Art,
DoD practices, [STE86]
automated support, [DeMi87a], [Reif75]
Ada compilation systems, [Bend89]

• development environments, [Tayl87]
concepts/research issues in technology, [Wegn79]
contributions of experiments to software engineering, [Basi86a]
data collection and analysis, [Thib78]
formal verification, [Kemm86], [Land86], (Youn89a]
automated support for, [Crai86], [Crai87a]

* for Ada, (Mayf85], [Mayf86], [Roby85]
measurement, [Youn89a]
design metrics evolution, [Romb88f]
metrics in quality assurance, [Gaff8lb]
productivity issues of the 80's, [Jone8l
reliability measurement, [Bend86], [Kei187], [MiyaXXI, [Musa80b]

* software development management, [Thay80]
testing and analysis, [Budd83b], [DeMi87a], [Gerh79l, [Good79a], [Hans84], [INF079], [Land861, [Mil179a],
[Youn89a]

0 47



August 9, 1989

challenges to the testing community, [Mil179c]
code reading and inspections, [Faga86]
data flow analysis, [Clar86a]
examination based on testing process model, [Gelp88]
issues, [Adri8O]
mutation analysis, [Lipt78]
research directions, [Howd87]
specification-based program testing, [Gour8l]
strengths, weaknesses, ope. ational characteristics, [Oste80], [Oste8O]
techniques for real-time software, [Quir85]
technology needs in the 80's, [Mil179a]

verification in the 80's, [Gerh78]
State of the Practice,
automated support, [DeMi87a]
programming problem areas, [Elsh76b]
testing and analysis, [DeMi87a]

Static Analysis,
types of errors found and resource costs, [Gann79]

Static Concurrency Analysis, [Saxe77]
RGA: Reachability Graph Analyzer, [Morg84], [Morg86], [Morg87]
algorithm for, [Tayl8l]
applications of,
reconstructing execution host/target, [Tayl82b]
structural testing, [Tayl86a]

combined with,
dynamic analysis, [Tayl83c]
principles for automated support, [Tayl83c]

symbolic execution, [Youn86a]
complexity of, [Tayl83b]
for Ada, see Ada, [Tayl83a]
syntax-based synchronization analysis with feasibility constraints, [Carv88]

Statistical Testing, [Dyer82a], [Dyer85a], [Mil172d]
certification of reliability, [Curr861, [Mill87a]
estimation of reliability, [Dyer85a]
relationship to formal verification, [Mil187a]

Structural Testing,
automated support for, DAISTS, FORTEST [Mil174a], [Mil174b]
FLOW, part of the PACE system, [Brow72a]
requisite support for concurrent systems, [Tay186a]

combined with functional testing,
automated support for, [Clar78a]

comparison of coverage of metrics, [Ntaf85], [Weis85a]
comparison with other techniques, [Howd80c], [Hwan8l]
fault detection effectiveness/cost faults, [Basi85b]

coverage measures,
as indicators of system performance, [Wu87c]
based on LCSAJs, [Henn76b]
definitions, [MillS0al
for Ada, [Wu87c]
hierarchy of, [Wood8Ob]
statement and expression see also DAISTS,

48



August 9, 1989

* evaluation of,
error detection ability, [Girg86a]
relationship of coverage/representativeness, [Brow75]
selectivity of path selection criteria, [Zeil88a]

exercising program segments, [Popk78
for fault-tolerant systems, [Vouk86a], [Vouk86b]

* Structured Programming, [Dah172]
Dijkstra's calculus for formal program development, [Grie76I
and complexity,
formalization and application of, [McC1761
measuring and controlling complexity, [McCI78a]
sources of complexity, [McC178a]

* error-free programming, [Mill75d]
experiments in, [Basi8lc]
evaluation of, [Broo8l], [John75]

formal verification of, [Ling79]
impact on quality, [Bake72a]
predicting effect on resource consumption, [Parr8O]

* process as well as program structure, [McC178b]
theory of, [Ling79], [Mill75a]

Structured Testing, [Wals77c]
applications of, [McCa82a]
using Cyclomatic Complexity, [McCa76], [McCa82c], [Perr88]

Survey of,
* automated support tools, [FSTC83], [Mil177b, [NBS82b], [Perr83]

debugging tools, [Schw70a]
error analysis work, [Amor75]
error types, frequencies and habitats, [Schw70a]
formal verification,
automated support tools,

* Stanford Pascal Verifier, applications of, [Luck77]
mechanical support for formal reasoning, [Lind88d]
theorem provers, [Elsp72a]

results of Hoare's logic approach, [Apt8l]
techniques, [Adri82], [Elsp72a]

for parallel programs, [Barr85I
* for procedure and data abstractions, [Shan82]

theory, [Elsp72a]
measurement,
military standards/metrics for quality, [Bowe79]
reliability,
models, [Rama82], [Shoo77a]
technological management techniques, [Glas79]

testing and analysis techniques, [Adri82], [Bils83], [Mil172c], [NBS82b]
dynamic analysis, [Howd81c]
methods for estimating test data adequacy, [Ramna82]
static analysis, [Howd8lb]
communication protocols, recent developments, [Sari88a]

• Symbolic Execution, see also Symbolic Testing
applications of, (Clar8la], [Clar8Sb]
debugging,

* ,49



August 9, 1989

Symbolic Debug/10OO, [HCP82]
using path rules, [Brue83]

fault-based testing, [More88I
symbolic fault tracking see also Perturbation Testing,

formal verification, [Clar84I, [Hant761, [King76]
adaptation of Manna's technique, [Burs74I
for Ada see also Ada,
of communication protocols, fBran78]

prototyping, [Cohe82I
testing and analysis, [Chea79], [Clar76aI, [Clar76b], [Clar81c], [Darr78], [King75a], [King75b], [King76],
[Richg5a]
combined with static concurrency analysis, [Youn86ij
compiler testing, [Same76]
fault-based testing, [More87]
partition analysis, [Rich8lc]
path generation, [Clar84]
goal-oriented approach, [Wood8Oc]

test data generation methods, [Chen76], [Clar76a], [Clar84], [Howd77cI, [Rama76]
automated support for, [Clar8la], [Clar85bI
design of, [Howd77a]

automated tools, see also SELECT, DISSECT
EFFIGY for PL/1 programs, [King75a], [King76]
Inatest, [Eckm84], [Eckm85], [Kernm85aj
UNISEX: a Unix-based executor for Pascal, [Eckm83b], [Kemm85b], [So11831
for Ada, see Ada, [HarrgSa]
for ELI, [Chea791
for FORTRAN, [Clar76b], [Rama76]

SADAT, [Voge8O]
an executor based on MACSYMA, [Fava79]

conceptual representation for programs with side-effects, [Hewi761
path selection, [Wood78]
strengths, weaknesses, operational characteristics, [Oste8O]

Symbolic Testing,
Lindenmayer grammars, [Howd78e]
automated support for see also DISSECT,
estimation of cost using available systems, [Howd77a]

comparison with other techniques, [Howd77a], [Howd77c]
for Ada, see Ada, [Clar86b]
reliability of, [Howd77a], [Howd7Th], [Howd77cJ

System Structure,
cluster partitioning, [Hutc83]
automated support for, [Bela8l]
metric to quantify partition complexity, [Bela8l]
quantifying ratios of coupling/cohesion, [Selb88a], [Selb88b]
to support error localization, [Selb8a], [Selb8Sbj

cost of modularization, [Canip76]
criteria for modularization, [Card85d], [Parn72a], [Parn72b], [Schn77c]
based on issues of fault tolerance, [Rand75]
for extensible/contractable software, [Parn78]
information hiding, [Parn72c]
monitors as a structuring method, [Hoar741

50



S

August 9, 1989

* hierarchical ordering of functions/variability, [Dijk76b]
evaluation of,
based on information flow, [Henr79], [Henr8lb], [Henr84]

experiments in,
global vs parameterized module connections, [Lohs84]
relationship with maintainability, [Gibs89]

* meanings of the term "hierarchical structure", [Parn74]
modeling stabilization of a large system, [Hane72]
relating rate of progress to, [Parr8O]
response times of level structured systems, [Hart84]

System Testing, [Perr88]
aided by structured analysis, [McCa82b]

* estimating duration of, [Krug88]
impact on reliability growth models, [Ehrl87]
methods, [Cele8l]
priority rules for test case selection, [Pets85]

TAME: Tailoring A Measurement Environment, [Basi87a], [Basi87b], [Romb88e]
* exploiting feedback from evaluation, [Basi8S8]

improvement-oriented process model, [Romb88b]
integrating measurement into environments, [Basi87c]
lessons learned in the development process and measurement, [Romb85a]
tailoring process to goals, environments, [Basi87c], [Basi88]

TEAM: Testing, Evaluation, and Analysis Medley,
* ARIES: a multi-lingual interpreter, [Epp86], [Zeil87]

design principles of, [Clar88a]
evaluation of testing and analysis techniques, [Clar88b]
integration of testing and analysis techniques, [Clar88a]
model for, [Clar88b]

TSL: Task Sequencing Language, [Helm85], [Luck86a]
* TSL-2 for distributed systems, [Luck87]

testing and debugging of Ada programs,
runtime monitor, [Luck87]

Technology Transfer, [Whit88b]
Temporal Logic, [Krog87], [Lamp83], [Pnue77]

applications of,
design/synthesis of synchronization skeletons, [Clar81b]
verification of finite-state concurrent systems, [Clar86d]

combined with Ina Jo see also FDM
comparison of,
EBS with temporal logic and trace approaches, [Chen83]

complexity of, [Sist88]
proof systems based on temporal logic, [Barr84], [Nguy86], [Owic82]
time, clocks and the ordering of events, [Lamp78]

Test Data,
aid to proving correctness, [Gel178], [Howd78b]

Test Data Adequacy, [Weyu8Ob]
completeness criteria, [Wals85]
based on ability to distinguish functions, [Howd8Od]
based on testing complexity, [Tai8O]

for concurrent/distributed systems, [Weis87]

• 51



August 9, 1989

theory of,
abstract definition of, [Weyu83]
axiomatic theory of adequacy, [Weyu84b], [Weyu89], [Zweb89l
determining correctness, [Broo8Od]
reliability, [Good75a], [Good75b], [HamI78a], [Howd76c], [Ostr78], [Ostr8O]
revealing test criteria/subdomains, [Weyu8Oc]
testing for probable correctness, [Haml86], [Haml87]
theoretical analysis, [Davi83b]
two notions of correctness, [Budd8Od]

Test Data Selection,
for loop free programs, [Cher79]
methodology for, [Howd74a], [Howd76b]
supported by,
analysis of memory dump, [Ehre76]
integer programming, [Lee88]
test case specifications,
TESTER/I, [Pete76]

Test Data Selection Criteria, see also Mutation Analysis [Clar78b], Structural Testing, Data Flow Analysis
for abstract code, DAISTS, EQUATE, Symbolic Fault Tracking

syntactic, semantic, methodological problems, (Zeil88c]
using Prolog, [Boug86]

Test Drivers,
TST: Ada Test Support Tool, [Maye89]
for Ada, see Ada, [Bess87]
for FORTRAN,

test procedure language/processor, [GE77a], [GE77b], [Panz76], [Panz78a], [Panz78b], [Panz7&]
for path testing, [Shoo79I
for pseudo-exhaustive testing, [Bagg78]

Test Effectiveness, [Perr83]
based on,
error reducing performance of development processes, [Dura78]
evaluation of test representativeness, [Brow75]
specifications in predicate calculus, [Budd85]

estimation of residual faults and effectiveness, [Bowe84]
formalism for completeness of error-based techniques, [Howd82a]
measurement of,
Algol68 numerical algorithms testbed, [Henn78], [Henn84]

Test Management, [Evan84b], [Perr83]
allocation and utilization of resources, [Shen85]
establishing comany-wide metrics program, [Grad87b]
guidelines and standards, [Hetz84]

Software Test and Evaluation Manual, [DODD87]
Test and Evaluation Master Plan guidelines, [DODD86b]
Test and Evaluation guidelines, [Army87], [DODD86a]
operational testing,
management guidelines, [AFOT86]

software acquisition guidance (maintenance), [Stan77]
methodology for test specification and auditing, [Ceri8l]
test control process for functional testing, [Elme69]
traceability from requirements to system test, [Care77]

Test Path Adequacy, see also Perturbation Testing

52



0

August 9, 1989

*- measure for advantage of testing another path, [Zeil8lb]
Test Path Generation,
algorithms for, [Han76]
automated support for see also Symbolic Execution
complexity of algorithms for building a path, [Gabo76]
notions of required pairs/paths, [Ntaf79], [Ntaf8lb]

" Test Planning, [Bran8O, [Perr83]
based on structural characteristics, [Moha79]
based on testing theory, [Moha79]
effort estimation,
based on Goel-Okumoto reliability model, [Goel8l]
based on measure of testability, [Moha76b]

*. optimum allocation of effort, [Down85a], [Down86]
predicting error content prior to testing,
using Software Science, (Corn76], [Otte78], [Otte8l]

predicting errors content prior to testing,
using Software Science, [Otte79I

probabilistic cost model for optimal number of test cases, [Brow89]
* for systems testing, [Perr88]

guidelines and standards, [Hetz84]
optimal testing, [Mitt82]
supported by,
network analysis, [Krau73]

test plan generation using formal grammars, [Baue79a]
*. Testing Environments, see also Mothra

Algol68 numerical algorithms testbed, [Henn78], [Henn84]
FORTRAN Automatic Code Evaluation System, [Rama73], [Rama74a]
ISMS experimental program testing facility, [Fair75]
IUTF: Interactive Unit Test Facility, [Tsal86]
Prufstand, [Snee78]
architectural overview of a distributed testbed, [Garc83]
for Ada see also TEAM,

ATVS: Ada Test and Verification System, [RADC86]
knowledge-based,
for kernel system calls of UNIX systems, [Pesc85]

program testing assistant, [Chap82]
* review of, [Rama75a]

Testing Strategies, [Dunn84]
for expert systems, [Hite88]
for large, complex real-time systems, [Ginz65]
grey box testing, [Prob8O], [Prob82a]
partition testing, [Ham188]
comparison with other strategies, [Haml88]

Theory of Programming, [Dahl72], [Davi83a], [Grie8l]
Dijkstra's calculus, [Grie76]
a discipline, [Dijk76a]
axiomatic basis for, [Hoar69], [Hoar7la]
computability and unsolvability, [Davi82a]
computing as a physical science, [Good88]
convergence, correctness and equivalence,
of functional programs, [Mann70]

0 53



August 9, 1989

equivalence problem for loop-free programs, [Ibar82]
function semantics for sequential programs, [Mili8Ob]
mathematical theory of computation, [Mann74]
model of large program development, [Bela76]
nondeterminism, [Kenn80]
notions of correctness,
existential/universal partial/total correctness, [Gall81]

relationship between,
mathematical proof, algebraic languages, transcendental numbers, proof by sampling, [Davi77]

Theory of Testing, [Howd78d], [Prat83]
NP-completeness, [Gare78]
applications of,
linking theory with practice, [MiU77a]
test planning, [Moha79]

concurrent systems, [Weis87], [Weis88a], [Weis88c]
extension of sequential methods/theory, [Weis88a]

error propagation and elimination, [More8l]
error-based testing, [More84]
fault-based testing, [More87], [More88]
investigative approaches,
(dis)advantages to theoretical/empirical, [Howd78a]
Popperian, [Cher87a]
abstract, [Boug85b], [Cher88]
as equivalence problem, [Howd78b]
general model for static analysis, [Howd83]
inductive inference, [Cher86], [Cher87b]
mathematical framework, [Gour8l], [Gour83]
modeling the testing process, [Down86]
to study testing/debugging effectiveness, [Down85a]
uniform/nonuniform execution models, [Down86]

models of correct programs and testing, [Howd74b]
Tools,

JAVS: Jovial Automated Verification System, [RADC76b]
NODAL, [Mait80]
PACE: Product Assurance Confidence Evaluator,
programmer's guide, [Hoff73I

analysis,
supported by data management system, [John77]

classification of, [Reif79b]
practical applications of, [Brow72b]
test data generation, [Bast78], [Chen75], [Holt76]
ATDG: Automated Test Data Generator System, [Hoff75], [Hoff761
for recursive programs having simple errors, [Broo8Oc]
supported by Prolog, [Gerh85]

testing of, [Henn79]
Trace Analysis,

for distributed systems, [Jard87]
communication protocols, [Boch88]
for conformance and arbitration testing, [Boch87a]

Transition Testing, [Beiz83]
Tutorials,

54



August 9, 1989

* models and metrics for management/engineering, [Basi8Oa]
reliability, [Hech80]
testing and validation, [Mil181a]
validation and verification, [Yeh77]

User Interface Models,
* Chiron for software environments, [Youn88b]

VDM: Vienna Software Development Method, [Bjor78], [Bjor82], [Bjor87]
example in analysis phase, [Bloo86]
with Prolog,

for animation of programs, [Bloo86]
• for back-to-back testing of diverse software, [Bloo86]

VHSIC,
analysis of, [Luck86b]
semantics of timing constructs, [Luck86c]

Walkthroughs, see Code Reading and Inspections, [Myer78a]
* Weak Mutation Analysis, [Howd82a]

automated support for, see also FORTEST
error detection ability, [Girg86a]

Wide-Spectrum Languages,
applications of,

transformational programming, [Baue89]
* basis for a software development environment, tLuck86a]

for program specification and development, [Baue79b]

Zipf's Law,
applications of,
estimating size and effort, [Moha79]

* m-EVES, [Crai88b], [Pase87a]
comparison with other techniques, [Crai88a]
example of low water mark problem, [Crai87b]
m-NEVER theorem prover, [Crai88a], [Pase87b]
m-Verdi, [Crai87c], [Crai87d], [Crai88a]

• 55



August 9, 1989

56



August 9, 1989

0 2. REFERENCES

[AFOT82] HQ Air Force Operational Test and Evaluation Center (AFOTEC). November 1982. Software Opera-
tional Test and Evaluation Guidelines: Software Usability - Evaluator's Guide. AFOTEC Pamphlet
800-2, Vol. 4. **

0 [AFOT86] HQ Air Force Operational Test and Evaluation Center (AFOTEC). August 1986. Software Opera-
tional Test and Evaluation Guidelines: Management of Software Operational Test and Evaluation.
AFOTEC Pamphlet 800-2, Vol. 1.

[AFOT87] HQ Air Force Operational Test and Evaluation Center (AFOTEC). March 1987. Software Opera-
tional Test and Evaluation Guidelines: Software Maintainability - Evaluator's Guide. AFOTEC Pam-
phlet 800-2, Vol. 3.

* [AFOT8a] HQ Air Force Operational Test and Evaluation Center (AFOTEC). May 1988. Software Operational
Test and Evaluation Guidelines: Software Support Resources - Evaluation Guide. AFOTEC Pamphlet
800-2, Vol. 5.

[AFOT88b] HQ Air Force Operational Test and Evaluation Center (AFOTEC). November 1988. Software
Operational Test and Evaluation Guidelines: Software Support Life Cycle Process Evaluation Guide.
AFOTEC Pamphlet 800-2, Vol. 2.

* [AFSC86a] Air Force Systems Command. January 1986. Software Management Indicators. AFSC Pamphlet
800-43.

[AFSC86b] Air Force Systems Command. January 1986. Software Quality Indicators. AFSC Pamphlet 800-14.
[AFSCSSa] Air Force Systems Command and Air Force Logistics Command. 1988. Software Independent Verif-

ication and Validation (IV&V). AFSC/AFLCP Pamphlet 800-5.
[AFSCSb] Air Force Systems Command and Air Force Logistics Command. 1988. Software Risk Abatement.

0 AFSC/AFLCP Pamphlet 800-45.
[Abde86] Abdel-Ghaly, A.A., P.Y. Chan, and B. Littlewood. "Evaluation of Competing Software Reliability

Predictions." 12/9 (Sep 1986):950-967.
[Acre79] Acree, A.T., R.A. DeMillo, T.J. Budd, R.J. Lipton, and F.G. Sayward. September 1979. Mutation

Analysis. Georgia Institute of Technology. Technical Report GIT-ICS-70/08. Also Yale University
Research Report 155. **

0 [AcreSO] Acree, A.T. 1980. On Mutation. Ph.D. thesis, Georgia Institute of Technology.
[AdamS0] Adam, A., and J. Laurent. "LAURA, A System to Debug Student Programs." Artificial Intelligence,

15/1-2 (Jan 1980):75-122.
[Adam84] Adams, E.N. "Optimizing Preventive Service of Software Products." IBM Journal of Research and

Development, 28/1 (Jan 1984):2-14. **
[Adri$0] Adrion, W.R. "Issues in Software Validation, Verification, and Testing." In 1980 TIMS-ORSA

* Conference. ORSA/TIMS Bulletin, 10 (Sep 1980):80. **
[Adri82] Adrion, W.R., M.A. Branstad, and J.C. Cherniavsky. "Validation, Verification, and Testing of Com-

puter Software." ACM: Computing Surveys, 14/2 (Jun 1982):159-192.
[Agi176] Agile, C.R. May 1976. The Role of an Independent Software Validation Agency. Fort Belvoir, VA:

Defense Systems Management School. **
[Agre84a] Agresti, W.W. June 1984. Definitions of Specification Measures for the Software Engineering Labora-

* tory. Computer Sciences Corp. Technical Report CSC/TM-84/6085. **
[Agre84b] Agresti, W.W., F.E. McGarry, D.N. Card, et al. 1984. Measuring Software Technology. New York:

Springer-Verlag. **
[Agre84c] Agresti, W.W., V.E. Church, and F.E. McGarry. December 1984. Investigation of Specification Meas-

ures for the Software Engineering Laboratory (SEL). Greenbelt, MD: NASA/GSFC. Technical
Report SEL-84-003. **

• [Agre86] Agresti, W. 1986. "SEL Ada Experiment: Status and Design Experience." In Proceedings 11th
Annual Software Engineering Workshop, December, Greenbelt, MD. NASA/GSFC. **

0 57



August 9, 1989

[Agre87] Agresti, W.W. June 1987. Guidelines for Applying the Composite Specification Model (CSM). Green-
belt, MD: NASA/GSFC. Technical Report SEL-87-003. **

[Aho86] Aho, A.V., R. Sethi, and J.D. Ullman. 1986. Compilers: Principles, Techniques and Tools. Reading,
MA: Addison Wesley. **

[Al-J82] Al-Jarrah, M.M.F. 1982. The Study and Application of Program Analysis in a Cobol Environment.
Ph.D. thesis, Brunel University. **

[Albe76] Alberts D.S. 1976. "The Economics of Software Quality Assurance." In Proceedings AFIPS National
Computer Conference, vol. 45, June 7-10, New York, NY, 433-442. Montvale, NJ: AFIPS Press.

[Albr79] Albrecht, A.J. 1979. "Measuring Application Development Productivity." In Proceedings IBM Appli-
cation Development Symposium, October 14-17, Monterey, CA, 83-92. GUIDE Int. and SHARE
Int., IBM Corp. **

[Albr8l] Albrecht, A.J. 1981. "Function Points as a Measure of Productivity." In Proceedings GUIDE 53
Meeting, November 12, Dallas, TX. **

[Albr83] Albrecht, A.J., and J.E. Gaffney. "Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation." IEEE: Transactions on Software Engineering, 9/6
(Nov 1983) :639-648.

[Afl7l] Allen, F.E. 1972. "Graph-Theoretic Constructs for Program Control Flow Analysis." In Proceedings
Information Processing (IFIP) Congress '71, 385-390. **

[AIe74] Allen, F.E. 1974. "Interprocedural Data Flow Analysis." In Proceedings Information Processing
(IFIP) Congress '74, August 5-10, Stockholm, Sweden, 398-402. Amsterdam: North-Holland.

[Afle76] Allen, F.E., and J. Cocke. "A Program Data Flow Analysis Procedure." ACM: Communications of
the ACM, 19/3 (Mar 1976):137-147.

[AmbI76a] Ambler, A.L., et al. 1976. "Gypsy: A Language for Specification and Implementation of Verifiable
Programs." ACM: SIGPLAN Notices, 12/3 (Mar 1976).

[Ambi76b] Ambler, A.L., D.I. Good and W.F. Burger. August 1976. Report on the Language GYPSY. Certifiable
Minicomputer Project. University of Texas. Technical Report ICSCA-CMP-1. **

[Amor75] Amory, W., and J.A. Clapp. January 1975. Engineering of Quality Software Systems (A Software Error
Classification Methodology). Griffiss Air Force Base, NY: Rome Air Development Center.
RADC-TR-74-325, Vol. II.

[Amor89] Amoroso, E.G., and T.D. Nguyen. 1989. "An Approach to Ada Compiler Acceptance Testing." In
Proceedings 7th Annual National Conference on Ada Technology, March 13-16, Altantic City, NJ,
266-268. Washington, DC: ACM Ada Technical Committee. **

[Amst76] Amster, S.J., E.J. Davis, B.N. Dickman, and J.P. Kuoni. 1976. "An Experiment in Automatic Qual-
ity Evaluation of Software." In Proceedings Symposium on Computer Software Engineering, April
20-22, Polytechnic Institute for New York, 171-179. MRI Symposia Series, vol. XXIV, J. Fox (ed.).
New York: Polytechnic Press.

[Ande76a] Anderson, T., and R. Kerr. 1976. "Recovery Blocks in Action: A System Supporting High Reliabil-
ity." In Proceedings 2nd International Conference on Software Engineering, October 13-15, San Fran-
cisco, CA:,. Washington, DC: IEEE Computer Society Press.

[Ande76b] Anderson, E.R., F.C. Belz, and E.K. Blum. "SEMANOL(73), A Metalanguage for Programming
the Semantics of Programming Languages." Acta Informatica, 6/1 (1976):109-131.

[Ande79a] Anderson, R.B. 1979. Proving Programs Correct. New York: John Wiley & Sons.
[Ande79b] Anderson, T., and B. Randell (eds.). 1979. Computing Systems Reliability. Cambridge: Cambridge

University Press. **
[Ande8l] Anderson, T., and P.A. Lee. 1981. Fault Tolerance Principles and Practices. Englewood Cliffs, NJ:

Prentice Hall. **
[Ande83] Anderson, T., and J.C. Knight. "A Framework for Software Fault Tolerance in Real-Time Sys-

tems." IEEE: Transactions on Software Engineering, 9/3 (May 1983):355-364.
[AndeSS] Anderson, T., P.A. Barrett, D.N. Halliwell, and M.R. Moulding. "Software Fault Tolerance: An

Evaluation." IEEE: Transactions on Software Engineering, 11/12 (Dec 1985): 1502-1510.

58



August 9, 1989

* [AndeSg] Anderson, J.D., and J.A. Perkins. 1988. "Experience Using an Automated Metrics Framework in
the Review of Ada Source for WIS." In Proceedings 6th National Conference on Ada Technology,
March 14-17, Arlington, VA, 32-41. Washington, DC: ACM Ada Technical Committee.

[AndrSl] Andrews, D.M., and J.P. Benson. 1981. "An Automated Program Testing Methodology and Its
Implementation." In Proceedings 5th International Conference on Software Engineering, March 9-12,
San Diego, CA, 254-261. Washington, DC: IEEE Computer Society Press.

* [Ange89] Angel, M., and P. Juozitis. 1989. "Taskit: An Ada Simluation Tool Kit Featuring Machine Indepen-
dent Parallel Processing." In Proceedings 7th Annual National Conference on Ada Technology, March
13-16, Altantic City, NJ, 122-127. Washington, DC: ACM Ada Technical Committee. **

[Angi76] Angluin, D.C. 1976. An Application of the Theory of Computational Complexity to the Study of
Inductive Inference. Ph.D. diss., University of California at Berkeley. **

[Angl$0] Angluin, D. "Inductive Inference of Formal Languages from Positive Data." Information and Con-
* trol, 45/2 (May 1980):117-135.

[Ang183] Angluin, D., and C.H. Smith. "Inductive Inference: Theory and Methods." ACM: Computing Sur-
veys, 15 (1983):237-269.

[Angu80] Angus, J.E., RE. Szhaffer, and A. Sukert. 1980. "Software Reliability Model Validation." In
Proceedings Annual Reliability and Maintainability Symposium, 191-199.

[AnguS3] Angus, J., et al. August 1983. Reliability Model Demonstration Study. Griffiss Air Force Base, NY:
• Rome Air Development Center. RADC-TR-83-207.

[Appe88] Appelbe, W.F., R.A. DeMillo, D.S. Guindi, K.N. King, and W.M. McCracken. 1988. Using Muta-
tion Analysis for Testing Ada Programs. Purdue University. Technical Report SERC-TR-9-P. Also
published in Proceedings Ada Europe Conference, June, Munich, Germany. New York: Cambridge
University Press.

[Apt80] Apt, K.R., N. Francez, and W.P. de Roever. "A Proof System for Communicating Sequential
* Processes." ACM: Transactions on Programming Languages and Systems, 2/3 (Jul 1980):359-385.

[Apt8l] Apt, K.R. "Ten Years of Hoare's Logic: A Survey-Part I." Transactions on Programming Languages
and Systems, 3/4 (Oct 1981):431-483.

[Aptg3a] Apt, K.R. "Formal Justification of a Proof System for Communicating Sequential Processes." four-
nal of the ACM, 30/1 (Jan 1983):197-216.

[Apt83b] Apt, K.R. 1983. "A Static Analysis of CSP Programs." In Proceedings of the Workshop on Program
* Logic, June, Pittsburgh, PA. **

[Ardo88] Ardoin, C.D., S.H. Edwards, M.R. Kappel, C.J. Linn, J.L. Linn, and J. Salasin. April 1988. A Sim-
ple Example of an SADMT Architecture Specification: Version 1.5. Alexandria, VA: Institute for
Defense Analyses. IDA Paper P-2036.

[Arny84] US Army. 1984. Software Quality Engineering Handbook. US Army Computer Systems Command,
Quality Assurance Directorate.

0 [ArmyS7] U.S. Army Missile Command. February 1987. Software Test and Evaluation Manual, Vol. II, Guide-
lines for Software Test and Evaluation in the Department of Defense.

[Arth88] Arthur, J.D., R.E. Nance, and K.T. Stevens. 1988. Prospects for Automated Documentation Analysis
in Support of Software Quality Assurance. Virginia Polytechnic Institute. TR-88-33.

[Auer85] Auernheimer, B., and R.A. Kemmerer. March 1985. ASLAN User's Manual. University of Califor-
nia at Santa Barbara. Technical Report TRCS84-10. **

* [Auer861 Auernheimer, B., and R.A. Kemmerer. "RT-ASLAN: A Specification Language for Real-Time Sys-
tems." IEEE: Transactions on Software Engineering, 12/9 (Sep 1986):879-889.

[Aver84] Avery, S. June 1984. Development of a Behavior Generator for Constrained Expressions. University of
Massachusetts. Technical Report SDLM/84-2. **

[Aviz75] Avizienis, A. 1975. "Fault Tolerance and Fault Intolerance: Complementary Approaches to Reliable
Computing." In Proceedings International Conference on Reliable Software, April 21-23, Los Angeles,

• CA, 458-464. IEEE Cat. No. 75CH0940-7CSR.
[Aviz77] Avizienis, A., and L. Chen. 1977. "On the Implementation of N-Version Programming for Software

Fault-Tolerance During Execution." In Proceedings 1st International Computer Software and

* 59



August 9, 1989

Applications Conference, November 8-11, Chicago, IL, 149-155. Long Beach, CA: IEEE Computer
Society Press.

[Aviz78] Avizienis, A. 1978. "Fault-Tolerance: The Survival Attribute of Digital Systems." In Proceedings of
the IEEE, 66 (1978), 1109-1125. **

[Aviz84] Avizienis, A., and J.P. Kelly. "Fault Tolerance by Design Diversity: Concepts and Experiments."
IEEE: Computer 17/8 (Aug 1984):67-80.

[Aviz85] Avizienis, A. "The N-Version Approach to Fault-Tolerant Software." IEEE: Transactions on
Software Engineering, 11/12 (Dec 1985):1491-1501.

[Aviz87] Avizienis, A. "On the Achievement of a Highly Dependable and Fault-Tolerant Air Traffic Control
System." IEEE: Computer, 20/2 (Feb 1987):84-90.

[Avru83] Avrunin, G., and J. Wileden. 1983. "Algebraic Techniques for the Analysis of Concurrent Systems."
In Proceedings IEEE 16th Hawaii International Conference on System Sciences, January, Honolulu,
HA, 51-57. **

[Avru85] Avrunin, G.S., and J.C. Wileden. "Describing and Analyzing Distributed Software System
Designs." ACM: Transactions on Programming Languages and Systems, 7/3 (Jul 1985):380-403.

[Avru86] Avrunin, G.S., L.K. Dillon, J.C. Wileden, and W.E. Riddle. "Constrained Expressions: Adding
Analysis Capabilities to Design Methods for Concurrent Software Systems." IEEE: Transactions on
Software Engineering, 12/2 (Feb 1986):278-292.

[Ayac79] Ayache, J.M., P. Azema, and M. Diaz. 1979. "Observer: A Concept for Detecting at Run Time Con-
trol Errors in Concurrent Systems." In Proceedings IEEE Fault-Tolerant Computing Symposium,
June, Madison. **

[Babs&3] Babst, T.A., F.E. McGarry, and M.G. Rohleder. October 1983. Glossary of Software Engineering
Laboratory Terms. Greenbelt, MD: NASA/GSFC. Technical Report SEL-82-105. **

[Bagg78] Baggi, D.L., and M.L. Shooman. 1978. "An Automatic Driver for Pseudo-Exhaustive Software Test-
ing." In Proceedings COMPCON '78, February 28 - March 3, San Francisco, CA, 278. IEEE. **

[BagggO] Baggi, D.L., and M.L. Shooman. March 1980. Software Test Models and Implementation of Associ-
ated Test Drivers. Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report
RADC-TR-80-45.

[Baia84] Baiardi, F., A. Fantechi, and M. Vaneschi. 1984. "Static Checking of Interprocess Communication
in ECSP." In Proceedings ACM-SIGPLAN '84 Symposium on Compiler Construction, June, Montreal.
Published in ACM: SIGPLAN Notices, 19/6 (Jun 1984):290-299.

[BalaSS] Baiardi, F., N. De Francesco, E. Matteoli, S. Stefanini, and G. Vaglini. 1985. "Development of a
Debugger for a Concurrent Language." In Proceedings 8th International Conference on Software
Engineering, August 28-30, London, England, 98-106. Washington, DC: IEEE Computer Society
Press.

[Bail80] Bailey, J.W., and V.R. Basili. August 1980. A Meta-Model for Software Development Resource Expen-
ditures. University of Maryland. Technical Report TR-935. Also published in Proceedings 5th Interna-
tional Conference on Software Engineering, March 9-12, San Diego, CA, 107-116. Washington, DC:
IEEE Computer Society Press.

[Bai8l] Bailey, C.T., and W.L. Dingee. 1981. "A Software Study Using Halstead Metrics." In Proceedings
ACM SIGMETRICS Symposium/Workshop: Quality Metrics, March: 189-197.

[BalIS3] Bailey, J.E., and S.W. Pearson. "Development of a Tool for Measuring and Analyzing Computer
User Satisfaction." Management Science, 29/5 (May 1983):530-545. **

[Bake72a] Baker F.T. 1972. "System Quality Through Structured Programming." In Proceedings AFIPS Fall
Joint Computer Conference, vol. 41, December 5-7, Anaheim, CA, 339-343. Montvale, NJ: AFIPS
Press.

[Bake72b] Baker, F.T. "Chief Programmer Team Management of Production Programming." IBM Systems Jour-
nal, 11/1 (1972):131-149.

[Bake77] Baker, W.F. June 1977. Software Data Collection and Analysis: A Real-Time System Project History.
Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report RADC-TR-77-192.

60



August 9, 1989

* [Bake79a] Baker, A.L. 1979. Software Science and Program Complexity. Ph.D. diss., Ohio State University. *
[Bake79b] Baker, A.L., and S.H. Zweben. "The Use of Software Science in Evaluating Modularity Concepts."

IEEE: Transactions on Software Engineering, 5/2 (Mar 1979):110-120.
[BakeSO] Baker, A.L., and S.H. Zweben. "A Comparison of Measures of Control Flow Complexity." IEEE:

Transactions on Software Engineering, 6/6 (Jun 1980):506-512.
[Bake8i] Baker, F.T. 1981. "Chief Programmer Teams." In Tutorial on Structured Programming: Integrated

* Practices, V.R. Basili and F.T. Baker (eds.). IEEE. **
[Bakegg] Baker, C.T. "Effects of Field Service on Software Reliability." IEEE: Transactions on Software

Engineering, 14/2 (Feb 1988):254-258.
[Baid79] Baldwin, D., and F. Sayward. 1979. Heuristics for Determining Equivalence of Program Mutations.

Yale University. Computer Science Research Report 276. **
[Baiz69] Balzer, R.M. "EXDAMS - Extendable Debugging and Monitoring System." In Proceedings AFIPS

* Spring Joint Computer Conference, vol. 34, 567-580. Montvale, NJ: AFIPS Press.
[Baiz81] Balzer, R.M. 1981. Design Specification Validation. Griffiss Air Force Base, NY: Rome Air Develop-

ment Center. Technical Report RADC-TR-81-102. **
[Balz82] Balzer, R.M., N. Goldman, D. Wile. 1982. "Operational Specification as the Basis for Rapid Proto-

typing." In Proceedings Rapid Prototyping Conference. **
[Barb88] Barbeau, M., and B. Sarikaya. 1988. "A Computer Aided Design Tool for Protocol Testing." In

* Proceedings IFOCOM '88, March, New Orleans. **
[Bark89] Barkataki, S., and J. Kelly. 1989. "Software Quality Assurance in an Ada Environment." In Proceed-

ings 7th Annual National Conference on Ada Technology, March 13-16, Altantic City, NJ, 362-367.
Washington, DC: ACM Ada Technical Committee. **

[Barr82] Barringer, H., and I. Mearns. "Axioms and Proof Rules for Ada Tasks." In Proceedings 6th Interna-
tional Computer Software and Applications Conference, March 9-12, San Diego, CA. Los Angeles,

• CA: IEEE Computer Society.
[Barr84] Barringer, H., and R. Kuiper. 1984. "Now You may Compose Temporal Logic Specifications." In

Proceedings 16th ACM Symposium on the Theory of Computing, April 30 - May 2, Washington, DC,
51-63. Baltimore, MD: ACM Order Department.

[Barr85] Barringer, H. 1985. "A Survey of Verification Techniques for Parallel Programs." Lecture Notes in
Computer Science, Vol. 191. New York: Springer-Verlag.

0 [Bart77] Bartussek, W., and D.L. Parnas. 1977. Using Traces to Write Abstract Specifications for Software
Modules. University of North Carolina. Technical Report TR 77-02. **

[Bart78] Barth, J.M. "A Practical Interprocedural Data-Flow Analysis Algorithm." ACM: Communications
of the ACM, 21/9 (Sep 1978):724-736.

[BartS0] Bartlett, K.A., and D. Rayner. 1980. "The Certification of Data Communication Protocols." In
Proceedings IEEE Symposium on Computer Network Protocols, May, Washington, DC, 12-17. **

[Barz7S] Barzdin, J.M., J.J. Bicevskis, and A.A. Kalninsh. 1975. "A Construction of Complete Sample Sys-
tem for Correctness Testing." In Lecture Notes in Computer Science, Vol. 32, 1-12. Berlin: Springer-
Verlag. **

[Basi75] Basili, V.R., and A.J. Turner. "Iterative Enhancement: A Practical Technique for Software Develop-
ment." IEEE: Transactions on Software Engineering, 1/4 (Dec 1975):390-396.

[Basi77a] Basili, V.R., M.V. Zelkowitz, F.E. McGarry, R.W. Reiter Jr., W.F. Truszkowski, and D.L. Weiss.
5 May 1977. The Software Engineering Laboratory. Greenbelt, MD: NASA/GSFC. Report

SEL-77-001. **
[Basi77b] Basili, V.R., and M.V. Zelkowitz. 1977. "Designing a Software Measurement Experiment." In

Proceedings 2nd Life Cycle Management Workshop, August. **
[Basl78a] Basili, V.R., and M.V. Zelkowitz. "Analyzing Medium-Scale Software Developments." In Proceed-

ings 3rd International Conference on Software Engineering, March 10-12, Atlanta, GA, 116-123. Wash-
• ington, DC: IEEE Computer Society Press.

[Bas178b] Basili, V.R., and R.W. Reiter Jr. August 1978. Investigating Software Development Approaches.
University of Maryland. Technical Report TR-688. **

* 61



August 9, 1989

[Basi7Se] Basili, V.R., and M.V. Zelkowitz. 1977. "Operation of the Software Engineering Laboratory." In
Proceedings U.S. Army Computer Systems Command Software Life Cycle Management Workshop,
August 21-22. **

[Basi79a] Basili, V.R., and M.V. Zelkowitz. "Measuring Software Development Characteristics in the Local
Environment." Computer and Structures, 10/8 (Aug 1979):39-43.

[Basi79b] Basili, V.R., and R.W. Reiter. "An Investigation of Human Factors in Software Development."
IEEE: Computer, 12/12 (Dec 1979):21-38.

[Basi79c] Basili, V.R., and R.W. Reiter, Jr. 1979. "Evaluating Automatable Measures of Software Develop-
ment." In Proceedings Workshop on Quantitative Software Models, October, Kiamesha Lake, NY,
107-116. IEEE Computer Society.

[Basi80s] Basili, V.R. 1980. Tutorial on Models and Metrics for Software Management and Engineering. New
York: IEEE Computer Society. Also published in ASME Advances in Computer Technology, Vol. 1.

[Basi80b] Basili, V.R., and D.H. Hutchens. 1980. "A Study of a Family of Structural Complexity Metrics." In
Proceedings ACM/NBS 19th Annual Technical Symposium: Pathways to System Integrity, June, Gaith-
ersburg, MD, 13-16.

[Basi8Oc] Basili, V.R. 1980. "Data Collection Validation and Analysis." In Draft Software Metrics Panel Final
Report, A.J. Perlis, F.G. Sayward, and M. Shaw (eds.). Washington, DC. **

[Basigla] Basili, V.R., and K. Freburger. "Programming Measurement and Estimation in the Software
Engineering Laboratory." Journal of Systems and Software, 2/1 (Feb 1981):47-57.

[Basi81b] Basili, V.R., and D.M. Weiss. 1981. "Evaluation of a Software Requirements Document by Analysis
of Change Data." In Proceedings 5th International Conference on Software Engineering, March 9-12,
San Diego, CA, 314-322. Washington, DC: IEEE Computer Society Press.

[Basi81c] Basili, V.R., and R.W. Reiter. "A Controlled Experiment Quantitatively Comparing Software
Development Approaches." IEEE: Transactions on Software Engineering, 7/5 (May 1981):299-320.

[Basi81d] Basili, V.R. 1981. "Evaluating Software Development Characteristics: Assessment of Software Meas-
ures in the Software Engineering Laboratory." In Proceedings 6th Annual Software Engineering
Workshop, December, Grenbelt, MD. NASA/GSFC.

[Basigle] Basili, V.R., and D.M. Weiss. 1981. "Analyzing Error Data in the Software Engineering Laboratory."
In Proceedings 4th Minnowbrook Workshop on Software Performance Evaluation, August, Blue
Mountain Lake, NY. **

[Basi81f] Basili, V.R., and J. Beane. "Can the Parr Curve Help with the Manpower Distribution and Resource
Estimation Problems." Journal of Systems and Software, 2/1 (Feb 1981):59-69.

[Basi81g] Basili, V.R., and T. Phillips. 1981. "Evaluating and Comparing Software Metrics in the Software
Engineering Laboratory." In Proceedings ACM SIGMETRICS Symposium/Workshop: Quality
Metrics, March.

[Basi82a] Basili, V.R., and D.M. Weiss. December 1982. Evaluating Software Development by Analysis of
Changes: The Data from the Software Engineering Laboratory. University of Maryland. Technical
Report TR-1236.

[Basi82b] Basili V.R., J. Bailey, J.D. Gannon, E. Kruesi, E. Katz, S. Sheppard, and M.V. Zelkowitz. "Monitor-
ing an Ada Software Development Project." General Electric Company: Newsletter, 1/2 (Dec 1982).
Also published in ACM: Ada Letters, 11/1 (Jun 1982):1.58-1.61. Updated and published in ACM: Ada
Letters, IV/I (Jul-Aug 1984):32-39.

[Basi82c] Basili, V.R., and D.M. Weiss. 1982. A Methe 'ogy for Collecting Valid Software Engineering Data.
University of Maryland. Technical Report 1 ,N4-1235. Also published in IEEE: Transactions on
Software Engineering, 10/6 (Nov 1984):728-738.

[BasI82d] Basili, V.R., and B.T. Perricone. 1982. Software Errors and Complexity: An Empirical Investigation.
University of Maryland. Technical Report TR-1195. Also published in Communications of the ACM,
27/1 (Jan 1984):42-52.

[Basi83a] Basili, V.R., and E.E. Katz. 1983. "Metrics of Interest in an Ada Development." In Proceedings
IEEE Computer Society Workshop on Software Engineering Technology Transfer, April 25-27, Miami

62



August 9, 1989

* Beach, FL, 22-29. Los Angeles, CA: IEEE Computer Society.
[Basi83b] Basili, V.R., R.W. Selby, Jr., and T.Y. Phillips. "Metric Analysis and Data Validation Across For-

tran Projects." IEEE: Transactions on Software Engineering, 9/6 (Nov 1983):652-663.
[Basia3c] Basili, V.R. "An Empirical Study of a Syntactic Complexity Family." IEEE: Transactions on

Software Engineering, 9/6 (Nov 1983):664-672.
[Basi83d] Basili, V.R., and C. Doerflinger. 1983. "Monitoring Software Development Through Dynamic Vai-

* ables." In Proceedings 7th International Computer Software and Applications Conference, Novemer
7-11, Chicago, IL, 394-395. Los Angeles, CA: IEEE Computer Society. **

[Basl84a] Basili, V.R., and J. Ramsey. September 1984. Structural Coverage of Functional Testing. University of
Maryland. Technical Report TR-1442. Also published in Proceedings 7th Minnowbrook Workshop on
Software Performance Evaluation, July 24-27, Blue Mountain Lake, NY.

[Basig4b] Basili, V.R., and R.W. Selby Jr. "Data Collection and Analysis in Software Research and Manage-
* ment." In Proceedings American Statistical Association and Biometric Society Joint Statistical Meet-

ings, August 13-16, Philadelphia, PA, 21-30. **
[Basi84e] Basili, V.R., and E.E. Katz. January 1984. A Taxonomy of Metrics in Terms of an Ada Development.

University of Maryland. **
[Basi84d] Basili, V.R., N.M. Panlilio-Yap, C.L. Ramsey, C. Shih, and E.E. Katz. May 1984. A Quantitative

Analysis of a Software Development in Ada. University of Maryland. Technical Report TR-1403. Also
* published in IEEE: Computer, 18/9 (Sep 1985):53-65.

[BasigSa] Basili, V.R., and R.W. Selby Jr. 1985. "Calculation and Use of an Environment's Characteristic
Software Metric Set." In Proceedings 8th International Conference on Software Engineering, August
28-30, London, England, 386-391. Washington, DC: IEEE Computer Society Press.

[Basi85b] Basili, V.R., and R.W. Selby Jr. May 1985. Comparing the Effectiveness of Software Testing Strategies.
University of Maryland. Technical Report TR-1501. Also published in IEEE: Transactions on

0 Software Engineering, 13/12 (Dec 1987):1278-1296.
[Basi85c] Basili, V.R. July 1985. Quantitative Evaluation of Software Methodology. University of Maryland.

Technical Report TR-1519. Also published in Proceedings 1st Pan Pacific Computer Conference, Sep-
tember. Australian Computer Society.

[Basi85d] Basili, V.R. 1985. "Can We Measure Software Technology: Lessons Learned from 8 Years of Trying."
In Proceedings 10th Annual Software Engineering Workshop, December, Greenbelt, MD.

* NASA/GSFC. **
[Basi85e] Basili, V.R., and N.M. Panlilio-Yap. 1985. "Finding Relationships Between Effort and Other Vari-

ables in the SEL." In Proceedings 9th International Computer Software and Applications Conference,
October 9-11, 221-228. Los Angeles, CA: IEEE Computer Society.

[BasiS5fJ Basili, V.R., and R.W. Selby Jr. 1985. "Four Applications of a Software Data Collection and
Analysis Methodology." In Proceedings 10th Annual Software Engineering Workshop, December,
Greenbelt, MD. NASA/GSFC. **

[Basi85g] Basili, V.R., and C. Loggia-Ramsey. 1985. "ARROWSMITH-P: A Prototype Expert System for
Software Engineering Management." In Proceedings IEEE Symposium on Expert Systems in Govern -
ment, October 23-25, McLean, VA, 252-264. Los Angeles, CA: IEEE Computer Society. **

[Basi85h] Basili, V.R., E.E. Katz, N.M. Panililo-Yap, C.L. Ramsey, and S. Chang. "Characterization of an
Ada Software Development." IEEE: Computer, 18/9 (Sep 1985):53-65.

[BasiS6a] Basili, V.R., R.W. Selby Jr., and D.H. Hutchens. 1986. "Experimentation in Software Engineering."
IEEE: Transactions on Software Engineering, 12/7 (Jul 1986):733-743.

[Basi86b] Basili, V.R., H.D. Rombach, and R.W. Selby Jr. Augi-st 1986. "The Role of Code Reading in the
Software Life Cycle." In Proceedings 9th Minnowbrook Workshop on Software Performance Evalua
tion, August 5-8, Blue Mountain Lake, NY. **

[Basi86c] Basili, V.R., and E.E. Katz. 1986. A Formalization and Categorization of Software Metrics. University
0 of Maryland. Working Paper. **

[Basi86d] Basili, V.R., and L. Wu. 1986. "Structure Coverage Tools for Ada Software Systems." In Proceedings
4th Annual National Conference on Ada Technology, March, Atlanta, GA. **

* 63



August 9, 1989

[Bas86e] Basili, .R., and D. Patnaik. August 1986. A Study on Fault Prediction and Reliability Assessment in
the SEL Environment. University of Maryland. Technical Report TR-1699. **

[Basi7a] Basili, V.R., and H.D. Rombach. 1987. "TAME: Tailoring an Ada Measurement Environment." In
Proceedings Joint Conference of 5th National Conference on Ada Technology and Washington Ada
Symposium, March 16-19, Arlington, VA, 318-325. Washington, DC: ACM Ada Technical Commit-
tee.

[Basi87b] Basili, V.R., and H.D. Rombach. 1987. "Tailoring the Software Process to Project Goals and
Environments." University of Maryland. Technical Report TR-1728. Also published in Proceedings
9th International Conference on Software Engineering, March 30 - Arpil 2, Monterey, CA, 345-357.
Washington, DC: IEEE Computer Society Press.

[Basi87c] Basili, V.R. June 1987. TAME: Integrating Measurement into Software Environments. University of
Maryland. Technical Report TR-1764. (TAME-TR-1-1987). **

[Basi87d] Basili, V.R. 1987. "Software Reuse: A Research Framework." In Proceedings 10th Minnowbrook
Workshop on Software Reuse, August, Blue Mountain Lake, NY. Submitted to IEEE Computer
Magazine. **

[Basi88] Basili, V.R., and H.D. Rombach. "The TAME Project: Towards Improvement-Oriented Software
Environments." IEEE: Transactions on Software Engineering, 14/6 (Jun 1988):758-773.

[Bast78] Bastani, F.B. 1978. The Specification, Design and Implementation of an Automated Test Data Genera-
tor. M.S. Report, University of California at Berkeley. **

[Bate8l] Bates, P.C. and J.C. Wileden. 1981. Event Definition Language: An Aid to Monitoring and Debugging
Complex Software Systems. University of Massachusetts. COINS Technical Report 81-17. **

[Bate82] Bates, P.C., and J.C. Wileden. 1982. "EDL: A Basis for Distributed System Debugging Tools." In
Proceedings 15th Hawaii International Conference on System Sciences, January, Honolulu, Hawaii,
86-93. **

[Bate83a] Bates, P.C., and J.C. Wileden. "An Approach to High-Level Debugging of Distributed Systems."
Journal of Systems and Software, 3 (Dec 1983):255-264.

[Bateg3b] Bates, P.C., J.C. Wileden, and V.R. Lesser. 1983. "A Debugging Tool for Distributed Systems." In
Proceedings 2nd Annual Phoenix Conference on Computers and Communications, 311-315. **

[Batt87] Battaglia, M. May 1987. Integrated Diagnostics Program Plan and Roadmap. Joint Policy Coordinat-
ing Group: Logistics Research, Development Test and Evaluation Integrated Diagnostics Working
Panel. **

[Baue79a] Bauer, J.A., and A.B. Finger. 1979. "Test Plan Generation Using Formal Grammars." In Proceedings
4th International Conference on Software Engineering, September 27-29, Munich, Germany, 425-432.
Washington, DC: IEEE Computer Society Press. **

[Baue79b] Bauer, F.L., M. Broy, R. Gratz, W. Hesse, B. Krieg-Brueckner, H. Partsch, P. Pepper, and H. Woss-
ner. 1979. "Towards a Wide-Spectrum Language to Support Program Specification and Program
Development." In Program Construction: Lecture Notes in Computer Science. Springer-Verlag.

[Baue89] Bauer, F.L., B. Moller, H. Partsch, and P. Pepper. "Formal Program Construction by Transforma-
tions-Computer-Aided, Intuition-Guided Programming." IEEE: Transactions on Software Engineer-
ing, 15/2 (Feb 1989):165-180.

[Bazz82] Bazzichi, F., and I. Spadafora. "An Automatic Generator for Compiler Testing." IEEE: Transac-
tions on Software Engineering, 8/4 (Jul 1982):343-353.

[Beck76] Beckman, L., A. Haraldson, 0. Oskarsson, and E. Sandewall. "A Partial Evaluator and Its Use as a
Programming Tool." Artificial Intelligence, 7/4 (1976) :319-357.

[BeeI85] Beeler, J. "Programmer Productivity: Never Have So Many Done So Little for So Much." Compu-
terworld, December 30, 1985, 40-46. **

[Behr83] Behrens, C.A. "Measuring the Productivity of Computer Systems Development Activities with Func-
tion Points." IEEE: Transactions on Software Engineering, 9/6 (Nov 1983):648-652.

[Belz83] Beizer, B. 1983. Software Testing Techniques. New York: Van Nostrand Reinhold.
[Bela761 Belady, L.A., and M.M. Lehman. "A Model of Large Program development." IBM Systems Journal

15/3 (1976):225-251.

64



0I

August 9, 1989

* [Bela77] Belady, L.A. August 1977. "Software Complexity." In Software Phenomenology. Washington, DC:
U.S. Army Institute for Research in Management Information and Computer Science. **

[Beldall Belady, L.A., and C.J. Evangelist. "System Partitioning and Its Measure." Journal of Systems and
Software, 2/1 (Feb 1981):23-29.

(Belr791 Belford, P.C., R.C. Berg, and T.L. Hannan. 1979. "Central Flow Control Software Development: A
Case Study of the Effectiveness of Software Engineering Techniques." In Proceedings 4th Interna-

* tional Conference on Software Engineering, September 27-29, Munich, Germany, 85-93. Washington,
DC: IEEE Computer Society Press. **

[Belk86] Belkhouche, B., J.E. Urban. "Direct Implementation of Abstract Data Types from Abstract Specifi-
cations." IEEE: Transactions on Software Engineering, 12/5 (May 1989):649-661.

[Beil74] Bell, D.E., and J.E. Sullivan. June 1974. Further Investigation into the Complexity of Software.
MITRE. Technical Report MTR-2874, Vol. H. **

0 [Bend86] Bendell, A., and P. Mellor (eds.). 1986. Reliability: State of the Art. Oxford: Pergamon Infotech. **
[Bend89] Bender, M.E., and T.E. Griest. 1989. "Real-Time Ada Demonstration Project." In Proceedings 7th

Annual National Conference on Ada Technology, March 13-16, Altantic City, NJ, 154-161. Washing-
ton, DC: ACM Ada Technical Committee. **

[Bene85] Benejean, R., J.C. Michon, and J.P. Signoret. 1985. "Software Tools as an Aid for Hardware and
Software Reliability Analysis."

[Beng87] Bengtson, N.M. "Measuring Errors in Operational Analysis Assumptions." IEEE: Transactions on
Software Engineering, 13/7 (Jul 1987):767-776.

[Bens8i] Benson, J.P. 1981. "Adaptive Search Techniques Applied to Software Testing." In Proceedings ACM
SIGMETRICS Symposium/Workshop: Quality Metrics, March: 109-116.

[Bent87] Bentley, J.L., and B.W. Kernighan. January 1987. A System for Algorithm Animation: Tutorial and
User Manual. AT&T Bell Laboratories. **

[Beny79] Benyon-Tinker, G. 1979. "Complexity Measures in an Evolving Large System." In Proceedings
Workshop on Quantitative Software Models, October, Kiamesha Lake, NY, 117-127. IEEE Computer
Society. **

[Bera83] Berard, E.V. "Halstead's Metrics and Ada." ACM: Ada Letters, 3/3 (Nov-Dec 1983):33-44.
[Berg82] Berg, H.K., W.E. Boebert, W.R. Franta, and T. Moher. 1982. Formal Methods of Program Verifica-

tion and Specification. Englewood Cliffs, NJ: Prentice-Hall.
0 [Ber80] Berlinger, E. 1980. "An Information Theory Based Complexity Measure." In Proceedings AFIPS

National Computer Conference, vol. 49, May 19-22, Anaheim, CA, 773-779. Arlington, VA: AFIPS
Press.

[Bern84I Berns, G.M. "Assessing Software Maintainability." ACM: Communications of the ACM, 27/1 (Jan
1984):15-23.

[Berr87] Berry, D.M. "Towards a Formal Basis for the Formal Development Method and the Ina Jo Specifica-
* tion Language." IEEE: Transactions on Software Engineering, 13/2 (Feb 1987):184-201.

[Besh85] Besharatian, R.H., M. Bloom, and J. Salasin. 1985. "Software Quality Data Sheets: Can Software
Consumers be Informed?" In Proceedings IEEE Global Telecommunications Conference, December
2-5, New Orleans, LA, 56-60. Piscataway, NJ: IEEE Service Center.

[Bess87] Besson, M. and B. Queyras. 1987. "GET: A Test Environment Generator for Ada." In Proceedings
Ada Europe Conference, May 26-28, Stockholm, Sweden, :237-250. New York: Cambridge University

• Press
[BevA87] Bevier, W.R. October 1987. A Verified Operating System Kernel. Ph.D. diss., University of Texas.

Also published as Computational Logic, Inc., Technical Report CLI-11. **
[Bevi88] Bevier, W.R. June 1988. A Library for Hardware Verification. Computational Logic, Inc., Technical

Report Internal Note 57. **
[Bleb8'] Biebow, B., and J. Hagelstein. 1985. "Algebraic Specification of Synchronization and Errors." In

Proceedings Colloquim on Software Engineering, Berlin. **
[BlisS3] Bilsel, M.S. April 1983. A Survey of Software Test and Evaluation Techniques. Georgia Institute of

Technology. Technical Report GIT-ICS-83/08. **

* 65



August 9, 1989

[Bird83] Bird, D.L., and C.U. Munoz. "Automatic Generation of Random Self-Checking Test Cases." IBM
Systems Journal, 22/3 (1983):229-245. **

[Bish86] Bishop, P.G., D.G. Esp, M. Barnes, P. Humphreys, G. Dahl, and J. Lahti. "PODS - A Project on
Diverse Software." IEEE: Transactions on Software Engineering, 12/9 (Sep 1986):929-940.

[Bjor78] Bjorner, D., and C.B. Jones. 1978. "The Vienna Development Method." In Lecture Notes in Com-
puter Science, Vol. 61. Springer-Verlag. **

[Bjor82] Bjorner, D., and C.B. Jones. 1982. Formal Specification and Software Development. Englewood
Cliffs, NJ: Prentice-Hall. **

[Bjor87] Bjorner, D. 1987. "On the Use of Formal Methods in Software Development." In Proceedings 9th
International Conference on Software Engineering, March 30- Arpil 2, Monterey, CA, 17-29. Washing-
ton, DC: IEEE Computer Society Press.

[Biac77] Black, R.K., R.P. Curnow, R. Katz, and M.D. Gray. March 1977. BCS Software Production Data.
Boeing Computer Services Inc. Final Technical Report RADC-TR-77-116. **

[Blac8l] Black, J.P., D.J. Taylor, and D.E. Morgan. "A Case Study in Fault Tolerant Software." Software-
Practice and Experience, no. 11 (1981):143-157.

[Blai7l] Blair, J. 1971. "Extendable Non-Interactive Debugging." In Debugging Techniques in Large Systems,
R. Rustin (ed.). Englewood Cliffs, NJ: Prentice-Hall.

[Blai85a] Blaine, J.D., and R.A Kemmerer. "Complexity Measures for Assembly Language Programs." Jour-
nal of Systems and Software, 5 (1985):229-245.

[Biai85b] Blaine, J. 1985. Software Metrics and Program Maintenance: A Case Study of a Real Time Software
Project. M.S. thesis, University of California at Santa Barbara. **

[B1oo86] Bloomfield, R.E., and P.K. Froome. "The Application of Formal Methods to the Assessment of
High Integrity Software." IEEE: Transactions of Software Engineering, 12/9 (Sep 1986):988-993.

[Blum75] Blum, L., and M. Blum. "Toward a Mathematical Theory of Inductive Inference." Information and
Control, 28/1 (May 1975)-125-155.

[Boch78] Bochmann, G.v. "Finite Descriptions of Communication Protocols." Computer Networks, 2 (Oct
1978):361-372. **

[Boeh80] Bochmann, G.v., and C.A. Sunshine. "Formal Methods in Communication Protocol Design."
IEEE: Transactions on Computers, C-28/4 (Apr 1980):624-631. **

[BochS7a] Bochmann,G.v., R. Dssouli, J.-R. Zhao. March 1987. Trace Analysis for Conformance and Arbitra-
tion Testing. Montreal University. Research Report. **

[Boch87b] Bochmann, G.v., G.W. Geber, and J.-M. Serre. "Semi-Automatic Implementation of Communica-
tion Protocols." IEEE: Transactions on Software Engineering, 13/9 (Sep 1987):989-1000.

[Boch88] Bochmann, G.v., C.S. He, D. Ouimet, and J.-R. Zhao. January 1988. Protocol Testing using
Automated Trace Analysis. Montreal University. Research Report. **

[Boeh73] Boehm, B.W. "Software and Its Impact: A Quantitative Assessment." Datamation, 19/5 (May
1973):48-59. **

[Boeh75a] Boehm, B.W. "Some Experience with Automated Aids to the Design of Large-Scale Reliable
Software." IEEE: Transactions on Software Engineering, 1/1 (Mar 1975):125-133.

[Boeh7Sb] Boehm, B.W. 1975. "The High Cost of Software." Practical Strategies for Developing Large Software
Systems, 3-14.

[Boeh78] Boehm, B.W., J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod, and M.J. Merrit. 1978. Charac-
teristics of Software Quality. New York: North Holland. Previously published as TRW Technical
Report 25201-6001-RU-00 in 1973. Also published in Proceedings 2nd International Conference on
Software Engineering, October 13-15, San Francisco, CA, 592-605. Washington, DC: IEEE Com-
puter Society Press.

[Boeh8l] Boehm, B.W. 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall. Also
published in IEEE: Transactions on Software Engineering, 10/1 (Jan 1984):4-21.

[BoehS4a] Boehm, B.W., T.E. Gray, and T. Seewaldt. "Prototyping Versus Specifying: A Multiproject Experi-
ment." IEEE: Transactions on Software Engineering, 10/3 (May 1984):290-303.

66



August 9, 1989

* [Boeh4b ]Boehm, B.W., M.H. Penedo, E.D. Stuckle, et al. "A Software Development Environment for
Improving Productivity." IEEE: Computer, 17/5 (Jun 1984):30-42.

[Boehg6J Boehm, B.W. "A Spiral Model of Software Development and Enhancement." ACM: Software
Engineering Notes, 11/4 (Aug 1986):22-42.

[Boeh87] Boehm, B. "Industrial Software Metrics Top 10 List." IEEE: Software, (Sep 1987):84-85.
[Bohr75] Bohrer, R. 1975. "Halstead's Criteria and Statistical Algorithms." In Proceedings 8th Annual Corn-

* puter Science Statistics Symposium, February, Los Angeles, CA, 262-266. **
[Boie72] Boies, S.J., and J.D. Gould. June 1972. A Behavioral Analysis of Programming--On the Frequency of

Syntactical Errors. Yorktown Heights, NY: IBM Research Center. Report RC-3907. **
[Bonn84] Bonnett, B. 1984. "Software in Safety and Security Critical Systems." Presented at COMPCON 84,

September, Washington, DC. Transcript of the panel session available from A.W. Friend, ELEX
70343, NAVELEX, Washington, DC. **

* [BootgO] Booth, T.L., and C.A. Wiecek. "Performance Abstract Data 1pes as a Tool in Software Perfor-
mance Analysis and Design." IEEE: Transactions on Software Engineering, 6/3 (Mar 1980):138-151.

[Boro72] Borodin, A. "Computational Complexity and the Existence of Complexity Gaps." ACM: Journal of
the ACM, 19/1 (Jan 1972):158-183.

[Bougg5a] Bouge, L., N. Choquet, L. Fribourg, and M.C. Gaudel. 1985. "Application of Prolog to Test Sets
Generation from Algebraic Specifications." In Proceedings TAPSOFT Joint Conference on Theory

* and Practice of Software Development, March, Berlin. **
[Bougb5b] Bouge, L. "A Proposition for a Theory of Testing: An Abstract Approach to the Testing Process."

Theoretical Computer Science, 37/2 (1985):151-181. **
[Boug86] Bouge, L., N. Choquet, L. Fribourg, and M.C. Gaudel. "Test Sets Generation from Algebraic

Specifications Using Logic Programming." Journal of Systems and Software, 6/4 (Nov 1986):343-360.
[Bowe78] Bowen, J.B. January 1978. AN/SPS-52B (DDG) Radar System Software Reliability Study. Hughes-

* Fullerton. Technical Report FR77-14-1106. **
[Bowe79] Bowen, J.B. "A Survey of Standards and Proposed Metrics for Software Quality Testing." IEEE:

Computer, 12/8 (Aug 1979):37-42.
[BoweSO] Bowen, J.B. 1980. "Standard Error Classification to Support Software Reliability Assessment." In

Proceedings AFIPS National Computer Conference, vol. 49, May 19-22, Anaheim, CA, 697-705.
Arlington, VA: AFIPS Press.

* [Bowe83] Bowen, T.P, J.V. Post, J. Tsai, P.E. Presson, and R.L. Schmidt. July 1983. Software Quality Meas-
urement for Distributed Systems, Vols. I, II and III. Griffiss Air Force Base, NY: Rome Air Develop-
ment Center. Technical Report RADC-TR-83-175.

[Bowe84] Bowen, J. 1984. "Estimation of Residual Faults and Testing Effectiveness." In Proceedings 7th Min-
nowbrook Workshop on Software Performance Evaluation, July 24-27, Blue Mountain Lake, NY. **

[BoweS$] Bowen, T.P., G.B. Wigle, and J.T. Tsai. February 1985. Specification of Software Quality Attributes.
* Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report RADC-TR-85-37 (3

Vols.).
[Bows87] Bowser, J. 1987. Reference Manual for Ada Mutant Operators. Unpublished manuscript. **
[BowsXX] Bowser, J.H., and C.A. Budinger. Procedures Used in the Testing of Mothra. Georgia Institute of

Technology. **
[Boye75] Boyer, R.S., B. Elspas, and K.N. Levitt. 1975. "SELECT-A Formal System for Testing and Debug-

* ging Programs by Symbolic Execution." ACM: SIGPLAN Notices, 10/6 (Jun 1975):234-245.
[Boye79] Boyer, R.S., and J.S. Moore. 1979. A Computational Logic Handbook. Perspectives in Computing,

vol. 23. San Diego, CA: Academic Press.
[BoyeSO Boyer, R.S., and J.S. Moore. "A Theorem Prover for Recursive Functions." ACM: SIGSOFT

Software Engineering Notes, 5/3 (Jul 1980):4.
[Boye8l] Boyer, R.S., and J.S. Moore. 1981. Metafunctions: Proving Them Correct and Using Them Efficiently

as New Proof Procedures. In The Correctness Problem in Computer Science, R.S. Boyer and J.S.
Moore (eds.). London: Academic Press. **

67



August 9, 1989

[Boye83] Boyer, R.S., and J.S. Moore. 1983. A Mechanical Proof of the Turing Completeness of Pure Lisp.
University of Texas. Technical Report ICSCA-CMP-37. **

[Boye84a] Boyer, R.S., and J.S. Moore. "Proof Checking, Theorem Proving, and Program Verification." Amer-
ican Mathematical Society Contemporary Mathematics Series, no. 29 (1984):119-132.

[Boyeg4b] Boyer, R.S., and J.S. Moore. "Proof Checking the RSA Public Key Encryption Algorithm." Ameri-
can Mathematical Monthly, 91/3 (1984):181-189. **

[Boye8SJ Boyer, R.S., and J.S. Moore. 1988. A User's Manual for a Computational Logic. Computational
Logic Inc. Technical Report CLI-18. **

[Boys79] Boysen J.P. 1979. Factors Affecting Computer Program Comprehension. Ph.D. diss., Iowa State
University.

[Brad75] Bradley, G.H., T.F. Green, G.T. Howard, and N.F. Schneidewind. 1975. "Structure and Error
Detection in Computer Software." In Proceedings AIEE Conference, 54-59. **

[Bran78] Brand, D., and W.H. Joyner. "Verification of Protocols Using Symbolic Execution." Computer Net-
works, 2 (1978). **

[Bran8O] Branstad, M.A., J.C. Cherniavsky, and W.R. Adrion. February 1980. Validation, Verification, and
Testing for the Individual Programmer. Gaithersburg, MD: National Bureau of Standards. Special
Publication 500-56.

[Bria86] Briand, J.P., M.C. Fehri, L. Logrippo, and A. Obaid. 1986. "Executing Lotos Specifications." In
Proceedings 6th IFIP Workshop on Protocols, June, 73-84. North-Holland. **

[Bril84] Brilliant, S.S. May 1985. Analysis of Faults in a Multi-Version Software Experiment. M.S. thesis,
University of Virginia. **

[Bril87] Brilliant, S.S. September 1987. Software Testing Using Multiple Versions. Ph.D. diss., University of
Virginia. **

[Brin73] Brinch Hansen. P. "Testing Multiprogramming Systems." Software Practice and Experience, 3/2
(Apr-Jun 1973):145-150.

[Brin78] Brinch Hansen, P.B. "Reproducible Testing of Monitors." Software Practice and Experience, 8/6
(1978):721-729.

[Brin85] Brindle, A.F., R.N. Taylor, and D.F. Martin. September 1985. A Debugger for Ada Tasking. El
Segundo, CA: The Aerospace Corp. ATR-85(8033)-l. Also published in IEEE: Transactions on
Software Engineering, 15/3 (Mar 1989):293-304.

[Brin87] Brinksma, E., G. Scollo, and C. Steenberger. 1986. "Lotos Specifications, Their Implementations
and Their Tests." In Proceedings 6th IFIP Workshop on Protocols, June, 349-360. North-Holland. **

[Bris79] Bristow, G., C. Drey, B. Edwards, and W.E. Riddle. 1979. "Anomaly Detection in Concurrent Pro-
grams." In Proceedings 4th International Conference on Software Engineering, September 27-29, Mun-
ich, Germany, 265-273. Washington, DC: IEEE Computer Society Press. **

[BritS2] Britcher, R.N., and J.E. Gaffney. 1982. "Estimates of Software Size from State Machine Designs." In
Proceedings 2nd Annual Software Engineering Workshop. Greenbelt, MD. NASA/GSFC. **

[BritS8] Britcher, R.N. "Using Inspections to Investigate Program Correctness." IEEE: Computer, 21/11
(Nov 1988):38-44.

[Broo75] Brooks, F.P. 1975. The Mythical Man-Month. Reading, MA: Addison Wesley.
[Broo80a] Brooks, R.E. "Studying Programmer Behavior: The Problem of Proper Methodology." ACM: Com-

munications of the ACM, 23/4 (Apr 1980):207-213.
[Broo80bi Brooks, W.D., and R.W. Motley. April 1980. Analysis of Discrete Software Reliability Models. Griffiss

Air Force Base, NY: Rome Air Development Center. Technical Report RADC-TR-80-84. **
[Broo80c] Brooks, M. 1980. Automatic Generation of Test Data for Recursive Programs Having Simple Errors.

Ph.D. thesis, Stanford University. **
[Broo80d] Brooks, M.F. 1980. Determining Correctness by Testing. Ph.D. diss., Stanford University.
[Broo81] Brooks, W.D. "Software Technology Payoff: Some Statistical Evidence." Journal of Systems and

Software, 2/1 (Feb 1981):3-9.
[Brop87] Brophy C., W. Agresti, and V.R. Basili. 1987. "Lessons Learned in the Use of Ada Oiiented Design

Methods." In Proceedings Joint Conference of 5th National Conference on Ada Technology and

68



August 9, 1989

* Washington Ada Symposium, March 16-19, Arlington, VA, 231-236. Washington, DC: ACM Ada
Technical Committee.

[Brow72a] Brown, J.R., and R.H. Hoffman. 1972. "Evaluating the Effectiveness of Software Verification - Prac-
tical Experience with an Automated Tool." In Proceedings AFIPS Fall Joint Computer Conference,
vol. 41, December 5-7, Anaheim, CA, 181-190. Montvale, NJ: AFIPS Press.

[Brow72b] Brown, J.R. September 1972. "Practical Applications of Automated Software Tools." Redondo
*Beach, CA: TRW Systems. Technical Report TRW-SS-72-05. **

[Brow73a] Brown, S.R., et al. 1973. "Automated Software Quality Assurance." In Program Test Methods,
181-204. Englewood Cliffs, NJ: Prentice Hall. **

[Brow73b] Brown, A.R., and W.A. Sampson. 1973. Program Debugging. New York: American Elsevier and
MacDonald. **

[Brow7S] Brown, J.R., and M. Lipow. "Testing for Software Reliability." In Proceedings International Confer-
ence on Reliable Software, April 21-23, Los Angeles, CA, 518-527. IEEE Cat. No. 75CH0940-7CSR.

[Brow76] Brown, J.R., and M. Lipow. August 1976. "The Quantitative Measurement of Software Safety and
Reliability." In TRW Software Series. Revised from TRW Report SDP-1776, August 1973. **

[Brow7T] Browne, J.C., and D.B. Johnson. 1978. "FAST: A Second Generation Program Analysis System."
In Proceedings 3rd International Conference on Software Engineering, March 10-12, Atlanta, GA,
142-148. Washington, DC: IEEE Computer Society Press.

[BrowgOa] Brown, P.J. "Why Does Software Die?" In Life-Cycle Management, Infotech State of the Art
Report, 8/7 (1980). **

[Brow80b] Browne, J., and M. Shaw. June 1980. Toward a Scientific Base for Software Evaluation. ONR (AD
A087 412), Software Metrics Panel Final Report. **

[Brow89] Brown, D.B., S. Maghsoodloo, and W.H. Deason. "A Cost Model for Determining the Optimal
Number of Software Test Cases." IEEE: Transactions on Software Engineering, 15/2 (Feb

-- 1989):218-229.
[Brueg3l Bruegge, B., and P. Hibbard. 1983. "Generalized Path Expressions: A High Level Debugging

Mechanism." In Proceedings ACM SIGSOFT-SIGPLAN Software Engineering Symposium on High-
Level Debugging, March 20-23, Asilomar, CA. Published in ACM: Software Engineering Notes, 8/4
(Aug 1983):61-78. Baltimore, MD: ACM Order Department.

LBrunSS] Brunelle, J.E., and D.E. Eckhardt. 1985. "Fault Tolerant Software: Experiments with the SIFT
Operating System." In Proceedings 5th AIAA Conference on Computers in Aerospace, October, Long
Beach, CA, 355-360. **

f 4run86] Bruns, G., S. Gerhart, C. Johnson, and A. Yaung. June 1986. Design Technology Assessment. MCC.
Technical Report STP-179-87. **

[Brya80] Bryan, W.L. 1980. "The Practical Application of Software Product Assurance." In Proceedings
ACM/NBS 19th Annual Technical Symposium: Pathways to System Integrity, June, Gaithersburg, MD,

*- 131-136.
"Bryk89] Brykczynski, B., and C. Youngblut. 1989. Towards SDS Testing and Evaluation: A Collection of

Relevant Topics. IDA Draft Memorandum Report M-513. VA: Institute for Defense Analyses.
8Buck79] Buckley, F. "A Standard for Software Quality Assurance Plans." IEEE: Computer, 12/8 (Aug

1979):43-51.
'3uck81] Buck, F.O. September 191. Indicators of Quality Inspections. Kingston, NY: IBM Systems Products

Division. Technical Report 21.802. **
[Budd77] Budd, T.A., and v. Sayward. 1977. Users Guide to the Pilot Mutation System. Yale University. Techni-

cal Report 114. **
[Budd7ga] Budd, T.A., R.J. Lipton, F.G. Sayward, and R. DeMillo. 1978. "The Design of a Prototype Mutation

System for Program Testing." In Proceedings AFIPS National Computer Conference. vol. 47, June 5-8,
Anaheim, CA, 623-627. Arlington, VA: AFIPS Press.

[Budd78b] Budd, T.A., and R.J. Lipton. 1978. "Mutation Analysis of Decision Table Programs." In Proceedings
1978 Conference on Information Sciences and Systems, Baltimore, MD, 346-349. John Hopkins
University. **

* 69



August 9, 1989

[Budd~c] Budd, T.A., and R.J. Lipton. 1978. "Proving LISP Programs Using Test Data.", In Proceedings ACM
SIGSOFT-SIGPLAN Software Engineering Symposium on High-Level Debugging, March 20-23, Asi-
lomar, CA. Published in ACM: Software Engineering Notes, 8/4 (Aug 1983), 374-403. Baltimore, MD:
ACM Order Department. **

[BuddS0a] Budd, T.A., R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1980. "Theoretical and Empirical Stu-
dies on Using Program Mutation to Test the Functional Correctness of Programs." In Proceedings 7th
ACM Annual Symposium on Principles of Programming Languages, January 28-30, Las Vegas, NV,
220-233. Baltimore, MD: ACM Order Department.

[Bndd$0b] Budd, T.A. 1980. Mutation Analysis of Program Test Data. Ph.D. thesis, Yale University.
[BuddS0e] Budd, T.A., R. Hess, and F.G. Sayward. 1980. EXPER Implementor's Guide. Yale University. **

[Bnddg0d] Budd, T.A., and D. Angluin. 1980. TWo Notions of Correctness and Their Relation to Testing. Univer-
sity of Arizona. Technical Report 80-19b. Also published inACTA Informatica, no. 18 (1982):31-45.

[Budd8li] Budd, T.A. 1981. "Mutation Analysis: Ideas, Examples, Problems and Prospects." In Computer Pro-
gram Testing, B. Chandrasekaran and S. Radicchi (eds.), 129-148. Amsterdam: North-Holland. **

[Buddg3a] Budd, T.A. March 1983. The Portable Mutation Testing Suite. University of Arizona. Technical
Report TR 83-8. **

[Budds3b] Budd, T.A. 1983. "Techniques for Advanced Software Validation." In State of the Art Report, 11:3,
Software Engineering: Development. Berkshire, England: Pergamon Infotech. **

[Budd$5] Budd, T.A, and A.S. Gopal. "Program Testing by Specification Mutation." IEEE: Computer
Language, 10/1 (Jan 1985).

[Bulu74] Bulut, N., and M.H. Halstead. "Impurities Found in Algorithm Implementations." ACM: SIGPLAN
Notices, 9/3 (Mar 1974):9-12. **

[BuncS0 Bunce, W.E. 1980. "Hardware and Software: An Analytical Approach." In Proceedings Annual
Reliability and Maintainability Symposium, 209-213.

[Burn7g] Burns, J. 1978. "The Stability of Test Data from Program Mutation." In Digest IEEE Workshop on
Software Testing and Test Documentation, December 18-20, Ft. Lauderdale, FL, 324-334. IEEE Com-
puter Society Technical Committee on Software Engineering. **

[Burs74] Burstall, R.M. 1974. "Program Proving as Hand Simulation with a Little Induction." In Proceedings
Information Processing 6th World Computer Congress, August 5-10, Stockholm, Sweden, 308-312.
Amsterdam: North-Holland.

[Byrn89] Byrnes, C. 1989. "A DIANA Query Language for the Analysis of Ada Software." In Proceedings 7th
Annual National Conference on Ada Technology, March 13-16, Altantic City, NJ, 511-518. Washing-
ton, DC: ACM Ada Technical Committee. **

[CSC78] Acceptance Test Methods. Computer Sciences Corp. Report TM-78/6296, October 1978.
[CSDL80] Design Aids for Real-Time Systems (DARTS: A Designer's Manual) (preliminary). Cambridge, MA:

Charles Stark Draper Laboratory, Inc., January 1980. **
[Cag182] Caglayan, M.U. 1982. A Method for the Design, Representation and Analysis of Distributed Software

Systems using Modified Petri Nets. Ph.D. diss., Northwestern University.
[Cail79] Cailliau, R., and F. Rubin. "On a Controlled Experiment in Program Testing." ACM Forum, ACM:

Communications of the ACM, 22/12 (Dec 1979):687-688.
[Camp74] Campbell R.H., and A.N. Habermann. 1974. "The Specification of Process Synchronization by Path-

Expressions." In Lecture Notes in Computer Science, Operating Systems 16. G. Goos and J. Hart-
manis (eds.), 89-102. New York: Springer-Verlag. **

[Camp76] Camp, J.W, and E.P. Jensen. 1976. "Cost of Modularity." Proceedings Symposium on Computer
Software Engineering, April 20-22, Polytechnic Institute for New York. MRI Symposia Series. vol.
XXIV, J. Fox (ed.). New York: Polytechnic Press.

[Camp79] Campbell, R.H., and R.B. Kolstad. 1979. "Path Expressions in Pascal." In Proceedings 4th Interna-
tional Conference on Software Engineering, September 27-29, Munich, Germany, 212-219. Washing-
ton, DC: IEEE Computer Society Press.

[Cann85] Canning, J.T. 1985. The Application of Structure and Code Metrics to Large-Scale Systems. Ph.D.
thesis, Blacksburg University. **

70



0I

August 9, 1989

* [Cant89] Cantone, G., A. Cimitile, and U. De Carlini. "Graphs, Programs and Metrics." Submitted to IEEE:
Transactions on Software Engineering. **

[card8l] Card, D.N. 1981. "Identification and Evaluation of Software Measures." In Proceedings 6th Annual
Software Engineering Workshop, December, Grenbelt, MD. NASA/GSFC. **

[Card82] Card, D.N., F.E. McGarry, J. Page, S. Eslinger, and V.R. Basili. February 1982. The Software
Engineering Laboratory. Greenbelt, MD: NASA/GSFC. Report SEL-81-104. **

* [Card4] Card, D.N., F.E. McGarry, J. Page, et al. March 1984. Measures and Metrics for Software Develop-
ment. Greenbelt, MD: NASA/GSFC. Report SEL-82-002. **

[CardS5a] Card, D.N., R.W. Selby Jr., F.E. McGarry, et al. April 1985. A Comparison of Software Validation
Techniques. Greenbelt, MD: NASA/GSFC. Technical Report SEL-85-001. **

[Card85b] Card, D.N. 1985. "A Software Technology Evaluation Program." In Annais do XVIII Congresso
Nacional de Informatica, October. **

* [Card85c] Card, D.N., C. Antic, and E. Edwards. December 1985. Software Verification and Testing. Green-
belt, MD: NASA/GSFC. Technical Report SEL-85-005. **

[CardgSd] Card, D.N., G.T. Page, and F.E. McGarry. 1985. "Criteria for Software Modularization." In
Proceedings 8th International Conference on Software Engineering, August 28-30, London, England.
Washington, DC: IEEE Computer Society Press. **

[Card86a] Card, D.N., V.E. Church, and W.M. Agresti. "An Empirical Study of Software Design Practices."
• IEEE: Tansactions on Software Engineering, 12/2 (Feb 1986):264-271.

[Card86b] Card, D.N. October 1986. Measuring Software Design. Greenbelt, MD: NASA/GSFC. Technical
Report SEL43&05. **

[Card87a] Card, D.N., and W.W. Agresti. "Resolving the Software Science Anomaly." Journal of Systems and
Software, 7/1 (Mar 87):29-36.

[Card87b] Card, D.N., F.E. McGarry, and G.T. Page. "Evaluating Software Engineering Technologies." IEEE:
* Transactions on Software Engineering, 13/7 (Jul 1987):845-851.

[Care77] Carey, R., and M. Bendick. 1977. "The Control of a Software Test Process." In Proceedings 1st Inter-
national Computer Software and Applications Conference, November 8-11, Chicago, IL, 327-333.
Long Beach, CA: IEEE Computer Society Press.

[Carp75] Carpenter, L.C., and L.L. Tripp. 1975. "Software Design Validation Tool." In Proceedings Interna-
tional Conference on Reliable Software, April 21-23, Los Angeles, CA, 395-400. IEEE Cat. No.

• 75CH0940-7CSR.
[Carr0] Carre, B.A. "Software Validation." Microprocessors and Microsystems, 4/10 (1980):395-406. **
[Carr82] Carre, B.A. 1982. "Control-Flow, Data-Flow and Information-Flow in Programs." In fEE Collo-

quium Digest 82/85: A Review of Verification M'thods for Software and Digital Systems, 1:1-1:4. **

[Cars84] Carson, S.D. May 1981. Geometric Models of Concurrency. Ph.D. diss., University of Virginia. **

[CartSl] Cartwright, R. "Formal Program Testing." In Proceedings 8th ACM Annual Symposium on Principles
of Programming Languages. **

[Carv88] Carver, R.H., and K.-C. Tai. 1988. "A Semantics-Based Approach to Analyzing Concurrent Pro-
grams." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21,
Banff, Canada, 132-133. Washington, DC: IEEE Computer Society Press.

[Cava78] Cavano, J., and J.A. McCall. 1978. "A Framework for the Measurement of Software Quality." In
Proceedings ACM Software Quality Assurance Workshop, November 15-17, San Diego, CA, 133-139.

• New York: Association for Computing Machinery.
[Cele80] Celentano, A., et al. "Compiler Testing Using a Sentence Generator." Software Practice and Experi-

ence, 10 (1980):897-918. **
[Cele81] Celentano, A., C. Ghezzi, and F. Liguori. "A Systematic Approach to System and Acceptance Test-

ing." In Computer Program Testing, B. Chandrasekaran and S. Radicchi (eds.), 279-287. North-Hol-
land. **

[Cerigl] Ceriani, M., A. Cicu, and M. Maiocchi. 1981. "A Methodology for Accurate Software Test Specifi-
cation and Auditing." In Computer Program Testing, B. Chandrasekaran and S. Radicchi (eds.),
301-325. North-Holland.

* 71



August 9, 1989

[Cha87 Cha, S.D., N.G. Leveson, T.J. Shimeall, and J.C. Knight. 1987. "An Empirical Study of Software
Error Detection Using Self-Checks." In Proceedings 17th International Symposium on Fault-Tolerant
Computing, July, Pittsburgh, PA, 156-161. **

[Chag8] Cha, S.S., N.G. Leveson, and T.J. Shimeall. 1988. Safety Verification in Murphy Using Fault Tree
Analysis. University of California.

[Chan73] Chanon, R.N. December 1973. On a Measure of Program Structure. Ph.D. diss., Carnegie-Melon
University. Also published in Proceedings Programming Symposium, G. Goos and J. Hartmanis
(eds.), April 9-11, Paris, France, 9-16. New York: Springer-Verlag.

[Chan79] Chandy, K.M., and J. Misra. 1979. An Axiomatic Proof Technique for Networks of Communicating
Processes.
University of Texas at Austin. Technical Report TR-98. **

[Chan84 Chan, M., and S. Yam. "A Program Testing Assistant for BASIC-PLUS." ACM: Software Engineer-
ing Notes, 9/2 (Apr 1984):89-103.

[Chan85] Chandrasekharan, M., B. Dasarathy, and Z. Kishimoto. "Requirements-Based Testing of Real-Time
Systems: Modeling for Testability." IEEE: Computer, 18/4 (Apr 1985):71-80.

[Chan88] Chandy, K.M. and J. Misra. 1988. Parallel Program Design: A Foundation. Reading, MA: Addison
Wesley. **

[Chan89] Chang C.K., Y.-F. Chang, L. Yang, C.-R. Chou, and J.-J. Chen "Modeling a Real-Time Multitasking
System in a Timed PQ Net." IEEE: Software, 6/2 (Mar 1989):46-52.

[Chap79] Chapin, N. 1979. "A Measure of Software Complexity." In Proceedings AFIPS National Computer
Conference, vol. 48, June 4-7, New York, NY, 995-1001. Arlington, VA: AFIPS Press.

[Chap82] Chapman, D. "A Program Testing Assistant." ACM: Communications of the ACM, 25/9 (Sep
1982) :625-634.

[Chea7g] Cheatham, T.E. Jr., and D.A. Washington. 1978. "Program Loop Analysis by Solving First Order
Recurrence Relations." In Proceedings SIAM-SIGSAM Computer Algebra Symposium, May. **

[Chea79] Cheatham, T.E., G.H. Holloway, and J.A. Townley. "Symbolic Evaluation and the Analysis of Pro-
grams." IEEE: 7Ransactions on Software Engineering, 5/4 (Jul 1979):402-417.

[ChebSi] Cheheyl, M., et al. "Verifying Security." ACM: Computing Surveys, 13/3 (Sep 1981):279-340.
[Chen75] Chen, W.T., and C.V. Ramamoorthy. 1975. "Toward Automation of Test Data Generation." In

Proceedings International Computer Symposium, Taipei, Taiwan. **
[Chen76] Chen, W.T. February 1976. Toward Automated Validation of Computer Programs. Ph.D. diss.,

University of California at Berkeley. **
[Chen78a] Chen, E.T. "Program Complexity and Programmer Productivity." IEEE: Transactions on Software

Engineering, 4/3 (May 1978):187-194.
[Chen78b] Chen, L., and A. Avizienis. 1978. "N-Version Programming: A Fault-Tolerance Approach to Relia-

bility of Software Operation." In Proceedings 8th International Conference on Fault-Tolerant Comput-
ing, June, Toulouse, France, 3-9. **

[ChenSl] Chen, E., and M.V. Zelkowitz. 1981. "Use of Cluster Analysis to Evaluate Software Engineering
Methodologies." In Proceedings 5th International Conference on Software Engineering, March 9-12,
San Diego, CA, 117-123. Washington, DC: IEEE Computer Society Press.

[Chen83] Chen, B., and R.T. Yeh. "Formal Specification and Verification of Distributed Systems." IEEE:
Transactions on Software Engineering, 9/11 (Nov 1983):710-722.

[Cher79] Cherniavsky, J.C. "On Finding Test Data Sets for Loop Free Programs." Information Processing
Letters, 8/2 (Feb 1979):106-107. **

[CherS~a] Cherniavsky, J.C., W.R. Adrion, and M.A. Branstad. 1980. "The Role of Programming Environ-
ments in Software Quality Assurance." In Proceedings National Electronics Conference, 13th Annual
Alisomar Conference on Circuits, Systems and Computers, Vol. 34, October 27-29, Chicago, IL,
468-472. Long Beach, CA: IEEE Computer Society.

[Cherg0b] Cherniavsky, J.C., W.R. Adrion, and M.A. Branstad. 1980. "The Role of Testing Tools and Tech-
niques in the Procurement of Quality Software and Systems." Proceedings National Electronics
Conference, 13th Annual Alisomar Conference on Circuits, Systems and Computers, Vol. 34, October

72



August 9, 1989

* 27-29, Chicago, IL, 309-313. Long Beach, CA: IEEE Computer Society.
[Cher86] Cherniavsky, J.C., and C.H. Smith. 1986. "A Theory of Program Testing with Applications." In

Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 110-119. Washington, DC:
IEEE Computer Society Press.

[CherS7a] Cherniavsky, J.C. "Computer Systems as Scientific Theories: A Popperian Approach to Testing." In
Proceedings 5th Annual Pacific Northwest Software Quality Conference: Effective Software Practices,

* October, Portland, OR, 397-308. **
[Cher87b] Cherniavsky, J.C., and C.H. Smith. "A Recursion Theoretic Approach to Program Testing." IEEE:

Transactions on Software Engineering, 13/7 (Jul 1987):777-784.
[CherSS] Cherniavsky, J.C., and R. Statman. 1988. "Testing: An Abstract Approach." In Proceedings 2nd

Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 38-44. Washing-
ton, DC: IEEE Computer Society Press.

[Ches77] Chester, D.L., and R.T. Yeh. 1977. "Software Development by Evaluation of System Designs." In
Proceedings 1st International Computer Software and Applications Conference, November 8-11, Chi-
cago, IL, 435-441. Long Beach, CA: IEEE Computer Society Press.

[ChoqS5] Choquet, N., L. Fribourg, and A. Mauboussin. 1985. "Runnable Protocol Specifications using the
Logic Interpreter SLOG." In Proceedings 5th International Workshop on Protocol Specification, Verif-
ication, and Testing, June, Toulouse, France. **

[Choq86] Choquet, N. 1986. "Test Data Generation using a Prolog with Constraints." In Proceedings Workshop
on Software Testing, July 15-17, Banff, Canada, 132-141. Washington, DC: IEEE Computer Society
Press.

[Chow78] Chow, T.S. "Testing Software Design Modeled by Finite-State Machines." IEEE: Transactions on
Software Engineering, 4/3 (May 1978):178-187.

[Chri8l] Christensen, K., G.P. Fitsos, and C.P. Smith. "A Perspective on Software Science." IBM Systems
Journal, 20/4 (1981):372-387.

[Chry78] Chrysler, E. "Some Basic Determinants of Computer Programming Productivity." ACM: Communi-
cations of the ACM, 21/6 (Jun 1978):472-483.

[Chur82] Church, V.E., D.N. Card, F.E. McGarry, et al. August 1982. Guide to Data Collection. Greenbelt,
MD: NASA Software Engineering Laboratory. Report SEL-81-101. **

[Chnr86] Church, V.E., D.N. Card, W.W. Agresti, and Q.L. Jordan. "An Approach for Assessing Software
Prototypes." ACM: Software Engineering Notes, 11/3 (Jul 1986):65-76.

[Chus87] Chusho, T. "Test Data Selection and Quality Estimation Based on the Concept of Essential Branches
for Path Testing." IEEE: Transactions on Software Engineering, 13/5 (May 1987):509-517.

[Clnl75] Cinlar, E. 1975. Introduction to Stochastic Processes. Englewood Cliffs, NJ: Prentice-Hall.
[Clar76a] Clarke, L.A. 1976. Test Data Generation and Symbolic Execution of Programs as an Aid to Program

Validation. Ph.D. diss., University of Colorado at Boulder.
[Clar76b] Clarke, L.A. "A System to Generate Test Data and Symbolically Execute Programs." IEEE: Tran-

sactions on Software Engineering, 2/3 (Sep 1976):215-222.
[Clar7ga] Clarke, L.A. 1978. "Testing: Achievements and Frustrations." In Proceedings 2nd International

Computer Software and Applications Conference, November 13-16, Chicago, IL, 310-314. Long
Beach, CA: IEEE Computer Society Press.

[Clar7gb] Clarke, L.A. September 1978. "Automatic Test Data Selection Techniques." In Infotech State of the
Art Report on Software Testing, Vol. 2, 43-64. **

[ClarSa] Clarke, L.A., and D.J. Richardson. 1981. "Symbolic Evaluation Methods - Implementations and
Applications." In Computer Program Testing, B. Chandrasekaran and S. Radicchi (eds.), 65-102.
Amsterdam: North Holland. **

[Clar81b] Clarke, E.M., and E.A. Emerson. 1981. Design and Synthesis of Synchronization Skeletons Using
Branching Time Temporal Logic. Harvard University. Technical Report TR-12-81. **

[Clar81c] Clarke, L.A., and D.J. Richardson. 1981. "Symbolic Evaluation Methods for Program Analysis." In
Program Flow Analysis: Theory and Applications, S. Muchnick and N. Jones (eds.), 264-300. Engle-
wood Cliffs, NJ: Prentice Hall. **

* 73



August 9, 1989

[Clara2] Clarke, L.A., and ).J. Richardson. 1982. "Reliable Test Data Selection Strategies - An Integrated
Approach." In Proceedings 4th Israel Conference on Quality Assurance, October, Israel. **

[Clarg3a] Clarke, L.A., and D.J. Richardson. 1983. "A Rigorous Approach to Error-Sensitive Testing." In
Proceedings IEEE 16th Hawaii International Conference on System Sciences, January, Honolulu, HA.

[Clar83b] Clarke, L.A., and D.J. Richardson. 1983. "The Application of Error-Sensitive Testing Strategies to
Debugging." In Proceedings ACM SIGSOFT-SIGPLAN Software Engineering Symposium on High-
Level Debugging, March 20-23, Asilomar, CA. Published in ACM: Software Engineering Notes, 8/4
(Aug 1983):45-52. Baltimore, MD: ACM Order Department.

[Clar84] Clarke, L.A., and D.J. Richardson. 1984. "Symbolic Evaluation - An Aid to Testing and Verifica-
tion." In Software Validation, H.L. Hausen (ed.), 141-166. North Holland.

(ClarSgal Clarke, L.A., A. Podgurski, D.J. Richardson, and S.J. Zeil. 1985. "A Comparison of Data Flow
Path Selection Criteria." In Proceedings 8th International Conference on Software Engineering,
August 28-30, London, England, 244-251. Washington, DC: IEEE Computer Society Press.

[Clar8b5] Clarke, L.A., and D.J. Richardson. "Applications of Symbolic Evaluation." Journal of Systems and
Software, 5/1 (1985):15-35.

[Clar86a] Clarke, L.A., A. Podgurski, D.J. Richardson, and S.J. Zeil. 1986. "An Investigation of Data Flow
Path Selection Criteria." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada,
23-32. Washington, DC: IEEE Computer Society Press.

[Clar86b] Clarke, L.A., D.J. Richardson, and S.J. Zeil. September 1986. Ada Symbolic Testing Techniques.
Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report RADC-TR-86-141.

[Clar86c] Clarke, L.A., Wileden, J.C., and A.L. Wolf. 1986. "GRAPHITE: A Meta-Tool for Ada Environ-
ment Development." In Proceedings IEEE Conference on Ada Applications and Environments, April
8-10, Miami Beach, FL, 81-90.

[Clar86d] Clarke, E.M., E.A. Emerson, and A.P. Sistla. 1980. "Automatic Verification of Finite-State Con-
current Systems using Temporal Logic." ACM: Communications of the ACM, 8/2 (Apr 1986) :244-263.

[Clar8a] Clarke, L.A., D.J. Richardson and S.J. Zeil. "Team: A Support Environment for Testing, Evalua-
tion, and Analysis." In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, November 28-30, Boston, MA, 121-129.

[Clar88b] Clarke, L.A., and S.J. Zeil. January 1988. An Advanced Testing System for Ada, System Description
and Design. University of Massachusetts.

[Clem84] Clements, P.C., R.A. Parker, D.L. Parnas, J. Shore. and K.H. Britton. June 1984. A Standard
Organization for Specifying Abstract Interfaces. Washington, DC: Naval Research Laboratory. NRL
Report 8815. **

[Coch50] Cochran, W.G., and G.M. Cox. 1950. Experimental Design. New York: John Wiley & Sons.
[CochS3] Cochran, W.G. 1953. Sampling Techniques. New York: John Wiley & Sons.
[Coff87] Coffman, M.L. 1987. Validation of Ada Package Interfaces. M.S. thesis, Arizona State University.

[Cohe77] Cohen, J., and N. Carpenter. "A Language for Inquiring about the Run-Time Behavior of Pro-
grams." Software Practice and Experience, 7/4 (Jul-Aug 1977):445-460.

[Cohe78] Cohen, E.A. 1978. A Finite Domain-Testing Strategy for Computer Program Testing. Ph.D. diss., Ohio
State University. **

[Cohe82] Cohen, D., W. Swartout, and R.M. Balzer. "Using Symbolic Execution to Characterize Behavior."
ACM: SIGSOFT Software Engineering Notes, 7/5 (Dec 1982):25-32.

[Cole8S] Coles, R., et al. November 1985. Software Reporting Metrices. Mitre ESD. Report MTR 9650, Revi-
sion 2. **

[Come79] Comer, D., and M. H. Halstead. "A Simple Experiment in Top-Down Design." IEEE: Transactions
on Software Engineering, 5/2 (Mar 1979):105-129.

74



August 9, 1989

[Conk86] Conklin, E.J. "LEONARDO: Design Environment of the 1990s." RCA Engineer, (Jan-Feb 1986).
**

[Conkg8] Conklin, E.J., and M. Begeman. January 1988. gIBIS: A Hypertext Tool for Team Design Delibera-
tion. MCC. Technical Report STP-016-88. **

[ConnS7] Conn, R. 1987. "The Ada Repository." In Proceedings 32nd IEEE Computer Society International
* Conference, February 23-27, San Francisco, CA, 372-375. Washington, DC: IEEE Computer Society

Press.
[Conri5] Conradi, R., and D. Svanaes. January 1985. FORTVER - A Tool for Documentation and Error Diag-

nosis of FORTRAN-77 Programs. University of Trondheim. Technical Report 1/85. **
[Cont8l] Conte, S.D. 1981. The Software Science Language Level Metric. Purdue University. Technical Report

CSD-TR-373. **
[ContS'] Conti, R.A. 1985. "Debugging Ada Tasking." In Proceedings 3rd Annual National Conference on Ada

Technology, 72-81. **
[Cont86] Conte, S.D., H.E. Dunsmore, and V.Y. Shen. 1986. Software Engineering Metrics and Models.

Menlo Park, CA: Benjamin/Cummings Publishing Co.
[Cook80] Cook, J.F., and F.E. McGarry. December 1980. An Appraisal of Selected Cost/Resource Estimation

Models for Software Systems. Greenbelt, MD: NASA/GSFC. Technical Report SEL-80-007. **
[Cook81] Cook, J.F., and F.E. McGarry. February 1981. Cost Reliability Estimation Models (CAREM) User's

Guide. Greenbelt, MD: NASA/GSFC. Technical Report SEL-81-008. **
[Cook2] Cook, M.L. "Software Metrics: An Introduction and Annotated Bibliography." ACM: SIGSOFT

Software Engineering Notes, 7/2 (Apr 1982):41-60.
[Corn76] Cornell, L., and M.H. Halstead. 1976. Predicting the Number of Bugs Expected in a Program Module.

Purdue University. Technical Report CSD-TR-205. **
[Coul3] Coulter, N.S. "Software Science and Cognitive Psychology." IEEE: Transactions on Software

Engineering, 9/2 (Mar 1983):166-171.
[Coxgl] Cox, P.R. 1981. "Specification of a Regression Test for a Mini Computer Operating System." In

Proceedings ACM SIGMETRICS Symposium/Workshop: Quality Metrics, March:29-32.
[CralS6] Craigen, D. 1986. "Some Comments on Program Verification Systems." In Proceedings Symposium

on Safety and Security, October 20-24, Glasgow, Scotland. Also published as I.P Sharp Associates,
•0 Technical Report TR-86-5420-02, November 1986. **

[CraiS7a] Craigen, D. 1987. "Strengths and Weaknesses of Program Verification Systems." In Proceedings 1st
European Software Engineering Conference, September 9-11, Strasbourg, France. Springer-Verlag.

[CraI87b] Craigen, D. October 1987. The Low Water Mark: An m-EVES Solution. I.P. Sharp Associates.
Working Paper 153. **

* [Crai87c] Craigen, D. November 1987. A Description of m-Verdi. I.P. Sharp Associates. Technical Report
TR-87-5420-02. **

[Cral87d] Craigen, D., and M. Saaltink. November 1987. An m-Verdi User's Guide. I.P. Sharp Associates.
Technical Report TR-87-5420-12. **

[Cra188al Craigen, D. 1988. "An Application of the rn-EVES Verification System." In Proceedings 2nd
Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 21-36. Washing-

• ton, DC: IEEE Computer Society Press.
[Crai88b] Craigen, D., S. Kromodimoeljo, I. Meisels, A. Neilson, B. Pase, and M. Saaltink. 1988. "m-EVES:

A Tool for Verifying Software." In Proceedings 10th International Conference on Software Engineer-
ing, April 11-15, Singapcie. Washington, DC: IEEE Computer Society Press.

[Crow8$a] Crow, J., D. Denning, P. Ladkin, M. Melliar-Smith, J. Rushby, R. Schwartz, R. Shostak, and F.W.
von Henke. November 1985. SRI Verification System Version 2.0 User's Guide. Menlo Park, CA: SRI
International Computer Science Laboratory. **

[Crow8$b]Crow, J., D. Denning, P. Ladkin, M. Melliar-Smith, J. Rushby, R. Schwartz, R. Shostak, and F.W.
von Henke. 1985. SRI Verification System Version 1.8 Specification Language Description. Menlo
Park, CA: SRI International Computer Science Laboratory. **

• 75



August 9, 1989

[CruIS0] Cruickshank, R.D., and J.E. Gaffney. 1980. "Measuring the Development Process: Software Design
Coupling and Strength Matrices." In Proceedings 5th Annual Software Engineering Workshop,
November, Greenbelt, MD. NASA/GSFC. **

[Curr76] Curry R.W. 1976. "A Measure to Support Calibration and Balancing of the Effectiveness of
Software Engineering Tools and Techniques." Proceedings Symposium on Computer Software
Engineering, April 20-22, Polytechnic Institute for New York. MRI Symposia Series, vol. XXIV, J.
Fox (ed.). New York: Polytechnic Press.

[Curr83] Currit, P.A. 1983. "Cleanroom Certification Model." In Proceedings 8th Annual Software Engineer-
ing Workshop, November, Greenbelt, MD. NASA/GSFC. **

[Curr86] Currit, P.A., M. Dyer, and H.D. Mills. "Certifying the Reliability of Software." IEEE: Transactions
on Software Engineering, 12/1 (Jan 1986):3-11.

[Curt79a] Curtis, B.A., S.B. Sheppard, P. Milliman, M. Borst, and L.T. Love. "Measuring the Psychological
Complexity of Software Maintenance Tasks with the Halstead and McCabe Metrics." IEEE: Transac-
tions on Software Engineering, 5/2 (Mar 1979):95-104.

[Curt79b] Curtis, B., S. Sheppard, and P. Milliman. 1979. "Third Time Charm: Stronger Predictions of Pro-
grammer Performance by Software Complexity Metrics." In Proceedings 4th International Conference
on Software Engineering, September 27-29, Munich, Germany, 356-360. Washington, DC: IEEE
Computer Society Press. **

[Curt80] Curtis, B. "Measurement and Experimentation in Software Engineering." In Proceedings of the
IEEE, 68/9 (Sep 1980), 1144-1157. **

[Curt8l] Curtis, B. 1981. "The Measurement of Software Quality and Complexity." In Software Metrics: An
Analysis and Evaluation, A.J. Perlis, F.G. Sayward, and M. Shaw (eds.). Cambridge, MA: M1T
Press.

[Curtg3] Curtis, B. 1983. "Cognitive Science of Programming." In Proceedings 6th Minnowbrook Workshop on
Software Performance Evaluation, July 19-22, Blue Mountain Lake, NY. **

[DACS79a] Quantitative Software Models. Griffiss Air Force Base, NY: Data and Analysis Center for Software,
1979. **

[DACS79b] Data and Analysis Center for Software (DACS). October 1979. The DACS Glossary: A Bibliogra-
phy of Software Engineering Terms. Rome Air Development Center: Griffiss Air Force Base.

[DACS85] Software Life Cycle Tools Directory. Data and Analysis Center for Software, ITT Research Institute,
March 1985. **

[DOD88a] DoD Standard-2167A. Defense Systems Software Development. 29 February 1988.
[DODD86a] DoD Directive 5000.3. March 12, 1986. Test and Evaluation.
[DODD86b] DoD Directive 5000.3-M-1. October 1986. Test and Evaluation Master Plan Guidelines.
[DODD87]DoD Directive 5000.3-M-3. November 1987. Software Test and Evaluation Manual.
[DODS86] DoD Standard STD-2168. 1 August 1986. Defense System Software Quality Program (draft).
[Dahi72] Dahl, O.J., E.W. Dijkstra, and C.A.R. Hoare. 1972. Structured Programming. Academic Press.
[Dah178] Dahl, O.J. May 1978. Can Program Proving be Made Practical? University of Oslo, Institute of Infor-

matics. **
[Dahl79a] Dahl, O.J. August 1979. Time Sequences as a Tool for Describing Program Behavior. University of

Oslo. Research Report in Informatics 48. **
[Dahi79b] Dahll, G., and J. Lahti. 1980. "An Investigation of Methods for Production and Verification of

Highly Reliable Software." In Proceedings Safety of Computer Control Systems (SAFECOM) '79, L.
Lauber (ed.), , 75-79. New York: Pergamon. **

[Dale86] Dale, C. 1986. "Software Reliability Models." In Reliability: State of the Art, A. Bendell and P. Mel-
lor (eds.), 31-44. Oxford: Pergamon Infotech. **

[Daly77] Daly, E.B. "Management of Software Development." IEEE: Transactions on Software Engineering,
3/3 (May 1977):229-242.

[Darr78] Darringer, J.A., and J.C. King. "Applications of Symbolic Execution to Program Testing." IEEE:
Computer, 11/4 (Apr 1978):51-60.

76



August 9, 1989

[Davi77] Davis, P.J. "Proof, Completeness, Transcendentals, and Sampling." Journal of the ACM, 24/2 (Apr
1977):298-310.

[Davi8l] Davis, M.D., and E.J. Weyuker. 1981. Pseudo-Oracles for Nontestable Programs. Courant Institute of
Mathematical Sciences. **

[DavA82a] Davis, M.D. 1982. Computability and Unsolvability. New York: Dover Publications, Inc. **
0 [Davi82b] Davis, R.E. 1982. "Runnable Specifications as a Design Tool." in Logic Programming, K.L. Clark

and S.-A. Tarnlund (eds.), 141-149. New York: Academic Press.
[Davi83a] Davis, M.D., and E.J. Weyuker. 1983. Computability, Complexity, and Languages. New York:

Academic Press.
[Davi83b] Davis, M.D., and E.J. Weyuker. "A Formal Notion of Program-Based Test Data Adequacy." Infor-

mation and Control, 56/1-2 (Jan-Feb 1983):52-71.
* [DaviS5] Davis, C.L., and E.A. Ireland. "Software Reliability and Quality, A User's View." In Proceedings

IEEE Global Telecommunications Conference, December 2-5, New Orleans, LA, 69-72. Piscataway,
NJ: IE&E Service Center. **

[Davt88a] Davis, J.S., and R.J. LeBlanc. "A Study of the Applicability of Complexity Measures." IEEE: Tran-
sactions on Software Engineering, 14/9 (Sep 1988):13b6-1371.

[DeFr85] De Francesco, N., D. Latella, and G. Vaglini. 1985. "An Interactive Debugger for a Concurrent
* Language." In Proceedings 8th International Conference on Software Engineering, August 28-30, Lon-

don, England, 320-325. Washington, DC: IEEE Computer Society Press.
[DeMi77] DeMillo, R.A., and R.J. Lipton. May 1977. A Probabilistic Remark on Algebraic Program Testing.

Georgia Institute of Technology. Also published in Information Processing Letters, 7/4 (Jun
1978):193-195.

[DeMi7g] DeMillo, R.A., R.J. Lipton, and F.G. Sayward. "Hints on Test Data Selection: Help for the Practic-
* ing Programmer." IEEE: Computer, 11/4 (Apr 1978): 34-41.

[DeM179a]DeMillo, R.A., R.J. Lipton, and A.J. Perlis. "Social Processes and Proofs of Theorems and Pro-
grams." ACM: Communications of the ACM, 22/5 (May 1979):271-280.

[DeM179b]DeMillo, R.A., F.G. Sayward, and R.J. Lipton. 1979. "Program Mutation: A New Approach to Pro-
gram Testing." In Infotech State of the Art Report on Program Testing, 107-126. Infotech International.

[DeMIS1] DeMillo, R.A., D.E. Hocking, and M.J. Merrit. 1981. A Comparison of Some Reliable Test Data
Generation Procedures. Georgia Institute of Technology. Technical Report GIT-ICS-81/08. **

[DeMi86aJ DeMillo, R.A. October 1986. Functional Capabilities of a Test and Evaluation Subenvironment in an
Advanced Software Engineering Environment. Georgia Institute of Technology. Report GIT-
SERC-86/07. **

[DeM186b]Demillo, R.A., and E.H. Spafford. 1986. "The Mothra Software Testing Environment." In Proceed-
* ings 11th Annual Software Engineering Workshop, December, Greenbelt, MD. NASA/GSFC. **

[DeMi87a]DeMillo, R.A., W.M. McCracken, R.J. Martin, and J.F. Passafiume. 1987. Software Testing and
Evaluation. Menlo Park, CA: The Benjamin/Cummings Publishing Co.

[DeMi87b]DeMillo, R.A., D.S. Guindi, K.N. King, and W.M. McCracken. 1987. An Overview of the Mothra
Testing Environment. Purdue University. Technical Report SERC-TR-3-P.

[DeMi87c] DeMillo, R.A., and A.J. Offutt. 1987. Constraint Based Automatic Test Data Generation. Purdue
* University. Technical Report SERC-TR-5-P.

[DeMi87d]DeMillo, R.A., D. Cuindi, K.N. King, E.W. Krauser, W.M. McCracken. A.J. Offutt, and E.H.
Spafford. 1987. Mothra Internal Documentation, Version 1.0. Georgia Institute of Technology. Techni-
cal Report GIT-SERC-87/10.

[DeMi88a]DeMillo, R.A., D.S. Guindi, K.N. King, W.M. McCracken, and A.J. Offutt. 1988. "An Extended
Overview of the Mothra Software Testing Environment." In Proceedings 2nd Workshop in Software

* Testing, Verification, and Analysis, July 19-21, Banff, Canada, 142-151. Washington, DC: IEEE Com-
puter Society Press.

[DeMi88bJDeMillo, R.A., R.J. Martin, and R.N. Meeson. September 1988. Strategy for Achieving Ada-Based
High Assurance Systems. Alexandria, VA: Institute for Defense Analyses. Draft IDA Paper P-2143.

* 77



August 9, 1989

[DeRe76] DeRemer, F., and H. Kron. "Programming-in-the-Large Versus Programming-in-the-Small." IEEE:
Ransactions on Software Engineering, 2/2 (Jun 1976):80-86.

[DeckS2a] Decker, W.J., and W.A. Taylor. May 1982. FORTRAN Static Source Code Analyzer Program (SAP)
User's Guide (Revision 1). Greenbelt, MD: NASA/GSFC. Technical Report SEL-78-102. **

[Deck82b] Decker, W.J., W.A. Taylor, and E.J. Smith. February 1982. Software Engineering Laboratory (SEL)
Compendium of Tools. Greenbelt, MD: NASA/GSFC. Technical Report SEL-81-107. **

[Deke81] Dekert, J.L.F. 1981. "APL and Halstead's Theory of Software Metrics." In APL81 Conference
Proceedings (APL Quote Quad), Vol. 12, September, 89-93. ACM. **

[Dela8S] Delaney, R.P., and L.F. Summerill. 1988. "Ada Software Metrics." In Proceedings 6th National
Conference on Ada Technology, March 14-17, Arlington, VA, 24-31. Washington, DC: ACM Ada
Technical Committee.

[Dems82] Demshki, M., D. Ligett, B. Linn, G. McCluskey, and R. Miller. June 1982. Wang Institute Cost Model
(WICOMO) Tool User's Manual. Tyngsboro, MA: Wang Institute for Graduate Studies. **

[Denn78] Denning, P.J., and J.P. Buzen. "Operational Analysis of Queueing Network Models." ACM: Com-
puting Surveys, 10/3 (Sep 1978):225-245.

[DeraSS] Deransart, P., and J. Maluszynski. "Relating Logic Programs and Attribute Grammars." Journal of
Logic Programming, 2/2 (Jul 1985):119-155. **

[Deut73] Deutsch, L.P. May 1973. An Interactive Program Verifier. Ph.D. diss., University of California at
Berkeley. **

[DiMa85] Di Maio, A., S. Ceri, and S.C. Reghizzi. 1985. "Execution Monitoring and Debugging Tool for Ada
Using Relational Algebra." In Proceedings SIGAda International Conference, May, Paris, France.
Published in ACM: Ada Letters,V/2 (Sep-Oct 1985).

[DIVi82] DiVito, B.L. 1982. Verification of Communication Protocols and Abstract Process Models. Univer-
sity of Texas. Technical Report ICSCA-CMP-25. **

[Dijk681 Dijkstra, E.W. 1968. "A Constructive Approach to the Problem of Program Correctness." BIT 8/3
(1968). **

[Dijk76a] Dijkstra, E.W. 1976. A Discipline of Programming. Englewood Cliffs, NJ: Prentice Hall.
[Dljk76b] Dijkstra, E.W. 1976. "Complexity Controlled by Hierarchical Ordering of Functions and Variability."

In Software Engineering Concepts and Techniques, Proceedings NATO Conference, October 7-11, Gar-
misch, Germany, 114-116. New York: Van Nostrand Reinhold.

[DW81] Dillon, L.K. May 1981. Constraint Management in the ATTEST System. University of Massachusetts.
Technical Report 81-9. **

[DW84] Dillon, L.K. September 1984. Analysis of Distributed Systems using Constrained Expressions. Ph.D.
diss., University of Massachusetts. Technical Report TR-84-18. **

[DI185] Dillon, L.K., G. Avrunin, and J. Wileden. July 1985. Constrained Expressions: A General Technique
for Describing Behavior of Concurrent Systems. University of Massachusetts. Technical Report
TR-85-27. **

[D11186] Dillon, L.K. Ortober 1986. Overview of the Constrained Expression Design Language. University of
California at Santa Barbara. Technical Report TRCS86-21. **

[Dill87] Dillon, L.K. October 1987. Verification of Ada Tasking Programs Using Symbolic Execution, Part I:
Partial Correctness. University of California at Santa Barbara. **

[DiU88a] Dillon, L.K., R.A. Kemmerer, and L.J. Harrison. 1988. "An Experience with Two Symbolic Execu-
tion-Based Approaches to Formal Verification of Ada Tasking Programs." In Proceedings 2nd
Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 114-121. Wash-
ington, DC: IEEE Computer Society Press.

[Dll88b] Dillon, L.K. May 1988. "Symbolic Execution-Based Verification of Ada Tasking Programs." In
Proceedings Ada Europe Conference, June, Munich, Germany . New York: Cambridge University
Press.

[DI18ge] Dillon, L G.S. Avrunin, and J.C. Wileden. "Constrained Expressions: Toward Broad Applica-
bility of A.,ilysis Methods for Distributed Software Systems." ACM: Transactions on Programming
Languages and Systems, 10/3 (Jul 1988) :374-402.

78



August 9, 1989

[Dirc8l] Dircks, H.F. 1981. "SOFCOST: Grumman's Software Cost Estimating Model." In Proceedings
IEEE NAECON1981, May. **

[Doer85] Doerfinger, C.W., and V.R. Basili. "Monitoring Software Development Through Dynamic Vari-
ables." IEEE: Transactions on Software Engineering, 11/9 (Sep 1985):978-985. Also published in
Proceedings 7th International Computer Software and Applications Conference, Novemer 7-11, Chi-

* cago, IL, 434-445. Los Angeles, CA: IEEE Computer Society.
[Doub87] Doubleday, D.L. August 1987. ASAP: An Ada Static Source Code Analyzer Program. University of

Maryland. Technical Report TR-1895. **
[Down8$aJ Downs, T. "An Approach to the Modeling of Software Testing with Some Applications." IEEE:

Transactions on Software Engineering, 11/4 (Apr 1985):375-386.
[Downg5b] Downs, T. "A Review of Some of the Reliability Issues in Software Engineering." Journal of Electri-

cal and Electronics Engineering. Australia - IEAust. & IREE Aust., 5/1 (Mar 1985). **
[Down86] Downs, T. "Extensions to an Approach to the Modeling of Software Testing with Some Performance

Comparisons." IEEE: Transactions on Software Engineering 12/9 (Sep 1986):979-987.
[Drap66] Draper, N.R., and H. Smith. 1966. Applied Regression Analysis. Wiley Series in Probability and

Mathematical Statistics. New York: John Wiley & Sons, Inc.
[Dsao85j Dssouli, R., and G.v. Bochmann. 1985. "Error Detection with Multiple Observers." In Proceedings

5th IFIP Workshop on Protocols, June, 483-494. North-Holland. **
[Dsso86] Dssouli, R. December 1986. Etude des Methodes de Test pour les Implantations de Protocoles de

Communication Basees sur Les Specifications Formelles. Ph.D. thesis, Montreal University. **
[DucIS2] Duclos, L.C. December 1982. Simulation Cost Model for the Life-Cycle of the Software Product: A

Quality Assurance Approach. Ph.D. diss., University of Southern California. **
[Duke89] Duke, E.L. "V&V of Flight and Mission-Critical Software." IEEE: Software, 6/3 (May 1989):39-45.

* [Duma83] Dumas, R.L. September 1983. Final Report: Software Acquisition Resource Expenditure (SARE) Data
Collection Methodology. MITRE Corp. Technical Report MTR 9031. **

[Dunc78] Duncan, A.G. 1978. "Test Grammars: A Method for Generating Program Test Data." Digest IEEE
Workshop on Software Testing and Test Documentation, December 18-20, Ft. Lauderdale, FL,
270-283. IEEE Computer Society Technical Committee on Software Engineering. **

[Dunc8l] Duncan, A.G., and J.S. Hutchison. 1981. "Using Attribute Grammars to Test Designs and Imple-
mentations." In Proceedings 5th International Conference on Software Engineering, March 9-12, San
Diego, CA, 170-178. Washington, DC: IEEE Computer Society Press.

[Dunh8l] Dunham, J.R., and J.C. Knight. November 1981. Production of Reliable Flight-Crucial Software.
NASA. Technical Report 2222. **

[Dunh83] Dunham, J.R., and E. Kruesi. "The Measurement Task Area." IEEE: Computer, 16/11 (Nov
1983):47-54.

* [Dunh85] Dunham, J.R., and J.L Pierce. March 1985. An Experiment in Software Reliability. Greenbelt, MD:
NASA/GSFC. NASA Contractor Report 172553. **

[Dunh86] Dunham, J.R. "Experiments in Software Reliability: Life-Critical Applications." IEEE: Transac-
tions on Software Engineering, 12/1 (Jan 1986):110-124.

[Dunn74] Dunn, O.J., and V.A. Clark. 1974. Applied Statistics: Analysis of Variance and Regression. New York:
John Wiley & Sons.

S(Dum82] Dunn, R., and R. Ullman. 1982. Quality Assurance for Computer Software. New York: McGraw Hill.
[Dumn4] Dunn, R.H. 1984. Software Defect Removal. New York: McGraw-Hill.
,Duns77J Dunsmore, H.E., and J.D. Gannon. 1977. "Experimental Investigation of Programming Complex-

ity." In Proceedings ACM/NBS 16th Annual Technical Symposium: Systems and Software, June 2,
Gaithersburg, MD, 117-125. Washington, DC: Washington DC Chapter of the ACM.

[Duns78a] Dunsmore, H.E. July 1978. The Influence of Programming Factors on Programming Complexity.
• Ph.D. diss., University of Maryland. **

[Duns78b] Dunsmore, H.E. 1978. "Programming Factors-Language Features that Help Explain Programming
Complexity." In Proceedings 31st ACM Annual National Computer Conference, December 4-6, Wash-
ington, DC, 554-560. New York: Association for Computing Machinery.

* 79



Augtst 9, 1989

[Dun&80] Dunsmore, H.E., and J.D. Gannon. "Analysis of the Effects of Programming Factors on Program-ing Effort." Journal of Systems and Software, 1/2 (Feb 1980):265-273. **
[Duns3] Dunsmore, H.E. 1983. "Software Metrics: An Overview of an Evolving Methodology." In Proceed-

ings Symposium Empirical Foundations of Information and Software Science, November 3-5. Atlanta,
GA. Published in Information Processing and Management, (1983). **

[Dura78] Duran, J.W., and J.J. Wiorkowski. 1978. "Toward Models for Probabilistic Program Correctness."
In Proceedings ACM Software Quality Assurance Workshop, November 15-17, San Diego, CA, 39-44.
New York: Association for Computing Machinery.

[Dura80] Duran, J.W., and J.J. Wiorkowski. "Quantifying Software Validity by Sampling." IEEE: Transac-
tions on Reliability, R-29/2 (Jun 1980):141-144.

[Dura8la] Duran, J.W., and S.C. Ntafos. 1981. "A Report on Random Testing." In Proceedings 5th Interna-
tional Conference on Software Engineering, March 9-12, San Diego, CA, 179-183. Washington, DC:
IEEE Computer Society Press. Also published in IEEE Transactions on Software Engineering, 10/4
(Jul 1984):438-444.

[Duras8lb] Duran, J.W., and J.J. Wiorkowski. "Capture-Recapture Sampling for Estimating Software Error
Content." IEEE: Transactions on Software Engineering, 7/1 (Jan 1981):147-148.

[Duva8O] Duvall, L., J. Martens, D. Swearingen, and J. Donahoo. 1980. "Data Needs for Software Reliability
Modeling." In Proceedings Annual Reliability and Maintainability Symposium, 200-208.

[DyerO] Dyer, M., R.C. Linger, H.D. Mills, D. O'Neill, and R.R. Quinnan. "The Management of Software
Engineering, Part IV: Softwa, e Development Practices." IBM Systems Journal, 19/4 (1980):451-465.

[Dyer8la] Dyer, M. October 16, 1981. Cleanroom Project Management Data. Bethesda, MD: IBM Federal Sys-
tems Division. Internal Memo to H.D. Mills. **

[Dyer8lb] Dyer, M., and H.D. Mills. 1981. "The Cleanroom Approach to Reliable Software Development." In
Proceedings Validation Methods Research for Fault-Tolerant Avionics and Control Systems Sub-Work-
ing-Group Meeting: Production of Reliable Flight-Crucial Software, November 2-4, Research Triangle
Institute, NC. **

[Dyer8lc] Dyer, M., and H.D. Mills. 1981. "Cleanroom Software Development." In Proceedings 6th Annual
Software Engineering Workshop, December, Grenbelt, MD. NASA/GSFC. **

[Dyer82a] Dyer, M. 1982. An Approach to Statistical Testing for Cleanroom Software Development. Bethesda,
MD: IBM Federal Systems Division. Technical Report 86.0002. **

[Dyer82b] Dyer, M., and H.D. Mills. 1982. "Developing Electronic Systems with Certifiable Reliability." In
Proceedings NATO Conference on Electronic Systems Effectiveness and life-Cycle Costing, NATO
Advanced Study Series. Springer-Verlag. **

[Dyerg2c] Dyer, M. October 14, 1982. Cleanroom Software Development Method. Bethesda, MD: IBM Federal
Systems Division. **

[Dyer83] Dyer, M. August 19, 1983. Software Validation in the Cleanroom Development Method. Bethesda,
MD: IBM Federal Systems Division. Technical Report 86.0003. **

[DyerSa Dyer, M. 1985. "Software Verification Through Statistical Testing."
[DyergSb] Dyer, M. 1985. "Software E, -' 'pment Under Statistical Quality Con rol." In ?? **
[EPI82] University of Texas. February 1982. Formal Verification of a Communications Processor. Final

Report, Contract MDA 904-80-C-0481. **
(East72] Easterling, R.G. "Approximate Confidence Limits for System Reliability." Journal of the American

Statistical Association, 67/337 (Mar 1972):220-222.
[EckhSS] Eckhardt, D.E., and L.D. Lee. January 1985. A Theoretical Basis for the Analysis of Redundant

Software Subject to Coincident Errors. Hampton, VA: National Aeronautics and Space Administra-
tion. Technical Memorandum 86369. Also published in IEEE: Transactions on Software Engineering,
11/12 (Dec 1985):1511-1517.

[Eckm83a] Eckmann, S. March 1983. Symbolic Execution of Concurrent Programs in Gypsy. University of Cali-
fornia at Santa Barbara. **

(Eckm83b] Eckmann, S., ard R.A. Kemmerer. December 1983. A User's Manual for the UNISEX System.
University of California at Santa Barbara. Revised April 1985. **

80



August 9, 1989

[EckmS4] Eckmann, S., and R.A. Kemmerer. April 1984. Preliminary Inatest User's Manual. University of
California at Santa Barbara. **

[Eckm85] Eckmann, S., and R.A. Kemmerer. 1985. "INATEST: An Interactive Environment for Testing For-
mal Specifications." In Proceedings 3rd Workshop on Formal Verification, Pajaro Dunes, CA, Febru-
ary. Also published in Software Engineering Notes, 10/4 (Aug 1985). **

• [Ehre73] Ehrenberger, W., and H. Schuller. 1973. "Proof of the Correct Performance of a Computerized Reac-
tor Protection System." In Proceedings 3rd European Seminar on Real-Time Programming, May,
Ispra. **

[Ehre76] Ehrenberger, W., G. Rauch, and K. Okroy. 1976. "Program Analysis-A Method for the Verification
of Software for the Control of a Nuclear Reactor." In Proceedings 2nd International Conference on
Software Engineering, October 13-15, San Francisco, CA, 611-616. Washington, DC: IEEE Com-

*puter Society Press.
[Ehre7g] Ehrenberger, W., and K. Plogert. 1978. "Statistical Verification of Rractor Protection Software." In

Proceedings International Symposium on Nuclear Power Plant Control, April, Cannes, France, paper
39. **

[Ehri85] Ehrig, H., and B. Mahr. 1985. Fundamentals of Algebraic Specifications. Berlin: Springer-Verlag. **

[Ehr187] Ehrlich, W.K., and T.J. Emerson. 1987. "Modeling Software Failures and Reliability Growth During
• System Testing." In Proceedings 9th International Conference on Software Engineering, March 30 -

Arpil 2, Monterey, CA, 72-82. Washington, DC: IEEE Computer Society Press.
[Ejio87] Ejiogu, L.O. "The Critical Issues of Software Metrics." ACM: SIGPLAN Notices, 22/3 (Mar

1987):59-63.
[Elme69] Elmendorf, W.R. "Controlling the Functional Testing of an Operating System." IEEE: Transactions

on System Sciences and Cybernetics, SSC-5/4 (Oct 1969):284-290.
* [Elme7l] Elmendorf, W.R. "Disciplined Software Testing." In Debugging in Large Systems, R. Rustin (ed.),

137-140. Englewood Cliffs, NJ: Prentice-Hall.
[Elme73] Elmendorf, W.R. November 1973. Cause-Effect Graphs in Functional Testing. IBM Technical Report

00.2487.
[Elsh76a] Elshoff, J.L. "Measuring Commercial PL/1 Programs Using Halstead's Criteria." ACM: SIGPLAN

Notices, 7/5 (May 1976):38-46. **
* [Elsh76b] Elshoff, J.L. "An Analysis of Some Commercial PL/I Programs." IEEE: Transactions on Software

Engineering, 2/2 (Jun 1976):113-120.
[Elsh78a] Elshoff, J.L. 1978. "A Review of Software Measurement Studies at General Motors Research

Laboratories." In Proceedings 2nd Software Life Cycle Measurement Workshop. New York: IEEE
Computer Society. **

[Elsh78b] Elshoff, J.L. "An Investigation into the Effects of the Counting Method Used on Software Science
Measurements." **

[Elsh78c] Elshoff, J.L., and M. Marcotty. "On the Use of the Cyclomatic Number to Measure Program Com-
plexity." ACM: SIGPLAN Notices, 13/12 (Dec 1978):29-40.

[Eish84] Elshoff, J.L. 1984. "Characteristic Program Complexity Measures." In Proceedings 7th International
Conference on Software Engineering, March, 26-29, Orlando, FL, 288-293. Washington, DC: IEEE
Computer Society Press.

* [Eisp72a] Elspas, B., K.N. Levitt, R.J. Waldinger, and A. Waksman. "An Assessment of Techniques for Prov-
ing Program Correctness." ACM: Computing Surveys, 4/2 (Jun 1972):97-147.

[Elsp72b] Elspas, B., M.W. Green, K.N. Levitt, and R.J. Waldinger. 1972. Research in Interactive Program
Proving Techniques. Menlo Park, CA: Stanford Research Institute. SRI Report 8398-I. **

[Elsp73] Elspas, B., K.N. Levitt, and R.J. Waldinger. 1973. An Interactive System for the Verification of Com-
puter Programs. Menlo Park, CA: Stanford Research Institute. Final Report, SRI Project 1891. **

* [Elsp74] Elspas, B. July 1974. The Semiautomatic Generation of Inductive Assertions for Proving Program
Correctness. Menlo Park, CA: Stanford Research Institute. Interim Report, SRI Project 2686. **

[ElspXXI Elspas, B., M.W. Green, A. Korsak, and P. Wong. Solving Nonlinear Inequalities Associated with
Computer Program Paths. Menlo Park, CA: Stanford Research Institute. Prelininarv draft.

* 81



August 9, 1989

[Emde81] Emden, M.H., and T.S.E. Maibaum. 1981. "Equations Compared with the Clauses for Specification
of Abstract Data Types." In Advances in Database Theory, H. Gallaire, J. Minker, and J.M. Nicholas
(eds.), 159-194. New York: Plenum Press.

[Eamer83] Emerson, E.A., and J.Y. Halpern. " 'Sometimes' and 'Not' Revisited: On Branching versus Linear
Tine." In Proceedings ACM Symposium on the Principles of Programming Languages, January, Aus-
tin, TX, 127-140. **

[Emer84] Emerson, T.J. 1984. "A Discriminant Metric for Module Cohesion." In Proceedings 7th International
Conference on Software Engineering, March, 26-29, Orlando, FL, 294-303. Washington, DC: IEEE
Computer Society Press.

[Emer&5] Emerson, E.A., and C.-L. Lei. 1985. "Modalities for Model Checking: Branching Time Strikes
Back." In Proceedings ACM Symposium on the Principles of Programming Languages, January, New
Orleans, LA., 84-96. **

[Endr75] Endres, A. "An Analysis of Errors and Their Causes in System Programs." IEEE: Transactions on
Software Engineering, 1/2 (Jun 1975):140-149.

[Epp86] Epp, E.C., and S.J. Zeil. December 1986. ARIES: A Multi-Lingual Interpreter for a Tool-Fragment
Envirmnment. University of Massachusetts. COINS Technical Report 86-57 (revised May 1987). **

[Fr-cS5] Erickson, R.L. 1985. "Overview of Generic Telecommunications Software Reliability and Quality
Requirements Proposed by BELLCORE." In Proceedings IEEE Global Telecommunications Confer-
ence, December 2-5, New Orleans, LA, 65-68. Piscataway, NJ: IEEE Service Center.

[Evan83a] Evangelist, W.M. "Software Complexity Metric Sensitivity to Program Structuring Rules." ACM:
The Journal of Systems and Software, 3/6 (Nov 1983):231-243.

[Evan83b] Evangelist, W.M. "Relationships Among Computational, Software and Intuitive Complexity." ACM:
SIGPLAN Notices, 18/12 (Dec 1983):57-59.

[Evan84a] Evangelist, W.M. 1984. "An Analysis of Control Flow Complexity." In Proceedings 8th International
Computer Software and Applications Conference. Washington, DC: IEEE Computer Society.

[Evang4b] Evans, M.W. 1984. Productive Software Test Management. New York: John Wiley & Sons.
[Evan84e] Evangelist, W.M. 1984. "Program Complexity and Programming Style." In Proceedings International

Conference on Data Engineering, 534-541.
[Evang7] Evans, W.E., and J.J. Marciniak. "Software Quality Metrics." In Software Quality Assurance and

Management, 157-186. John Wiley & Sons. **
[FIPS77] Guidelines for Benchmarking ADP Systems in the Competitive Procurement Environment. Gaithers-

burg, MD: National Bureau of Standards/U.S. Department of Commerce. Federal Information Pro-
cessing Standards Publication, May 1977. **

[FSTC83] Software Tools Survey. Falls Church, VA: Federal Software Testing Center, U.S. Office of Software
Development. **

[Faga74] Fagan, M.E. December 1974. Design and Code Inspections and Process Control in the Development of
Programs. IBM Corp. Technical Report TR-21-572. **

[Faga76] Fagan, M.E. "Design and Code Inspections to Reduce Errors in Program Development." IBM: Sys-
tems Journal, 15/3 (1976):182-211.

[Faga861 Fagan, M.E. "Advances in Software Inspections." IEEE: Transactions on Software Engineering 12/7
(Jul 1986):744-751.

[FainSS] Fainter, R.G. June 1985. AdaTAD-A Debugger for the Ada Multi-Task Environment. Ph.D. diss..
Virgina Tech. **

[Fain86] Fainter, R.G., and T.E. Lindquist. 1986. "Debugging Tasks with AdaTAD." In Proceedings Ist Inter-
national Conference on Ada for the NASA Space Station. Jun , Houston, TX. **

[Fair75] Fairley, R.E. "An Experimental Program-Testing Facility." IEEE: Transactions on Software Engineer-
ing, 1/4 (Dec 1975):350-357.

[Fair79J Fairley, R.E. "ALADDIN: An Assembly Language Assertion Driven Debugging Interpreter."
IEEE: Transactions on Software Engineering, 5/4 (Jul 1979):426-428.

[Farr6S] Fan', L., and H.J. Zagorski. 1965. "Quantitative Analysis of Programming Cost Factors: A Progress
Report." In Proceedings 1965 ICC Symposium, Rome. Published in "Economics of Automatic Data

82



S

August 9, 1989

Processing," A.B. Frielink (ed.), 167-177. Amsterdam: North-Holland. **
[Farr83] Farr, W.H. September 1983. A Survey of Software Reliability Modeling and Estimation. Dahgren,

VA: Naval Surface Weapons Center. Technical Report NSWC-TR-82-171.
[FarrS8] Fan, W.H., O.D. Smith, and C.L. Schimmelpfenneg. 1988. "A PC Tool for Software Reliability

Measurement." In 1988 Proceedings. Institute of Environmental Sciences.
[Fava79] Favaro, J.M. 1979. "A FORTRAN Symbolic Executor Based on MACSYMA." In

Proceedings 2nd MACSYMA User's Conference, June. **
[Feat89] Feather, M.S. "Constructing Specifications by Combining Parallel Elaborations." IEEE: Transac-

tions on Software Engineering, 15/2 (Feb 1989).
[Feje80] Feiertag, R.J. January 1980. A Technique for Proving Specifications are Multilevel Secure. SRI Interna-

tional. Technical Report CSL109. **
* [Feld89] Feldman, M.B., and M.L. Moran. "Validating a Demonstration Tool for Graphics-Assisted Debug-

ging of Ada Concurrent Programs." IEEE: Transactions on Software Engineering, 15/3 (May
1989):305-313.

[Fern85] Fernandez, J.C., J.L. Richier, and J. Voiron. 1985. "Verification of Protocol Specifications using the
CEDAR System." In Proceedings 5th International Workshop on Protocol Specification, Verification,
and Testing, June, Toulouse, France. **

* [Ferr77] Ferrentino, A.B., and H.D. Mills. 1977. "State Machines and Their Semantics in Software Engineer-
ing." In Proceedings 1st International Computer Software and Applications Conference, November
8-11, Chicago, IL, 242-251. Long Beach, CA: IEEE Computer Society Press.

[Fetz88] Fetzer, J.H. "Program Verification: The Very Idea." ACM: Communications of the ACM, 31/9 (Sep
1988):1048-1063.

[Feue79a] Feuer, A.R., and E.B. Fowlkes. 1979. "Relating Computer Program Maintainability to Software
* Measures." In Proceedings AFIPS National Computer Conference, vol. 48, June 4-7, New York, NY,

1003-1012. Arlington, VA: AFIPS Press.
[Feue79b] Feuer, A.R., and E.B. Fowlkes. 1979. "Some Results from an Empirical Study of Computer

Software." In Proceedings 4th International Conference on Software Engineering, September 27-29,
Munich, Germany, 351-355. Washington, DC: IEEE Computer Society Press. **

[FinkS3] Finkel, R.A., M.H. Solomon et al. April 1983. Charlotte: Part IV of the First Report on the Crystal
* Project. University of Wisconsin. Technical Report 501. **

[Fisc77] Fischer, K.F. 1977. "A Test Case Selection Method for the Validation of Software Maintenance
Modifications." In Proceedings 1st International Computer Software and Applications Conference,
November 8-11, Chicago, IL, 421-426. Long Beach, CA: IEEE Computer Society Press.

[Fits79J Fitsos, G.P. September 1979. Software Science Counting Rules and Tuning Methodology. IBM Santa
Teresa Laboratory. Technical Report 03-075. **

* [Fits80] Fitsos, G.P. January 1980. Vocabulary Effects in Software Science. IBM Santa Teresa Laboratory.
Technical Report 03-082. **

[Fitz78aJ Fitzsimmons, A.B., and T. Love. "A Review and Evaluation of Software Science." ACM: Comput-
ing Surveys, 10/1 (Mar 1978):3-18.

[Fitz78b] Fitzsimmons, A.B. 1978. "Relating the Presence of Software Errors to the Theory or Software Sci-
ence." In Proceedings IEEE Ilth Hawaii International Conference on System Sciences, January,

* Honolulu, HA. **
[FlonT7] Flon, L. 1977. On the Design and Verification of Operating Systems. Ph.D. diss., Carnegie-Mellon

University.
[Flon78a] Flon, L., and N. Suzuki. 1978. "Non-Determinism and Correctness of Parallel Programs." In

Proceedings Information Processing Working Conference on the Formal Description of Programming
Concepts, August 1-5, St. Andrews, Canada, 589-600. Amsterdam: North Holland.

* [Flon78b] Flon, L., and N. Suzuki. November 1978. Consistent and Complete Proof Rules for the Total Correct-
ness of Parallel Programs. Xerox Corp. Technical Report CSL-78-6. **

[Flon8l] Rlon, L., and N. Suzuki. "The Total Correctness of Parallel Programs." In SIAM: Journal of Comput-
ers, 10/2 (May 1981):227-246.

* 83



August 9, 1989

[Floy67] Floyd, R.W. 1967. "Assigning Meaning to Programs." In Proceedings American Mathematical Society
Symposium in Applied Mathematics, vol. 19, 19-31. Providence, RI: American Mathematics Society.
Also published in ACM: Communications of the ACM, 14/1 (Jan 1971):39-45. **

[Forg87] Forghani, B., and B. Sarikaya. November 1987. CONTEST-FSM A Finite State Machine Based Test
Generation Tool for Protocols. Concordia University. Research Report. **

[Form77] Forman, E.H., and N.D. Singpurwalla. "An Empirical Stopping Rule for Debugging and Testing
Computer Software." Journal of the American Statistical Association, 72/360 (Dec 1977):750-757.

[Form79] Duran, E.H., and N.D. Singpurwalla. "Optimal Time Intervals for Testing Hypotheses on Computer
Software Errors." IEEE: Transactions on Reliability, R-28/3 (Aug 1979):250-253.

[Fosd74] Fosdick, L.D. March 1974. "BRNANL-A FORTRAN Program to Identify Basic Blocks in FOR-
TRAN Programs." University of Colorado. Technical Report CU-CS-040-74. **

[Fosd76a] Fosdick, L.D., and L.J. Osterweil. "Data Flow Analysis in Software Reliability." ACM: Computing
Surveys, 8/3 (Sep 1976):305-330.

[Fosd76b] Fosdick, L.D., and L.J. Osterweil. 1976. "The Detection of Anomalous Interprocedural Data Flow."
In Proceedings 2nd International Conference on Software Engineering, October 13-15, San Francisco,
CA. Washington, DC: IEEE Computer Society Press.

[Fost8O] Foster, K.A. "Error Sensitive Test Cases Analysis (ESTCA)." IEEE: Transactions on Software
Engineering, 6/3 (May 1980):258-264.

[Fost83] Foster, K.A. "Comments on the Application of Error-Sensitive Testing Strategies to Debugging."
ACM: SIGSOFT Software Engineering Notes, 8/5 (Oct 1983):40-42.

[Fost84] Foster, K.A. "Sensitive Test Data for Logical Expressions." ACM: Software Engineering Notes, 9/2
(Apr 1984):120-125.

[Fost85] Foster, K.A. "Revision of an Error Sensitive Test Rule." ACM: Software Engineering Notes, 10/1
(Jan 1985):62-67.

[Fran79] Francez, N., C.A.R. Hoare, D.J. Lehmann, and W.P. de Roever. "Semantics of Concurrency, Non-
determinism and Communication." Journal of Computer and System Sciences, 12 (1979). **

[FranSO] Francez, N. "Distributed Termination." ACM: Transactions on Programming Languages and Sys-
tems, 2/1 (Jan 1980):42-55.

[Fran85a] Frankl, P.G., S.N. Weiss, and E.J. Weyuker. 1985. "ASSET: A System To Select and Evaluate
Tests." In Proceedings IEEE Conference on Software Tools, April, New York, 72-79.

[Fran85b] Frankl, P.G., and E.J. Weyuker. 1985. "A Data Flow Testing Tool." In Proceedings SoftFair II: 2nd
Conference on Software Development Tools, Techniques, and Alternatives, December 2-5, San Fran-
cisco, CA. **

[Fran86] Frankl, P.G., and E.J. Weyuker. 1986. "Data Flow Testing in the Presence of Unexecutable Paths."
In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 4-13. Washington, DC:
IEEE Computer Society Press.

[Fran88] Frankl, P.G., and E.J. Weyuker. "An Applicable Family of Data Flow Testing Criteria." IEEE: Tran-
sactions on Software Engineering, 14/10 (Oct 1988):1483-1498.

[Freb79] Freburger K., and V.R. Basili. May 1979. The Software Engineering Laboratory: Relationship Equa-
tions. University of Maryland. Technical Report TR-764. **

[Frei79] Freiman, F.R., and R.D. Park. 1979. "PRICE Software Model-Version 3: An Overview." In
Proceedings IEEE-PINY Workshop on Quantitative Software Models, October, 32-41. IEEE Cat.
TH0067-9. **

[FreuS4] Freudenberger, S.M, 1984. On the Use of Global Optimization Algorithms for the Detection of Seman-
tic Programming Errors. Courant Institute of Mathematical Sciences. Technical Report NSO-24. **

(Frye8l] Fryer, S., and D.M. Weiss. 1981. "Evaluation of the A-7E Software Requirements Document by
Analysis of Change Data: Two years of Change Data." In Proceedings 15th Annual Asilomar Confer-
ence on Circuits, Systems, and Computers, November. **

[Fuji77] Fujii, M.S. 1977. "Independent Verification of Highly Reliable Programs." In Proceedings 1st Inter-
national Computer Software and Applications Conference, November 8-11, Chicago, IL, 38-44. Long
Beach, CA: IEEE Computer Society Press.

84



August 9, 1989

[Funa75] Funami, Y., and M.H. Halstead. 1975. A Software Physics Analysis of Akiyama's Debugging Data.
Purdue University. Technical Report CSD-TR-144. Also publsihed in Proceedings Symposium on
Computer Software Engineering, April 20-22, Polytechnic Institute for New York. MRI Symposia
Series, vol. XXIV, J. Fox (ed.). New York: Polytechnic Press. **

[FungSS] Fung, C.K-C. 1985. A Methodology for the Collection and Evaluation of Software Error Data. Ph.D.
* diss., Ohio State University.

[Furt81] Furtek, F.C., J.B. DeWolf, and P. Buchan. 1981. "DARTS: A Tool for Specification and Simulation
of Real-Tune Systems." In Proceedings AIAA Conference on Computers in Aerospace, October. **

[GE77a] Fortran Test Procedure Language--Programmer Reference Manual. Schenectady, NY: General Elec-
tric Co., 1977. **

[GE77b] Test Procedure Processor--User Guide. Schenectady, NY: General Electric Co., 1977. *
* [GRC79] Fortran Automated Verification System (FAVS), Vol. I, User's Manual. Santa Barbara, CA: General

Research Corp., January 1979. **
[Gabo76] Gabow, H.N., S.N. Maheshward, and L.J. Osterweil. "On Two Problems in the Generation of Pro-

gram Test Data." IEEE: 7ransactions on Software Engineering, 2/3 (Sep 1976):227-231.
[GaIT79] Gaffney, J.E. 1979. "A Comparison of a Complexity-Based and Halstead Program Size Estimates."

In Proceedings ACM Computer Science Conference, February, Dayton, OH, 35-36.
• [GafSO] Gaffney, J.E., and G.L. Heller. 1980. "Macro Variable Software Models for Application to Improved

Software Development Management." In Proceedings Workshop on Quantitative Software Models for
Reliability, Complexity, and Cost. New York: IEEE Computer Society. **

[Gaffgla] Gaffney, J.E. 1981. "Software Metrics: A Key to Improved Software Development Management." In
Conference on Computer Science and Statistics: Proceedings 13th Annual Symposium on the Interface,
March, Carnegie-Mellon, PA, 211-220. Springer-Verlag.

[Gafflb] Gaffney, J.E. 1981. "Metrics in Software Quality Assurance." In Proceedings ACM Annual National
Computer Conference, November 9-11, Los Angeles, CA, 126-130. Baltimore, MD: ACM Order
Department.

[Gaff88] Gaffney, J.E., and C.F. Davis. March 1988. An Approach to Estimating Software Errors and Availa-
bility. Software Productivity Consortium. Technical Report SPC-TR-88-007.

[Gal87a] Galiano, E. June 1987. Vectorization Over Multiple Data Sets. Georgia Institute of Technology. Design
* Project Report. **

[GaliS7b] Galiano, E. 1987. Program Execution Over Multiple Data Sets. Georgia Institute of Technology. **
[Gall81] Gallier, J.H. "Nondeterministic Flowchart Programs with Recursive Procedures: Semantics and

Correctness." Theoretical Computer Science, 13/3 (Mar 1981):239-270.
[Ganm75] Gannon, J.D., and J.J. Horning. "Language Design for Programming Reliability." IEEE: Transac-

tions on Software Engineering, 1/2 (1975):179-191.
* [Gann76] Gannon, J.D. 1976. "Data Types and Programming Reliability: Some Preliminary Evidence." In

F :eedings Symposium on Computer Software Engineering, April 20-22, Polytechnic Institute for
%.w York. MRI Symposia Series, vol. XXIV, J. Fox (ed.). New York: Polytechnic Press.

[Gann77] Gannon, J.D. "An Experimental Evaluation of Data Type Conventions." ACM: Communications of
the ACM, 20/8 (Aug 1977):584-595.

[Gann79] Gannon, C. "Error Detection Using Path Testing and Static Analysis." IEEE: Computer, 12/8 (Aug
* 1979):26-31.

[GanSO] Gannon, J.D., P.R. McMullin, R.G. Hamlet, and M. Ardis. "Testing Traversible Stacks." ACM:
SIGPLAN Notices, 15/1 (Jan 1980):58-65.

[Gann81] Gannon, J.D., P.R. McMullin, and R.G. Hamlet. "Data Abstraction Implementation, Specification
and Testing." ACM: 7Ransactions on Programming Languages and Systems, 3/3 (Jul 1981):211-223.

[Gann83] Gannon, J.D., E.E. Katz, and V.R. Basili. August 1983. Characterizing Ada Programs: Packages.
The Measurement of Computer Software Performance. Los Alamos National Laboratory. **

[Gann$5] Gannon, J.D., E.E. Katz, and V.R. Basili. 1985. "Metrics for Characterizing Ada Packages." In
Proceedings 8th International Conference on Software Engineering, August 28-30, London, England.
Washington, DC: IEEE Computer Society Press.

* 85



August 9, 1989

[Ga=86] Gannon, J.D., E.E. Katz, and V.R. Basili. "Metrics for Ada Packages: An Initial Study." ACM:
Communications of the ACM, 29/7 (Jul 1986):616-623.

[Gare83] Garcia-Molina, H., F. Germano, and W. Kohler. 1983. "Architectural Overview of a Distributed
Software Testbed." In Proceedings IEEE 16th Hawaii International Conference on System Sciences,
January, Honolulu, HA, 310-319. **

[Gamrc84] Garcia-Molina, H., F. Germano, and W.H. Kohler. "Debugging a Distributed Computing System."
IEEE: Transactions on Software Engineering, 10/2 (Mar 1984):210-219.

[Gare78] Garey, M., and D. Johnson. 1978. Computer and Intractability: A Guide to the Theory of NP-Com-
pleteness. San Francisco, CA: Freeman. **

[Garms8l] Garman, J.R. "The Bug Heard 'Round the World." ACM: Software Engineering Notes, 6/5 (Oct
81):3-10.

[GaudXX] Gaudel, M.C., and B. Marre. Algebraic Specifications and Software Testing: Theory and Applications.
Rapport LRI. Report 407. **

[Geig79] Geiger, W., L. Gmeiner, H. Trauboth, and U. Voges. "Program Testing for Nuclear Reactor Protec-
tion Systems." IEEE: Computer, 12/8 (Aug 1979):10-18.

[Gell78] Geller, M. "Test Data as an Aid to Proving Program Correctness." ACM: Communications of the
ACM, 21/5 (May 1978):368-375.

[Gelp79] Gelpert, D. "Testing Maintainability." ACM: SIGSOFT Software Engineering Notes, 4/2 (Apr
1979):7-12.

[Geip88] Gelperin, G., and B. Hetzel. "The Growth of Software Testing." ACM: Communications of the ACM,
31/6 (Jun 1988):687-695.

[Gerh76a] Gerhart, S.L., and L. Yelowitz. "Observations of Fallibility in Applications of Modem Programming
Methodologies." IEEE: Transactions on Software Engineering, 2/3 (Sep 1976):195-207.

[Gerh76b] Gerhart, S.L., and L. Yelowitz. "Control Structure Abstractions of the Backtracking Technique."
IEEE: Transactions on Software Engineering, 214 (Dec 1976).

[Gerh7S] Gerhart, S.L. August 1978. Program Verification in the 1980's: Problems, Perspectives, and Opportuni-
ties. Marina del Ray, CA: Information Sciences Institute. Report ISIRR-78-71. **

(Gerh79] Gerhart, S.L. 1979. "Program Validation." In Computing Systems Reliability, T. Anderson and B.
Randers (eds.), 66-108. Cambridge University Press. **

[Gerh8O] Gerhart, S.L., et al. 1980. An Overview of AFFIRM: A Specification and Verification System. Univer-
sity of Southern California. Technical Report PR-79-81. Also published in Proceedings Information
Processing (IFIP) Congress '80343-347. Tokyo, Japan.

[Gerh84] Gerhart, S.L. 1984. "Application of Axiomatic Methods to a Specification Analyzer." In Proceedings
7th International Conference on Software Engineering, March, 26-29, Orlando, FL, 441-451. Washing-
ton, DC: IEEE Computer Society Press.

[Gerh8'] Gerhart, S. 1985. A Test Data Generation Method Using Prolog. Wang Institute of Graduate Studies.
Technical Report 85-02. **

[Gerh88sa Gerhart, S.L. 1988. "A Broad Spectrum Toolset for Upstream Testing, Verification, and Analysis."
In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff,
Canada, 4-12. Washington, DC: IEEE Computer Society Press.

[Gerh88b] Gerhart, S.L. 1988. Position Statements from Panel on: Logic-Based and Constraint-Based Tech-
niques for Software Analysis. In Proceedings 2nd Workshop in Software Testing, Verification, and
Analysis, July 19-21, Banff, Canada, 137-140. Washington, DC: IEEE Computer Society Press.

[Germ82aJGerman, S.M., D.P. Helmbold, and D.C. Luckham. October 1982. "Monitoring for Deadlocks in
Ada Tasking." In Proceedings Ada TEC Conference on Ada, October, Arlington, VA, 10-25.

[Gern82b] German, S.M. 1982. A Finely Grained Concurrent Algorithm for Deadlock Detection. Unpublished
manuscript. **

["erm84j German, S.M. "Monitoring for Deadlock and Blocking in Ada Tasking." IEEE: Transactions on
Software Engineering, 10/6 (Nov 1984):764-777.

[Gerr85] Gerrard, C.P., D. Coleman, and R. Gallimore. June 1985. Formal Specification and Design Time
Testing. Software Sciences Ltd. Internal Report.

86



S

August 9, 1989

[Gertl4] Gerth, R.B., and W.P. de Roever. 1984. "A Proof System for Concurrent Ada Programs." In Science
of Computer Programming 4, 159-204. Elsevier North-Holland. **

(GetzgS3 Getz, S.L., G. Kalligiannis, and S.R. Schach. "A Very High-Level Interactive Graphical Trace for
the Pascal Heap." IEEE: Transactions on Software Engineering, 9/2 (1983):179-185.

[GiamuS] Giammo, T. 1986. "Relaxation of the Common Failure Rate Assumption in Modeling Software Reli-
ability." In Reliability: State of the Art, A. Bendell and P. Meilor (eds.), 31-44. Oxford: Pergamon
Infotech. **

[Gibs89] Gibson, V.R., and J.A. Senn "System Structure and Software Maintenance Performance." ACM:
Communications of the ACM, 32/3 (Mar 1989):347-358.

[Gide74] Gideadi, A.N., and H. Ledgard. "On a Proposed Measure of Program Structure." ACM: SIGPLAN
Notices, 9/5 (May 1974):31-36. **

[GlIb76] Gilb, T. 1976. Software Metrics. Winthrop Computer Systems Series. Englewood Cliffs, NY:
Winthrop. **

[Glb79] Gilb, T. "A Comment on The Definition of Maintainability." ACM: SIGSOFT Software Engineering
Notes, 4/3 (Jul 1979):32-33.

[GilkXXI Gilkey, T.J., J.R. White, and T.L. Booth. Performance Analysis as a Software Design Tool. University
of Connecticut.

[GIUI] Gilles, J., and R. Ford. May 1988. "A Guided Tour through a Window Oriented Debugging Environ-
ment." In Proceedings Ada Europe Conference, June, Munich, Germany . New York: Cambridge
University Press.

[GInz65] Ginzberg, M.G. "Notes on Testing Real-Time System Programs." IBM Systems Journal, 4/1
(1965):58-73.

[Gira73] Girard, E., and J.-C. Rault. 1973. "A Programming Technique for Software Reliability." In Confer-
* ence Record 1973 IEEE Symposium on Computer Software Reliability, April 30 - May 2, New York,

44-50. **
[Girg8S] Girgis, M.R., and M.R. Woodward. 1985. "An Integrated System for Program Testing Using Weak

Mutation and Data Flow Analysis." In Proceedings 8th International Conference on Software
Engineering, August 28-30, London, England, 313-319. Washington, DC: IEEE Computer Society
Press.

[Girg86a] Girgis, M.R., and M.R. Woodward. 1986. "An Experimental Comparison of the Error Exposing
Ability of Program Testing Criteria." In Proceeding- Workshop on Software Testing, July 15-17, Banff,
Canada, 64-73. Washington, DC: IEEE Computer Society Press.

[Girg86b] Girgis, M.R. March 1986. Studies of Program Test Coverage and the Development of an Automated
Support System. Ph.D. thesis, Liverpool University. **

[Gias79] Glass, R.L. 1979. Software Reliability Guidebook. Englewood Cliffs, NJ: Prentice-Hall.
[GlasSO] Glass, R.L. "A Benefit Analysis of Some Software Reliability Methodologies." ACM: SIGSOFT

Software Engineering Notes, 5/2 (Apr 1980):26-33.
[Gias8l] Glass, R.L. "Persistent Software Errors." IEEE: Transactions on Software Engineering, 7/2 (Mar

1981):162-168.
[Glig87] Gligor, V.D., C.S. Chandersekaran, W. Jiang, A. Johri, G.L. Luckenbaugh, and L.E. Reich. "A

New Security Testing Method and Its Application to the Secure Xenix Kernel." IEEE: Transactions
* on Software Engineering, 13/2 (Feb 1987):169-183.

[Gme179] Gmeiner, L., and U. Voges. 1979. "Software Diversity in Reactor Protection Systems: An Experi-
ment." In Proceedings Safety of Computer Control Systems (SAFECOM) '79, L. Lauber (ed.),, 75-79.
New York: Pergamon. **

[GodfS7] Godfrey, S., C. Brophy, et al. July 1987. Assessing the Ada Design Process and Its Implications: A
Case Study. Greenbelt, MD: NASAIGSFC. Technical Report SEL-87-004. **

* [Godo77] Godoy and Engels. 1977. "Software Sneak Analysis." In Proceedings AIAA Conference on Computers
in Aerospace: Exploration of the Outer Solar System, vol. 50, November, Los Angeles, CA. New
York: American Institute of Aeronautics and Astronautics. **

* 87



August 9, 1989

[Goe1781 Goel, A.L., and K. Okumoto. 1978. "An Analysis of Recurrent Software Errors in a Real-Time Con-
trol System." In Proceedings 31st ACM Annual National Computer Conference, December 4-6, Wash-
ington, DC, 496-501. New York: Association for Computing Machinery. **

[Goe79] Goel, A.L., and K. Okumoto. "Time-Dependent Error-Detection Rate Model for Software Reliabil-
ity and Other Performance Measures." IEEE: Transactions on Reliability, R-28/3 (1979):206-211.

[Goel$0a] Goel, A.L., and K. Okumoto. March 1980. A Time Dependent Error Detection Rate Model for
Software Performance Assessment with Applications. Syracuse University. Annual report to RADC.

[GoelS0b] Goel, A.L. "Software Error Detection Model with Applications." Journal of Systems and Software,
1/3 (1980):243-249. **

[Goelgft] Goel, A.L. "A Summary of the Discussion on "An Analysis of Competing Software Reliability
Models." IEEE: Transactions on Software Engineering, 6/5 (Sep 1980):501-502.

[Goel81] Goel, A.L., and K. Okumoto. 1981. "When to Stop Testing and Start Using Software?" In Proceed-
ings ACM SIGMETRICS Symposium/Workshop: Quality Metrics, March:131-138.

[Goe182] Goel, A.L. October 1982. Software Reliability and Estimation Techniques. Griffis Air Force Base,
NY: Rome Air Development Center. Technical Report RADC-TR-82-263. **

[Goe183] Goel, A. April 1983. A Guidebook for Software Reliability Assessment. Griffiss Air Force Base, NY:
Rome Air Development Center. Technical Report RADC-TR-83-176.

[Goe185] Goel, A.L. "Software Reliability Models: Assumptions, Limitations, and Applicability," IEEE:
Transactions on Software Engineering, 11/12 (Dec 1985):1411-1423.

[Goe88J Goel, A.L. October 1988. An Experimental Investigation into Software Reliability. Griffis Air Force
Base, NY: Rome Air Development Center. Technical Report RADC-TR-88-213.

[Goei89] Goel, A. 1989. "Real-Time Performance Benchmarks for Ada." In Proceedings 7th Annual National
Conference on Ada Technology, March 13-16, Altantic City, NJ, 145-153. Washington, DC: ACM
Ada Technical Committee. **

[Gogu7S] Goguen, J.A., J.W. Thatcher, and E.G. Wagner. 1978. "An Initial Algebra Approach to the Specifi-
cation, Correctness, and Implementation of Abstract Data Types." In Current Trends in Program-
ming Methodology, Vol. 4, R. Yeh (ed.), 80-149. Englewood Cliffs, NJ: Prentice-Hall. **

[Gogu79a] Goguen, J.A., and J.J. Tardo. 1979. "An Introduction to OBJ: A Language for Writing and Testing
Formal Algebraic Program Specifications." In Proceedings Conference on Specification of Reliable
Software, Cambridge, MA, 170-189. **

[Gogu79b]Goguen, J.A., J.J. Tardo, N. Williamson, and M. Zamfir. "A Practical Method for Testing Algebraic
Specifications." UCLA Computer Science Department Quarterly, (1979). **

[GoguSO] Goguen, J.A. "Thoughts on Specification, Design, and Verification." ACM: Software Engineering
Notes, 5/3 (Jul 1980):29-33.

[GoldSO] Goldberg, J. 1980. "SIFT: A Provable Fault-Tolerant Computer for Aircraft Flight Control." In
Proceedings Information Processing (IFIP) Congress '80, 151-156. Tokyo, Japan. **

(Good70] Good, D.I., and R.L. London. "Computer Interval Arithmetic: Definition and Proof of Correct
Implementation." ACM: Journal of the ACM, 17/4 (Oct 1970):603-612.

[Good75a]Goodcnough, J.B., and S.L. Gerhart. "Toward a Theory of Test Data Selection." IEEE: Transac-
tions on Software Engineering, 1/2 (Jun 1975):156-173.

[Good75b] Goodenough, J.B., and S.L. Gerhart. "Correction to 'Toward a Theory of Test Data Selection.'"
IEEE: Transactions on Software Engineering, 1/4 (Dec 1975):425. **

[Good75c] Good, D.I., R.L. London, and W.W. Bledose. 1975. "An Interactive Program Verification System."
In Proceedings International Conference on Reliable Software, April 21-23, Los kngeles, CA, 482-492.
IEEE Cat. No. 75CH)940-7CSR.

[Good75d]Goodenough, J.B. "Exception Handling: Issues and a Proposed Notation." ACM: Communications
of the ACM, 18/12 (Dec 1975):683-696.

[Good7Se] Good, D.I. 1975. "Provable Programming." In Proceedings International Conference on Reliable
Software, April 21-23, Los Angeles, CA, 411-419. IEEE Cat. No. 75CH0940-7CSR.

88



August 9, 1989

* [Good79a]Goodenough, J.B. 1979. "A Survey of Program Testing Issues." In Research Directions in Software
Technology, P. Wegner (ed.), 316-340. Cambridge, MA: MIT Press.

[Good79b] Good, D.I., R.M. Cohen, and J. Keeton-Williams. 1979. "Principles of Proving Programs Correct."
In Proceedings 6th ACM Annual Symposium on Principles of Programming Languages, San Antonio,
TX, 42-52. **

[Good$2a] Good, D.I. 1982. The Proof of a Distributed System in Gypsy. University of Texas at Austin. Technical
* Report ICSCA-CMP-30. **

[Good$2b] Good, D.I., A.E. Siebert, and L.M. Smith. December 1982. Message Flow Modulator - Final
Report. University of Texas at Austin. Technical Report ICSCA-CMP-34. **

[Goodg4a] Good, D.I. January 1984. Structuring a System for Al Certification. University of Texas at Austin.
Internal Note #145. **

[Good84b] Good, D.I., L. DeViot, and M.K. Smith. June 1984. Using the Gypsy Methodology. University of
Texas at Austin. **

[Good$6a] Good, D.I. 1986. Report on Gypsy 2.05 - January 1986. University of Texas at Austin. **

[Good$6b] Goodenough, J. 1986. Ada Programmer Errors. Unpublished manuscript. **
[Good88] Good, D.I. May 1988. Predicting Computer Behavior. Computational Logic, Inc. Technical Report

CLI-20. **
[Gord76] Gordon, R.D., and M.H. Halstead. 1976. "An Experiment Comparing Fortran Programming Times

with the Software Physics Hypothesis." In Proceedings AFIPS National Computer Conference, vol.
45, June 7-10, New York, NY, 935-937. Montvale, NJ: AFIPS Press. Also published as Purdue
University Technical Report CSD-TR-167.

[Gord77] Gordon, R.D. 1977. A Measure of Mental Effort Related to Program Clarity. Ph.D. diss., Purdue
University. **

[Gord79a] Gordon, R.D. "Measuring Improvements in Program Clarity." IEEE: Transactions on Software
Engineering, 5/2 (Mar 1979):79-90.

[Gord79b] Gordon, R.D. "A Qualitative Justification for a Measure of Program Clarity." IEEE: Transactions on
Software Engineering, 5/2 (Mar 1979):121-127.

[GordSSa) Gordon, K. October 1985. Technical Note On Software Metrics. Mitre Corp.
[GordS5b] Gordon, A.J. August 1985. Ordering Errors in Distributed Programs. University of Wisconsin. Techn-

ical Report 611. **
[Gord86] Gordon, A.J., and R.A. Finkel. 1986. "TAP: A Tool to Find Timing Errors in Distributed Pro-

grams." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 154-163. Washing-
ton, DC: IEEE Computer Society Press.

[GordS8] Gordon, A.J., and R.A. Finkel. "Handling Timing Errors in Distributed Programs." IEEE: Transac-
tions on Software Engineering, 12/10 (Oct 1988):1525-1535.

[Gor187] Gorlick, M.M., C.F. Kesselman, D.A. Marotta, and D.S Parker. May 1987. Mockingbird: A Logical
Methodology for Testing. Computer Science Laboratory.

[Gors80] Gorsline G.W., and R.G. Fainter. 1980. "Program Complexity Measures." In Proceedings
ACM/NBS 19th Annual Technical Symposium: Pathways to System Integrity, June, Gaithersburg, MD,
161-162.

[GouI72] Gould, J.D., and P. Drongowski. 1972. A Controlled Psychological Study of Program Debugging.
Yorktown Heights, NY: IBM Corp. IBM Report RC4083. **

[GouI74] Gould, J.D., and P. Drongowski. "An Exploratory Study of Computer Program Debugging." Human
Factors, 16/3 (May 1974):258-277.

[Goul75] Gould, J.D. "Some Psychological Evidence on How People Debug Computer Programs." Interna-
tional Journal of Man-Machine Studies, 7/2 (1975):151-182. **

[Gour8l] Gourlay, J.S. 1981. Theory of Testing Computer Programs. Ph.D. diss., University of Michigan.
[Gour83l Gourlay, J.S. "A Mathematical Framework for the Investigation of Testing." IEEE: Transactions on

Software Engineering, 9/6 (Nov 1983):686-709.
[Gradg7a] Grady, R.B. "Measuring and Managing Software Maintenance." IEEE: Software, 4/5 (Sep

1987):35-45.

* 89



August 9, 1989

[Gradg7b] Grady, R.B., and D. CasweU. 1987. Software Metrics: Establishing a Company-Wide Program. Engle-
wood Cliffs, NJ: Prentice-Hal. **

[Gran72] Grant, E.L., and R.S. Leavenworth. 1972. Statistical Quality Control. McGraw-Hill Kogakusha Ltd.
**

[Gree76] Green, T.F., N.F. Schneidewind, G.T. Howard, and R.J. Pariseau. 1976. "Program Structures,
Complexity and Error Characteristics." In Proceedings Symposium on Computer Software Engineer-
ing, April 20-22, Polytechnic Institute for New York, 139-154. MRI Symposia Series, vol. XXIV, J.
Fox (ed.). New York: Polytechnic Press. **

[Greegi] Green, A.L., W.J. Decker, and F.E. McGarry. September 1981. Automated Collection of Software
Engineering Data in the Software Engineering Laboratory ((SEL). Greenbelt, MiD: NASA/GSFC.
Technical Report SEL-81-014. **

[Gree87] Greenlaw, T. June 1987. Concatenation of Multiple Program Instances by Exploiting Vector Architec-
tures. Georgia Institute of Technology. Design Project Report. **

[GremS4] Gremillion, L.L. "Determinants of Program Repair Maintenance Requirements." ACM: Communi-
cations of the ACM, 27/8 (Aug 1984):826-832.

[Grie76] Gries, D. "An Illustration of Current Ideas on the Derivation of Correctness Proofs and Correct Pro-
grams." IEEE: Transactions on Software Engineering, 2/4 (Dec 1976):238-244.

[Grie77] Gries, D. "An Exercise in Proving Parallel Programs Correct." Communications of the ACM, 20/12
(Dec 1977):921-930.

[Grie79] Gries, D. "Is Sometimes Ever Better than Always?" ACM: Transactions on Programming Languages
and Systems, 1/2 (1979):258-265.

[Grie81] Gries, D. 1981. The Science of Programming. New York: Springer-Verlag. **
[Grif72] Griffith, P.F., and R.M. Henry. "An Investigatory Study into Human Problem Solving Capabilities as

They Relate to Programmer Efficiency." Computer Personnel, 3/3 (1972):10-15. **
[GmaSOal Grnarov, A., J. Arlat, and A. Avizienis. 1980. "On the Performance of Software Fault-Tolerance

Strategies." In Digest Papers, 10th International Conference on Fault-Tolerant Computing, October
1-3, Kyoto, Japan, 251-255.

[Grna80b] Grarov, A., J. Arlat, and A. Avizienis. 1980. "Modeling of Software Fault-Tolerance Strategies."
In Proceedings 1980 Pittsburgh Modeling and Simulation Conference, May, Pittsburgh, PA. **

[GrovS0] Groves, L.J., and W.J. Rogers. "The Design of a Virtual Machine for Ada." ACM: SIGPLAN
Notices, 15/11 (Nov 1980):223-234.

[Guln87] Guindi, D.S. and C.A. Budinger. 1987. MUM: Mothra's User Manual. Georgia Institute of Technol-
ogy. Technical Report GIT-SERC-87/11.

[Guin89] Guindi, D.S., W.M. McCracken, and S. Rugaber. 1989. "Reuse and the Software Life Cycle." In
Proceedings 7th Annual National Conference on Ada Technology, March 13-16, Altantic City, NJ,
463-467. Washington, DC: ACM Ada Technical Committee. **

[Gutt75] Guttag, J.V. 1975. The Specification and Application to Programming of Abstract Data Types. Univer-
sity of Toronto. Technical Report CSRG-59. **

[Gutt77] Guttag, J.V. "Abstract Data Types and the Development of Data Structures." ACM: Communica-
tions of the ACM, 6/20 (Jun 1977):396-404.

[Gutt78a] Guttag, J.V., E. Horowitz, and D.R. Musser. "Abstract Data Types and Soft- are Validation." ACM:
Communications of the ACM, 21/12 (Dec 1978): 1048-1064.

[Gutt78b] Guttag, J.V., and J.J. Horning. "The Algebraic Specification of Abstract Data Types." Acta Infor-
matica, 10/1 (1978):27-52.

[GuttS0 Guttag, J.V., and J.J. Horning. 1980. "Formal Specification as Design Tool." In Proceedings 7th
ACM Annual Symposium on Principles of Programming Languages, January 28-30, Las Vegas, NV,
251-261. Baltimore, MD: ACM Order Department.

[Gutt85 Guttag, J.V., J.J. Horning, and J.M. Wing. "The Larch Family of Specification Languages." IEEE:
Software, (Sep 1985). **

[HCP82] Symbolic Debug/l00 User's Manual. Cupertino, CA: Hewlett-Packard Co. **

90



August 9, 1989

* [HONE80] Formal Definition of the Ada Programming Language (preliminary version). Honeywell Inc., Cii
Honeywell Bull and INRIA, November 1980. **

[Habe7S] Habermann, A.N. 1975. Path Expressions. Carnegie-Mellon University. **
[Hale82] Haley, A., S.H. Zweben. 1982. "Development and Application of a White Box Approach to Integra-

tion Testing." In Proceedings Workshop on Effectiveness of Testing and Proving Methods, May,
Avalon, CA. **

(Hall73] Hailer, A.P., G. Lasseter, R.E. Meeker, and J. Turner. 1973. Final Report -- FORTRAN Automatic
Code Evaluation System. Austin, TX: Information Research Associates. **

[Hail74] Hailer, A.P., 1974. Automatic Program Analysis. University of Texas. Technical Report 38. *
[HailS0] Hall, M.L. 1980. "Data Processing Security: Core Concepts." In Proceedings ACM/NBS 19th

Annual Technical Symposium: Pathways to System Integrity, June, Gaithersburg, MD, 51-54.
[Hail86] Hall, W.E., and S.H. Zweben. "The Cloze Procedure and Software Comprehensibility Measure-

* ment." IEEE: Transactions on Software Engineering, 12/5 (May 1986):608-623.
[HaIp87] Halpern, J.D., S. Owre, N. Proctor, and W.F. Wilson. "Muse - A Computer Assisted Verification

Systems." IEEE: Transactions on Software Engineering, 13/2 (Feb 1987):151-156.
[Hais72a] Halstead, M.H. "Natural Laws Controlling Algorithm Structure?" ACM: SIGPLAN Notices, 7/2

(Feb 1972):19-26. **
[Hais73a] Halstead, M.H. "Language Level: A Missing Concept in Information Theory" ACM: SIGME: Per-

0 formance Evaluation Review, 2/3 (Mar 1973):7-9. **
[Hals73b] Halstead, M.H., and R. Bayer. 1973. "Algorithm Dynamics." In Proceedings 28th ACM Annual

National Computer Conference, August 27-29, Atlanta, GA, 126-135. New York: Association for
Computing Machinery.

[Hals7$a] Halstead, M.H. May 1975. Software Physics: Basic Principles. San Jose, CA: IBM Research Labora-
tories. Report RJ 1582. **

[Hals75b] Halstead, M.H. 1975. "Toward a Theoretical Basis for Estimating Programming Effort." In Proceed-
ingsACM Annual National Computer Conference, October 20-22, Minneapolis, MN, 222-224. **

(als76] Halstead, M.H. 1976. Using the Methodology of Natural Science to Understand Software. Purdue
University. Technical Report CSD-TR-67. **

[Hals77a] Halstead, M.H. 1977. Elements of Software Science. New York: Elsevier North-Holland Publishing.
[Hals77b] Halstead, M.H. August 1975. "Potential Impacts of Software Science on Life Cycle Management."

In Software Phenomenology, 385-400. Washington, DC: U.S. Army Institute for Research in Manage-
ment Information and Computer Science. **

[Hals77c] Halstead, M.H. August 1977. A Software Science Analysis of the Writing of a Technical Paper. Purdue
University. Technical Report 242. **

[Halh77d] Halstead, M.H. "On Lines of Code and Programmer Productivity." Letter in IBM Systems Journal, 4
(1977). **

[Hals7g] Hastead, M.H. 1978. "Software Science - A Progress Report." In Proceedings U.S. Army Computer
Systems Command Software Life Cycle Management Workshop, August 21-22. **

[HameS2] Hamer, P.G., and G.D. Frewin. 1982. "M.H. Halstead's Software Science - A Critical Examina-
tion." In Proceedings 6th International Conference on Software Engineering, September 13-16, Tokyo,
Japan, 197-206. Washington, DC: IEEE Computer Society Press.

• Ham177a] Hamlet, R.G. "Testing Programs with the Aid of a Compiler." IEEE: ransactions on Software
Engineering, 3/4 (Jul 1977):279-290.

[Ham177b] Hamlet, R.G. "Testing Programs with Finite Sets of Data." Computer Journal, 20/3 (Aug
1977):232-237.

(Ham178a] Hamlet, R.G. 1978. "Test Reliability and Software Maintenance." In Proceedings 2nd International
Computer Software and Applications Conference, November 13-16, Chicago, IL, 315-320. Long
Beach, CA: IEEE Computer Society Press.

[HamI78b] Hamlet, R.G. "Critique of Reliability Theory." In Digest IEEE Workshop on Software Testing and
Test Documentation, December 18-20, Ft. Lauderdale, FL, 57-69. IEEE Computer Society Technical
Committee on Software Engineering. **

* 91



August 9, 1989

[]amI78cJ Hamlet, P.A., and J.D. Musa. 1978. "Measuring Reliability of Computation Center Software." In
Proceedings 3rd International Conference on Software Engineering, March 10-12, Atlanta, GA, 28-36.
Washington, DC: IEEE Computer Society Press.

[HamI79] Hamlet, R.G., M. Ardis, J.D. Gannon, and P.R. McMullin. May 1979. Testing Data Abstractions
through their Implementations. University of Maryland. Technical Report TR-761. **

[HamlS6] Hamlet, D. 1986. "Testing For Probable Correctness." In Proceedings Workshop on Software Testing,
July 15-17, Banff, Canada, 92-97. Washington, DC: IEEE Computer Society Press.

[HamI87] Hamlet, D. "Probable Correctness Theory." Information Processing Letters, 25/1 (Apr 1987):17-25.
[HamiS8] Hamlet, D., and R. Taylor. 1988. "Partition Testing Does Not Inspire Confidence." In Proceedings

2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 206-216.
Washington, DC: IEEE Computer Society Press.

[Han76I Han, Y.W. February 1976. A Systematic Study of Computer System Reliability. Ph.D. diss., University
of California at Berkeley. **

[Hane72] Haney, H.M. 1972. "Module Connection Analysis-A Tool for Scheduling Software Debugging." In
Proceedings AFIPS Fall Joint Computer Conference, vol. 40, May 16-18, Atlantic City, NJ. Montvale,
NJ: AFIPS Press.

[Hanf70] Hanford, K.V. "Automatic Generation of Test Cases." IBM Systems Journal, 9/4 (Dec 1970):242-257.
[HankS0] Hanks, J.M. 1980. Testing Cobol Programs by Mutation: Volume I - Introduction to the CMS.1 System,

Volume II - CMS.1 System Documentation. Georgia Institute of Technology. Technical Report GIT-
ICS-80/04. **

[Hans73] Hansen, P.B. "Testing a Multiprogramming System, " Software, Practice and Experience, (Apr-Jun
1973):272-279.

[Hans78] Hansen, W.J. "Measurement of Program Complexity by the Pair (Cyclomatic Number, Operator
Count)." ACM: SIGPLAN Notices, 13/3 (1978):29-33.

(Hans84] Hansen, H.L. (ed.). 1984. Software Validation. New York: Elsevier Science Publishers.
[Hant76] Hantler, S., and J.C. King. "An Introduction to Proving the Correctness of Programs." ACM: Com-

puting Surveys, 8/3 (Sep 1976):331-353.
[Hara83] Harandi, M.T. 1983. "Knowledge-Based Program Debugging." In Proceedings SoftFair I: 1st Confer-

ence on Software Development Tools, Techniques, and Alternatives, July 25-28, Arlington, VA,
282-288. Los Angeles: IEEE Computer Society. **

[Hare82] Harel, E., and E.R. McLean. November 1982. The Effects of Using a Nonprocedural Computer
Language on Programmer Productivity. University of California at Los Angeles. Working Paper 3-83.

[HarrSla] Harrison, W., and K. Magel. "A Complexity Measure Based on Nesting Level." ACM: SIGPLAN
Notices, 16/3 (Mar 1981):63-74.

[Harr8lb] Harrison, W., and K. Magel. "A Topological Analysis of Computer Programs with Less Than Three
Binary Branches." ACM: SIGPLAN Notices, 16/4 (Apr 1981):51-63.

[Harr821 Harrison, W., K. Magel, R. Kluczny, and A. DeKock. "Applying Software Complexity Metrics to
Program Maintenance." IEEE: Computer, 15/9 (Sep 1982):65-79.

[Harr85] Harriron, W., and C.R. Cook. "A Method of Sharing Software Complexity Data." ACM: SIGPLAN
Notices, 20/2 (Feb 1985):42-51.

[HarrS8a] Harrison, L.J. June 1988. CASEX: A Concurrent Ada Symbolic Executor. M.S. thesis, University of
California at Santa Barbara. **

[HarrS8bJ Harrison, W. "How Complex is Your Software?" Computer Language, (Jan 1988):73-75.
[Harr88] Harrison, L.J., and R.A. Kemmerer. 1988. "An Interleaving Symbolic Execution Approach for the

Formal Verification of Ada Programs with Tasking." In Proceedings Ada Europe Conference, June,
Munich, Germany, 15-27. New York: Cambridge University Press.

[Hart7l] Hartmanis, J., and J.E. Hopcroft. "An Overview of the Theory of Computational Complexity."
ACM: Journal of the ACM, 18/3 (Jul 1971):444-475.

[Hart79] Hart, J.J. "The Advanced Interactive Debugging System (AIDS)." ACM: SIGPLAN Notices, 14/12
(Dec 1979):110-121.

92



August 9, 1989

• [Hartg4] Harter, P.K. July 1984. Response Times in Level Structured Systems. University of Colorado.
[Harv82] Harvey, P. 1982. Fault-Tree Analysis of Software. M.S. thesis, University of California at Irvine. **

[Haas8O Hassell, J., L.A. Clarke, and D.J. Richardson. 1980. A Close Look at Domain Testing. University of
Massachusetts. COINS Technical Report 8016. Also published in IEEE: Transactions on Software
Engineering, 8/4 (Jul 1982) :380-390.

[Heeh72] Hecht, M., and J. Ullman. "Flow Graph Reducibility." SIAM: Journal of Applied Mathematics, 1
• (1972):188-202. **

[Hech7] Hecht, M.S., and J.D. Ullman. "A Simple Algorithm for Global Data Flow Analysis Problems."
SIAM: Journal of Computing, 4 (Dec 1975):519-532.

[Bech76] Hecht, H. 1976. "Fault-Tolerant Software: Motivation and Capabilities." Proceedings Symposium on
Computer Software Engineering, April 20-22, Polytechnic Institute for New York. MRI Symposia
Series, vol. XXIV, J. Fox (ed.). New York: Polytechnic Press.

* [Hech77a] Hecht, M.S. 1977. Flow Analysis of Computer Programs. Amsterdam: North Holland.
[Hech77b] Hecht, H. January 1977. Measurement, Estimation and Prediction of Software Reliability. NASA

Langley Research Center. Report NASA-CR-145205. **
[Hech77c] Hecht, H., W.A. Sturm, and S. Trattner. 1977. "Reliability Measurement During Software Develop-

ment." In Proceedings AL4A Conference on Computers in Aerospace: Exploration of the Outer Solar
System, vol. 50, November, Los Angeles, CA. New York: American Institute of Aeronautics and

* Astronautics. Also published as Aerospace Report N78-10487/4, September 1977. **
[Hech79] Hecht, H. "Fault-Tolerant Software." IEEE: Transactions on Reliability, R-28/3 (Aug 1979):227-232.
[Hech80] Hecht, H. 1980. "Mini-Tutorial on Software Reliability." In Proceedings 4th International Computer

Software and Applications Conference, October 27-31, Chicago, IL, 383-385. Los Alamitos, CA:
IEEE Computer Society Press.

[Heid82] Heidler, W., et al. May 1982. Software Testing Measures. Griffiss Air Force Base, NY: Rome Air
• Development Center. Technical Report RADC-TR-82-135. **

[Hell72] Helierman, L. "A Measure of Computational Work." IEEE: Transactions on Computers, C-21/5
(May 1972):439-446.

[Hell87] Heller, G.L. October 1987. Data Collection Procedures for the Rehosted SEL Database. NASA
Software Engineering Laboratory Series. Technical Report SEL-87-008.

[Helm83] Heimbold, D.P. and D.C. Luckham. November 1983. Runtime Detection and Description of Dead-
* ness Errors in Ada Tasking. Stanford University. Program Analysis and Verification Group Report no.

22. Technical Report CSL-TR-83-249.
[Helm84a] Helmbold, D.P., and D.C. Luckham. 1984. "Debugging Ada Tasking Programs." Stanford Univer-

sity Technical Report CSL-TR-84-262. Published in Proceedings IEEE Computer Society Conference
on Ada Applications and Environments, October 15-18, St. Paul, MN, 96-110. Also published in
IEEE: Software, 2/2 (Mar 1985):255-274.

* [Helm84b] Helmbold, D.P. 1984. Distributed Deadness Monitoring in Ada. Stanford University. **
[Hima -j Heimbold, D.P., and D.C. Luckham. 1985. TSL: Task Sequencing Language. Stanford University

Technical Report. Also in Proceedings SIGAda International Conference, May, Paris, France. Pub-
lished in ACM: Ada Letters,V/2 (Sep-Oct 1985):255-274.

[Hend7S] Henderson, P. 1975. "Finite State Modeling in Program Development." In Proceedings International
Conference on Reliable Software, April 21-23, Los Angeles, CA, 221-227. IEEE Cat. No.

* 75CH0940-7CSR.
[Heng87] Hengeveld, W., and J. Kroon. 1987. "Using Checking Sequences for OSI Session Layer Confor-

mance Testing." In Proceedings 7th IFIP Protocol Symposium, May, Zurich, Switzerland. **
(Henn76a] Hennell, M.A., D. Hedley, and M.R. Woodward. "Experience with an Algol68 Numerical Algo-

rithms Testbed." In Proceedings Symposium on Computer Software Engineering, April 20-22,
Polytechnic Institute for New York, 171-179. MRI Symposia Series, vol. XXIV, J. Fox (ed.). New

* York: Polytechnic Press. **
[Henn76b] Hennell, M.A., M.R. Woodward, and D. Hedley. "On Program Analysis." Information Processing

Letters, 5/5 (Nov 1976):136-140.

• 93



August 9, 1989

[Henn7] Hennel, M.A. "An Experimental Testbed for Numerical Software." Computer Journal, 21/4 (Nov
1978):333-336. Also published in Information Processing Letters, 22/2 (Feb 1979):53-56.

[Hemn79] Hennell, M.A., M.R. Woodward, and D. Hedley. 1979. "The Testing of a Software Tool." In
Proceedings International Symposium on Applications and Software Engineering, September, Mont-
real, Canada. Acta Press. **

[Hennal] Hennell, M.A., I.J. Riddell, and M.R. Woodward. "A Mutation Analysis of Numerical Software."
ACM: SIGNUM Newsletter, (Jul 1981). **

[Henn4] Hennell, M.A., D. Hedley, and I.J. Riddell. 1984. "Assessing a Class of Software Tools." In
Proceedings 7th International Conference on Software Engineering, March, 26-29, Orlando, FL,
266-277. Washington, DC: IEEE Computer Society Press.

[HennXX] Hennell, M.A., P. Fairfield, and M.U. Shaikh. Functional Testing. University of Liverpool, Statisti-
cal and Computational Mathematics Dept.

[Henr79] Henry, S.M. 1979. Information Flow Metrics for the Evaluation of Operating Systems' Structure. Ph.D.
diss., Iowa State University. **

[Henr8laI Henry, S.M., D.G. Kafura, and K. Harris. 1981. "On the Relationships Among Three Software
Metrics." In Proceedings ACM SIGMETRICS Symposium/Workshop: Quality Metrics, March:81-88.

[Henr8lb] Henry, S.M., and D.G. Kafura. "Software Structure Metrics Based on Information Flow." IEEE:
ransactions on Software Engineering, 7/5 (Sep 1981):510-518.

[Henr84] Henry, S.M., and D.G. Kafura. "The Evaluation of Software Systems' Structure Using Quantitative
Software Metrics." Software Practice and Experience, 14/6 (Jun 1984):561-573. **

[Henr&5] Henry, S.M., J.D. Arthur, and R.E. Nance. March 1985. A Procedural Approach to Evaluating
Software Development Methodologies. Virginia Polytechnic Institute. TR-85-20.

[Henr8a] Henry, S.M., and S. Wake. 1988. Predicting Maintainability with Software Quality Metrics. Virginia
Polytechnic Institute. TR-88-46.

[Henrgb] Henry, S.M., D. Kafura, K. Mayo, A. Yerneni, and S. Wake. 1988. A Reliability Model Incorporating
Software Quality Factors. Virginia Polytechnic Institute. TR-88-45.

[HenrXX] Henry, S.M., and R. Goff. Comparison of a Graphical and a Textual Design Language Using Software
Quality Metrics. Virginia Polytechnic Institute.

[Herd79] Herd, J.R., J.N. Postak, W.E. Russell, and K.R. Stewart. June 1977. Software Cost Estimation
Study--Study Results. Rockville, MD: Doty Associates. Final Technical Report RADC-TR-77-220. **

[Herm76] Herman, P.M. The Australian Computer Journal, 8/3 (Nov 1976):347-354. **
[HessR8] Hess, J.A. 1988. "Measuring Software for Its Reuse Potential." In Proceedings Annual Reliability

and Maintainability Symposium, January, 202-206. **
[Hetz73] Hetzel, W.C. 1973. Program Test Methods. A collection of papers based on Proceedings Computer

Program Test Methods Symposium, W.C. Hetzel (ed.), University of North Carolina, Chapel Hill.
Englewood Cliffs, NJ: Prentice-Hall. **

[Hetz76] Hetzel, W.C. 1976. An Experimental Analysis of Program Verification Methods. Ph.D. thesis, Univer-
sity of North Carolina. **

[Hetz84] Hetzel, B. (ed.). 1984. A Complete Guide to Software Testing, 2nd edition. Wellesley, MA: QED
Information Sciences.

[Hewi76] Hewitt, C., and A. Yonezawa. December 1976. Symbolic Evaluation Using Conceptual Representation
for Programs with Side-Effects. MIT Artificial Intelligence Laboratory. Memo 399. **

[Hibb82] Hibbard, P.G., and T.L. Rodeheffer. 1982. "Optimizing for a Multiprocessor: Balancing Synchroni-
zation Cost Against Parallelism." In Proceedings International Symposium on Programming, 5th Col-
loqium, April, Turin, Italy, 194-211. New York: Springer-Verlag.

[Hil131 Hill, C.R. 1983. A Real-Time Microprocessor Debugging Technique. Briarcliffe Manor, NY: Com-
puter Systems Research Philips Labs.

[Hlte8g] Hite, L.A and D.P. Miller. 1988. Designing a Testing Strategy for Expert Systems. Virginia Polytechnic
Institute. TR-88-41.

[Ho78] Ho, S.-B.F. November 1978. A Systematic Approach to the Development and Validation of Software
for Critical Applications. Ph.D. diss., University of California at Berkeley. In Proceedings 4th

94



August 9, 1989

* International Conference on Software Engineering, September 27-29, Munich, Germany, 231-240.
Washington, DC: IEEE Computer Society Press. **

[Ho79] Ho, P. November 1979. A DC DYMOL to DC Constrained Expressions Translator. M.S. thesis,
University of Massachusetts. **

[Hoar69] Hoare, C.A.R. "An Axiomatic Basis for Computer Programming." ACM: Communications of the
ACM, 12110 (1969):576-583.

* [Hoar7la] Hoare, C.A.R. 1971. "Procedures and Parameters: An Axiomatic Approach." In Lecture Notes in
Mathematics, Vol. 188. New York: Springer-Verlag. **

[Hoar7lb] Hoare, C.A.R. "Proof of a Program: FIND." ACM: Communications of the ACM, 14/1 (Jan
1971):39-45.

[Hoar72] Hoare, C.A.R. "Proof of Correctness of Data Representations." Acta Informatica, 1/4
(1972):271-281.

* [Hoar74] Hoare, C.A.R. "Monitors: An Operating System Structuring Concept." ACM: Communications of
the ACM, 17/10 (Oct 1974):549-557.

[Hoar75] Hoare, C.A.R. "Parallel Programming: An Axiomatic Approach." Computing Languages, 1/2 (Jun
1975):151-160.

[Hoar7S] Hoare, C.A.R. "Communicating Sequential Processes." ACM: Communications of the ACM, 21/8
(Aug 1978):666-677. Also published by Prentice-Hall International, 1985.

* [HoarSl] Hoare, C.A.R. A Calculus of Total Correctness for Communicating Processes. Science of Computer
Programming-I, 1/1-2 (Oct 1981):49-72.

[Hoar85] Hoare, C.A.R. "Communicating Sequential Processes," Prentice-Hall International, 1985.
[Hoar87 Hoare, C.A.R. "An Overview of Some Formal Methods for Program Design." IEEE: Computer,

20/9 (Sep 1987):85-91.
[Hodg76] Hodges, B.C., and J.P. Ryan. 1976. "A System for Automatic Software Evaluation." In Proceedings

• 2nd International Conference on Software Engineering, October 13-15, San Francisco, CA, 617-623.
Washington, DC: IEEE Computer Society Press.

[Hoer74] Hoermann, H.A. 1974. "Principles of Reliability Assessment." In Proceedings CSNI Specialist Meet-
ing on the Development and Application of Reliability Techniques to Nuclear Plants, April. **

[Hoff73] Hoffman, R.H. August 1973. Product Assurance Confidence Evaluator (PACE) Programmer's Guide.
TRW Defense and Space Systems Group. **

* Hoff7f] Hoffman, R.H. 1975. "NASA/Johnson Space Center Approach to Automated Test Data Genera-
tion." In 4th Conference on Computer Science and Statistics: Proceeedings &h Symposium on the Inter-
face, February, Los Angeles, CA. Springer-Verlag. **

[Hoff76] Hoffman, R.H. January 1976. User Information for the Interactive Automated Test Data Generator
(ATDG) System. Houston, TX: NASA. Report JSC-10832. **

[Hoff77] Hoffman, H.-M. June 1977. An Experiment in Software Error Occurrence and Detection. M.S. thesis,
* Naval Postgraduate School. **

[Holt76] Holthouse, M.A., and E. Cosloy. 1976. "A Practical System for Automatic Testcase Generation." In
Proceedings AFIPS National Computer Conference, vol. 45, June 7-10, New York, NY. Montvale, NJ:
AFIPS Press. **

[Holt78] Holthouse, M.A., and M.J. Hatch. 1978. Experience with Automated Testing r). Elementary Program
Functions. University of Victoria. Technical Report DM-212-IR. **

* [Holz82] Holzmann, G. "A Theory for Protocol Validation." IEEE: TRansactions on Computers, C-31 (Aug
1982):730-738.

Horn74] Homing, J.J., et al. 1974. "A Program Structure for Error Detection and Recovery." In Lecture
Notes in Computer Science. Operating Systems, 16. G.Goos and I Hartmanis (eds.), 171-187. New
York: Springer Verlag. **

(Hous77] Houssais, B. 1977. "Verification of an Algol 68 Implementation." In Proceedings Strathclyde Algol 68
* Conference, March, Glasgow, Scotland. Also published in ACM: SIGPLAN Notices 12/6 (Jun

1977):117-128.

95



August 9, 1989

[Houtgl] Houtz, C., and T. Buschbach. March 1981. Review and Analysis of Conversion Cost-Estimating Tech-
niques. Falls Church, VA: GSA Federal Conversion Support Center. Technical Report
GSA/FCSC-81/001. **

[Howa73] Howard, J.H., and W.P. Alexander. 1973. "Analyzing Sequences of Operations Performed by Pro-
grams." In Program Test Methods, W.C. Hetzel (ed.). Englewood Cliffs, NJ: Prentice-Hall. **

[HowaSS] Howatt, J.W. 1985. A Quantitative Characterization of Control Flow Context: Software Measures for
Programming Environments.
Ph.D. diss., Iowa State University *

(Howd74a] Howden, W.E., and L.G. Stucki. January 1974. A Methodology for Effective Test Case Selection --
Phase L Huntington Beach, CA: McDonnell Douglas Astronautics. Technical Report MDC G5301.

[Howd74b] Howden, W.E. November 1974. Models of Correct Programs and Program Testing. University of Cal-
ifornia at San Diego. Technical Report 10. **

[Howd74c] Howden, W.E. 1974. "Automatic Generation of Program Test Data and Proofs of Program Correct-
ness." In Workshop on the Attainment of Reliable Software, April, University of Toronto. **

[Howd7Ta] Howden, W.E. "Methodology for the Generation of Program Test Data." IEEE: Transactions on
Computers, C-24/5 (May 1975):554-559.

[Howd7Sb] Howden, W.E., and J. Laub. 1975. "Automatic Case Analysis of Programs." In 4th Conference on
Computer Science and Statistics: Proceeedings 8th Symposium on the Interface, February, Los
Angeles, CA, 347-352. Springer-Verlag. **

[Howd76a] Howden, W.E. 1976. Elementary Algebraic Program Testing Techniques. UCSD Computer Science
Technical Report No. 12. **

[Howd76b] Howden, W.E., and L.G. Stucki. 1976. A Methodology for Effective Test Case Selection -- Phase III.
Huntington Beach, CA: McDonnell Douglas Astronautics. Technical Report MDC-G6211. **

[Howd76c] Howden, W.E. "Reliability of the Path Analysis Testing Strategy." IEEE: Transactions on Software
Engineering, 2/3 (Sep 1976):208-215.

[Howd76d] Howden, W.E. 1976. Algebraic Equivalence of Elementary Computational Structures. University of
California at San Diego. (Revised 1980). **

[Howd76e] Howden, W.E. 1976. "Experiments with a Symbolic Evaluation System." In Proceedings ARFPS
National Computer Conference, vol. 45, June 7-10, New York, NY, 899-908. Montvale, NJ: AFIPS
Press.

[Howd77a] Howden, W.E. May 1977. Symbolic Testing - Design Techniques, Costs, and Effectiveness. Gaithers-
burg, MD: National Bureau of Standards. Technical Report NBS-GCR-77-89.

[Howd77b] Howden, W.E. "Symbolic Testing and the DISSECT Symbolic Evaluation System." IEEE: Transac-
tions on Software Engineering, 3/4 (Jul 1977):266-278.

[Howd77c] Howden, W.E. 1977. An Evaluation of the Effectiveness of Symbolic Testing. University of California
at San Diego. Technical Report 16. Also published in Software Practice and Experience, 8/4 (Jul-Aug
1978):381-397.

[Howd7Sa] Howden, W.E. "Theoretical and Empirical Studies of Program Testing." IEEE: Transactions on
Software Engineering, 4/4 (Jul 1978):293-298.

(Howd7fbl Howden, W.E. "Algebraic Program Testing."ACTA Informatica, no. 10 (1978):53-66.
(Howd7Sc] Howden, W.E., and H.P. Eichhorst. 1978. "Proving Properties of Programs from Program Traces."

In Tutorial: Software Testing and Validation Techniques, E. Miller and W.E. Howden (eds.), 46-56.
New York: IEEE.

[Howd78d] Howden, W.E. 1978. "Introduction to the Theory of Testing." In Tutorial: Software Testing and Vali-
dation Techniques, E. Miller and W.E. Howden (eds.), 16-19. New York: IEEE.

[Howd7Se] Howden, W.E. "Lindenmayer Grammars and Symbolic Testing." Information Processing Letters 7/1
(1978):36-39. **

(Howd78ft Howden, W.E. 1978. "Empirical Studies of Software Validation." In Tutorial: Software Testing and
Validation Techniques, E. Miller and W.E. Howden (eds.), 280-285. New York: IEEE.

96



August 9, 1989

* [Howd79] Howden, W.E. 1979. An Analysis of Software Validation Techniques for Scientific Programs. Univer-
sity of Victoria. Report DM-171-IR. **

[HowdSOa] Howden, W.E. "Functional Testing and Design Abstractions." Journal of Systems and Software, no.
1 (1980):307-313.

[HowdSb] Howden, W.E. "Applicability of Software Validation Techniques to Scientific Programs." ACM:
Transactions on Programming Languages and Systems, 2/3 (Jul 1980):307-320. Previously published as

* University of Victoria Report DM-171-IR.
[HowdSg0c Howden, W.E. "Functional Program Testing." IEEE: Transactions on Software Engineering, 6/2

(Mar 1980):162-169.
[HowdSOd] Howden, W.E. May 1980. Completeness Criteria for Testing Elementary Program Functions. Univer-

sity of Victoria. Technical Report DM-212-IR. Also published in Proceedings 5th International
Conference on Software Engineering, March 9-12, San Diego, CA, 235-243. Washington, DC: IEEE

* Computer Society Press.
[Howd8la] Howden, W.E. 1981. "Errors, Design Properties, and Functional Program Tests." In Computer Pro-

gram Testing, B. Chandrasekaran and S. Radicchi (eds.), 115-127. North-Holland. **
[Howd8lb] Howden, W.E. 1981. "A Survey of Static Analysis Methods." In Tutorial: Software Testing and Vali-

dation Techniques, 2nd Edition, E. Miller and W.E. Howden (eds.), 101-115. Los Alamitos, CA:
IEEE Computer Society Press.

* ([Howd81c] Howden, W.E. 1981. "A Survey of Dynamic Analysis Methods." In Tutorial: Software Testing and
Validation Techniques, 2nd Edition, E. Miller and W.E. Howden (eds.), 209-231. Los Alamitos, CA:
IEEE Computer Society Press.

[Howd8ld] Howden, W.E. July 1981. Errors in Data Processing Programs and the Refinement of Current Program
Test Methodologies. Gaithersburg, MD: National Bureau of Standards. Final Report NBS Contract
NB79BCA0069. **

• [Howdg2a] Howden, W.E. "Weak Mutation Testing and Completeness of Test Sets." IEEE: Transactions on
Software Engineering, 8/4 (Jul 1982):371-379.

[Howd82b] Howden, W.E. "Life-Cycle Software Validation." IEEE: Computer, (Feb 1982):71-78.
[Howd83] Howden W.E. 1983. "A General Model for Static Analysis." In Proceedings IEEE 16th Hawaii Inter-

national Conference on System Sciences, January, Honolulu, HA, 163-169. **
[HowdgS] Howden, W.E. "The Theory and Practice of Functional Testing." IEEE: Software, 2/5 (Sep

* 1985):6-17.
[Howd86] Howden, W.E. "A Functional Approach to Program Testing and Analysis." IEEE: Transactions on

Software Engineering, 12/10 (Oct 1986):997-1005.
[Howd87] Howden, W.E. 1987. Functional Program Testing and Analysis. New York: McGraw-Hill.
[Howd88] Howden, W.E. 1988. Comments Analysis and Programming Errors. University of California at San

Diego. Technical Report 88-142. **
• [Howdg9a] Howden, W.E. 1989. "Current Validation Research and Development Activities." In Towards SDS

Testing and Evaluation: A Collection of Relevant Topics. IDA Memorandum Report M-513. Alexan-
dria, VA: Institute for Defense Analyses. Draft.

[lowd89b] Howden, W.E. 1989. Verifying Programs without Specifications. University of California at San
Diego. **

[Howe84] Howes, N.R. "Managing Software Development Projects for Maximum Productivity." IEEE: TRan-
* sactions on Software Engineering, 10/1 (Jan 1984):27-35.

[Hsie82] Hsieh, C-C. 1982. An Approach to Logical Ripple Effect A'walysis for Software Maintenance. Ph.D.
diss., Northwestern University.

[lie89] Hsieh, C.S. 1989. "Timing Analysis of Cyclic Concurrent Programs." In Proceedings 11th Interna-
tional Conference on Software Engineering, May 15-18, Pitsburgh, PA, 312-318. Washington, DC:
IEEE Computer Society Press.

* [lnan75] Huang, J.C. "An Approach to Program Testing." ACM: Computing Surveys, 7/3 (Sep 1975):113-128.
[Huan78] Huang, I.C. "Program Instrumentation and Software Testing." IEEE: Computer, 11/4 (Apr

1978):25-32.

• 97



August 9, 1989

[Huan79] Huang, J.C. "Detection of Data Flow Anomalies Through Program Instrumentation." IEEE: Tran-
sactions on Software Engineering, SE-5 (1979):226-236.

[Huet80] Huet, G., and J.M. Hullot. 1980. "Proofs by Induction of Equational Theories with Constructors."
In Proceedings 21st FOCS, 96-107. **

[Hump8] Humphrey, W.S. "Characterizing the Software Process." IEEE: Software, 5/2 (Mar 1988):73-79.
[HuntSS] Hunt, W.A. Jr. 1985. FM8501: A Verified Microprocessor. University of Texas. Technical Report

ICSCA-CMP-47. **
[Hunt87] Hunt, W.A. Jr. 1987. The Mechanical Verification of a Microprocessor Design. Computational Logic

Inc. Technical Report CLI-6. **
[uteS3] Hutchens, D.H., and V.R. Basili. August 1983. System Structure Analysis: Clusterings With Data

Bindings. University of Maryland. Technical Report TR-1310. Also published in IEEE: Transactions
on Software Engineering, 11/8 (Aug 1985):749-757.

[Hwanll] Hwang, S.-S.V. December 1981. An Empirical Study in Functional Testing, Structural Testing, and
Code Reading/Inspection. University of Maryland. Scholarly Paper 362. **

[IEEE83a] IEEE Standard Glossary of Software Engineering Terminology. IEEE Standard 729. February 18,
1983. New York: The Institute of Electrical and Electronics Engineers.

[IEEE83b] IEEE Standard for Software Test Documentation. IEEE Standard 829-1983. February 18, 1983. New
York: The Institute of Electrical and Electronics Engineers.

I[IEEE83c] IEEE Standard for Software Configuration Management Plans. IEEE Standard 828-1983. 1983. New
York: The Institute of Electrical and Electronics Engineers.

[IEEES4] IEEE Standard for Software Quality Assurance Plans. IEEE Standard 730-1984. 1983. New York: The
Institute of Electrical and Electronics Engineers.

[IEE,87] IEEE Standard for Measures to Produce Reliable Software. IEEE Draft P982.1, June 1987. New
York: The Institute of Electrical and Electronics Engineers. **

[IEEE8$] IEEE Standard for a Software Quality Metrics Methodology IEEE Draft Standard 1061/D15. New
York: The Institute of Electrical and Electronics Engineers.

[1NW076] Infotech (eds.) 1976. "Complexity in Programming." In Structured Programming, 25-28 and 65-96.
Berkshire, England: Infotech International Ltd. **

[INFO79] Software Testing, INFOTECH State of the Art Report. London, England: Infotech, 1979. **
[ISO87a] OSI Conformance Testing Methodology and Framework Part I: General Concepts. ISO. DP 9646-1,

July 1987. **
[ISO87b] OSI Conformance Testing Methodology and Framework Part II: Abstract Test Suite Specification. ISO.

DP 9646-2, July 1987. **
[ISO87c] Lotos - A Formal Description Technique Based on the Temporal Ordering of Observational Behavior.

ISO. DIS 8807, August 1987. **
[IannS4] lannino, A., J.D. Musa, K. Okumoto, and B. Littlewood. "Criteria for Software Reliability Model

Comparisons." IEEE: Transactions on Software Engineering, 10/6 (Nov 1984):687-691.
[lbarg2] Ibarra, O.H., and B.S. Leininger. "The Complexity of the Equivalence Problem for Simple Loop-

Free Programs." SlAM Journal of Computing, 11/1 (Feb 1982):15-27.
[Igar73] Igarashi, S., R. London, and D. Luckham. May 1973. Automatic Verification of Programs I: A Logi-

cal Basis and Implementation. Stanford, CA: Stanford Artificial Intelligence Laboratory. Memo
AIM-200. **

[Igna7l] Ignalls, D.H. February 1971. FETE: A FORTRAN Execution Time Estimator. Stanford University.
Technical Report STAN-CS-71-204. **

[Ing186] Inglis, J. 1986. "Standard Software Quality Metrics." AT&T Technical Journal, 65/2 (Mar-Apr
1986):113-118.

[IsodS7] Isoda, S., T. Shimomura, and Y. Ono. "VIPS: A Visual Debugger." IEEE: Software, 4/3 (May
1987):8-19.

[ItakS2] Itakura, M., and A. Takayanagi. 1982. "A Model for Estimating Program Size and Its Evaluation." In
Proceedings 6th International Conference on Software Engineering, September 13-16, Tokyo, Japan,
104-109. Washington, DC: IEEE Computer Society Press.

98



0

August 9, 1989

* [ives83] Ives, B., M.H. Olson, and J.J. Barondi. "The Measurement of User Information Satisfaction."
ACM: Communications of the ACM, 26/10 (Oct 1983):785-799.

[JLC84] "Independent Verification and Validation." In Final Report of the Joint Logistics Commanders'
Workshop on Post Deployment Support (PDSS) for Mission-Critical Computer Software, Vol. II -
Workshop Proceedings, Orlando I Software Workshop, June 1984. **

[Jach$4] Jachner, J., and V.K. Agarwal. "Data Flow Anomaly Detection." IEEE: Transactions on Software
* Engineering, 10/4 (Jul 1984):432-437.

[Jack7l] Jackson, R.S., and S.A. Bravdica. 1971. "Software Validation of the Titan mIIC Digital Flight Con-
trol System Using a Hybrid Computer." In Proceedings AFIPS Fall Joint Computer Conference, vol.
40, May 16-18, Atlantic City, NJ, 225-232. Montvale, NJ: AFIPS Press.

[Jaha86] Jahanian, F., and A.K. Mok. "Safety Analysis of Timing Properties in Real-Time Systems." IEEE:
Transactions on Software Engineering 12/9 (Sep 1986):890-904.

* [Jalo89] Jalote., P. "Testing the Completeness of Specifications." IEEE: Transactions on Software Engineer-
ing, 15/5 (May 1989):526-531.

[Jame77] James, T. 1977. "Software Cost Estimating Methodology." In Proceedings National Aerospace Elec-
tronics Conference, 22-28. **

[Jard83] Jard, C., and G.V. Bochman. 1983. "An Approach to Testing Specifications." In Proceedings ACM
SIGSOFT-SIGPLAN Software Engineering Symposium on High-Level Debugging, March 20-23, Asi-

• lomar, CA. Published in ACM: Software Engineering Notes, 8/4 (Aug 1983):53-59. Baltimore, MD:
ACM Order Department.

[Jard87] Jard, C., and 0. Drissi. February 1987. Deriving Trace Checkers for Distributed Systems. Universite
de Rennes. Research Report. **

[Jarn84] Jarratt, R.M.A. 1984. Software Development Tools for Dataflow Machines, M.S. thesis, University of
Manchester. **

• [Jeff85] Jeffery, D.R., and M.J. Lawrence. "Managing Programming Productivity." Journal of Systems and
Software, 5 (1985):49-58.

[Jeli72] Jelinski, J., and P.B. Moranda. 1972. "Software Reliability Research." In Statistical Computer Per-
formance Evaluation, W. Freidberger, ed., 465-484. New York: Academic Press.

[Je1173] Jelinski, J., and P.B. Moranda. 1973. "Applications of a Probability-Based Model to a Code Reading
Experiment." In Conference Record 1973 IEEE Symposium on Computer Software Reliability, April

* 30 - May 2, New York, 78-81. **
[Jenk86] Jenkins, J.R. 1986. Automated Generation of Input/Output Pairs for the CAIS Validation Test Suite.

M.S. thesis. Arizona State University. **
[Jens83al Jensen, R.W. 1983. "An Improved Macrolevel Software Development Resource Estimation Model."

In Proceedings 5th ISPA Conference, April, 88-92. **
[Jens83b] Jensen, R.W., and S. Lucas. 1983. "Sensitivity Analysis of the Jensen Software Model." In Proceed-

* ings 5th ISPA Conference, April, 384-389. **
[John75] Johnson, J.P. December 1975. Software Reliability Measurement. Los Angeles Air Force Station,

CA: Space and Missile Systems Organization, Air Force Systems Command. Report
SAMSO-TR-75-279.

(John77] Johnson, D.B. August 1977. Program Analysis with the Aid of a Data Management System. M.A.
thesis, University of Texas. **

• [John78] Johnson, M.S. 1978. The Design and Implementation of a Run-Time Analysis and Interactive Debug-
ging Environment. Ph.D. diss., University of British Columbia. **

[John79] Johnson, M.S. "Translator Design to Support Run-Time Debugging." Software Practice and Experi-
ence, 9/12 (Dec 1979):1035-1041.

[John8l] Johnston, D.E., and A.M. Lister. "A Note on the Software Science Length Equation." Software
Practice and Experience, 11/8 (Aug 1981). **

* [John82a] Johnson, M.S. "Some Requirements for Architectural Support of Software Debugging." In Proceed-
ings ACM Symposium on Architectural Support for Programming Languages and Operating Systems.
Published in ACM: SIGPLAN Notices, 17/4 (Apr 1982). **

99



August 9, 1989

[JohnS2b] Johnson, M.S. "A Software Debugging Glossary." ACM: SIGPLAN Notices, 17/2 (Feb 1982):53-70.
[John83] Johnson, J.D., and G.W. Kenney. 1983. "Implementation Issues for a Source Level Symbolic

Debugger." In Proceedings ACM SIGSOFT-SIGPLAN Software Engineering Symposium on High-
Level Debugging, March 20-23, Asilomar, CA. Published in ACM: Software Engineering Notes, 8/4
(Aug 1983):149-151. Baltimore, MD: ACM Order Department.

[John84] Johnson, W.L., and E. Soloway. 1984. "PROUST: Knowledge-Based Program Understanding." In
Proceedings 7th International Conference on Software Engineering, March, 26-29, Orlando, FL,
369-380. Washington, DC: IEEE Computer Society Press.

[JohnXX] Johnson, W.L., S. Draper, and E. Soloway. "An Effective Bug Classification Scheme Must Take the
Programmer into Account." **

[Jone76] Jones, C. 1976. Program Quality and Programmer Productivity. San Jose, CA: IBM Corp. **
[Jone78] Jones, T.C. "Measuring Programming Quality and Productivity." IBM Systems Journal, 17/1

(1978):39-63.
[Jone79] Jones, T.C. 1979. "The Limits to Programmer Productivity." In Proceedings GUIDE and SHARE

Application Development Symposium. **
[Jone$0] Jones, C.B. 1980. Software Development: A Rigorous Approach. Englewood Cliffs, NJ: Prentice Hall.

**

[Jone81] Jones, T.C. November 1981. Programmer Productivity Issues of the Eighties. Washington, DC: IEEE
Computer Society Press.

[Jone89] Jones, A.M., R.E. Bozeman, and W. McIver. 1989. "The Moorehouse Object-Oriented Reuse
Library." In Proceedings 7th Annual National Conference on Ada Technology, March 13-16, Altantic
City, NJ, 456-462. Washington, DC: ACM Ada Technical Committee. **

[Joycg7a] Joyce, E. "Software Bugs: A Matter of Life and Liability." Datamation, (May 15, 1987):88-92.
[Joycg7b] Joyce, J., G. Lomow, K. Slind, and B. Ungar. "Monitoring Distributed Systems." ACM: Transactions

on Computer Systems, 5/2 (May 1987):121-150.
[Kafua8] Kafura, D.G., and S.M. Henry. "Software Quality Metrics Based on Interconnectivity." Journal of

Systems and Software, 2/2 (Jun 1981):121-131.
[Kafu84] Kafura, D.G., J.T. Canning, and G. Reddy. 1984. "The Independence of Software Metrics Taken at

Different Life-Cycle Stages." In Proceedings 9th Annual Software Engineering Workshop, November
28, Greenbelt, MD. NASA/GSFC, 213-222. Also published as Virginia Polytechnic Institute,
Technical Report TR-85-24. **

[Kafu8a] Kafura, D.G., and J.T. Canning. January 1985. A Validation of Software Metrics Using Many Metrics
and Many Resources. Virginia Polytechnic Institute. TR-85-6.

[KafbSbj Kafura, D.G., and G.R. Reddy. August 1985. The Use of Software Quality Metrics In Software Mainte-
nance. Virginia Polytechnic Institute. Technical Report TR-85-33. Also published in IEEE: Transac-
tions on Software Engineering, 13/3 (Mar 1987):335-343.

[Kafu88] Kafura, D.G., and J.T. Canning. 1988. Using Group and Subsystem Level Analysis to Validate
Software Metrics on Commercial Software. Virginia Polytechnic Institute. TR-88-13.

[Kahn77] K-.hn, G., and D. MacQueen. 1977. "Coroutines and Networks of Parallel Processes." In Proceed-
ings Information Processing (IFIP) Congress '77, August 8-12, Toronto, Canada, 993-998. Amster-
dam: North-Holland.

[KamiSO] Kamin, S. 1980. "Final Data Type Specifications: A New Data Type Specification Method." In
Proceedings 7th ACM Annual Symposium on Principles of Programming Languages, January 28-30,
Las Vegas, NV. Baltimore, MD: ACM Order Department. **

[Kant80] Kant, K. 1980. "Error Recovery in Concurrent Processes." In Proceedings 4th International Com-
puter Software and Applications Conference, October 27-31, Chicago, IL, 608-614. Los Alamitos.
CA: IEEE Computer Society Press.

[Kapp88] Kappel, M.R., C.D. Ardoin, C.J. Linn, J.L. Linn, and J. Salasin. April 1988. SAGEN User's Guide:
Version 1.5. Alexandria, VA: Institute for Defense Analyses. IDA Paper P-2028.

[Katog6] Kato, T., K.S. Suzuki, and Y. Turano. 1986. "Conformance Testing for OSI Protocols in the Multi-
ple Layer Environment Based on Automaton Models." In Proceedings ICCC '86, September, Munic,

100



August 9, 1989

* Germany, 519-524.
[Katz73] Katz, S.M., and Z. Manna. 1973. "A Heuristic Approach to Program Verification." In Proceedings

IFCAI-73, August. **
[Katz6] Katz, E.E., H.D. Rombach, and V.R. Basili. 1986. "Structure and Maintainability of Ada Programs:

Can We Measure the Differences?" In Proceedings 9th Minnowbrook Workshop on Software Perfor-
mance Evaluation, August 5-8, Blue Mountain Lake, NY. **

* [Katz87] Katz, E.E., and V.R. Basili. 1987. "Examining the Modularity of Ada Programs." In Proceedings
Joint Conference of 5th National Conference on Ada Technology and Washington Ada Symposium,
March 16-19, Arlington, VA, 390-396. Washington, DC: ACM Ada Technical Committee. Previously
published in IEEE: Computer, 18/9 (Sep 1985):53-65.

[Kaufg7a] Kaufmann, M., and W.D. Young. May 1987. "Comparing Gypsy and the Boyer-Moore Logic."
University of Texas at Austin. Technical Report 59. **

* [KanfS7b] Kaufmann, M., and W.D. Young. 1987. "Comparing Specification Paradigms for Secure Systems:
Gypsy and the Boyer-Moore Logic." In Proceedings 10th National Computer Security Conference,
September 21-24, Baltimore, MD. **

[KearS5] Kearney, J.K., R.L. Sedlmeyer, W.B. Thompson, M.A. Adler, and M.A. Gray. 1985. "Problems with
Software Complexity Measurement." In Proceedings 1985 ACM Computer Science Conference,
March, Cincinnati, OH, 340-347. **

• [Kear86] Kearney, J.K., R.L. Sedlmeyer, W.B. Thompson, M.A. Gray, and M.A. Adler. "Software Complex-
ity Measurement." ACM: Communications of the ACM, 29/11 (Nov 1986):1044-1050.

[Kel87] Keiler P.A., et al. 1987. "On the Quality of Software Reliability Prediction." In Electronic System
Effectiveness and Life Cycle Costing, J.K. Skwirzynski, ed., NATO ASI Series, Vol. F3. Heidelberg:
Springer-Verlag.

[KeI176] Keller, R.M. "Formal Verification of Parallel Programs." ACM: Communications of the ACM, 19/7
• (Jul 1976),371-384.

[Ke182] Kelly, J.P.J. 1982. Specification of Fault-Tolerant Multi-Version Software: Experimental Studies of a
Design Diversity Approach. Ph.D. thesis, University of California at Los Angeles. **

[Kel183] Kelly, J.P, and A. Avizienis. 1983. "A Specification-Oriented Multi-version Software Experiment."
In Digest Papers FTCS-13: 13th International Conference on Fault-Tolerant Computing, June, Milan,
Italy, 120-126.

* [KellSSa] Keller, S.E., and J.A. Perkins. 1985. "An Ada Measurement and Analysis Tool." In Proceedings 3rd
Annual National Conference on Ada Technology, 188-196.

[KeiI85b] Keller, S.E., and J.A. Perkins. 1985. "Ada Measurement Based on Software Quality Principles." In
Proceedings Washington Ada Symposium, March, 195-203. New York: ACM.

[Kenmm8] Kemmerer, R.A. 1980. FDM - A Specification and Verification Methodology. System Development
Corp. Technical Report SP-488.

* [Kemm8l] Kemmerer, R. 1981. "Status Report on SDC's Formal Development Methodology." In Proceedings
2nd Verification Workshop, April, Gaithersburg, MD. **

[Kemm85a] Kemmerer, R.A. "Testing Formal Specifications to Detect Design Errors." IEEE: Transactions on
Software Engineering, 11/1 (Jan 1985):32-43. Also published as University of California at Santa Bar-
bara Technical Report 84-06, March 1984.

[Kemm85b] Kemmerer, R.A., and S.T. Eckmann. "UNISEX: A Unix-Based Symbolic Executor for Pascal."
• Software Practice and Experience, 15/5 (May 1985):439-457. **

[Kemm86] Kemmerer, R.A. 1986. Verification Assessment Study Final Report, Vol. I: Overview, Conclusions and
Future Directions. National Computer Security Council. Technical Report C3-CR01-86.

[Kemm87] Kemmerer, R.A. 1987. "Analyzing Encryption Protocols Using Formal Verification Techniques." In
Proceedings CRYPTO '87, Santa Barbara, CA, August. **

[Kenn7T] Kennedy, K.W. 1975. "Node Listings Applied to Data Flow Analysis." In Proceedings 2nd ACM
• Annual Symposium on Principles of Programming Languages, January, Palo Alto, CA, 10-21. Bal-

timore, MD: ACM Order Department. **

101



August 9, 1989

[Kenn80] Kennaway, J.R., and C.A.R. Hoare' 1980. "A Theory of Nondeterminism." In Automata,
Languages and Programming, J.W. de Bakker and J. van Leeuwen (eds.), Lecture Notes in Computer
Science, Vol. 85. New York: Springer-Verlag. **

[Kern74a Kernighan, B.W., and P.J. Plauger. 1974. The Elements of Programming Style. New York: McGraw-
Hill.

[Kern74b] Kernighan, B.W., and P.J. Plauger. "Programming Style: Examples and Counterexamples." ACM:
Computing Surveys, 6/4 (Dec 1974):303-319.

[Kem8l] Kernighan, B.W., and P.J. Plauger. 1981. Software Tools in Pascal. Reading, MA: Addison Wesley.
[Kieb&3l Kieburtz, R.B., and A. Silberschatz. "Access-Right Expressions." ACM: Transactions on Program-

ming Languages and Systems, 5/1 (Jan 1983):78-96.
[King69] King, J.C. 1969. A Program Verifier. Ph.D. diss., Carnegie-Mellon University. *
[KngTO] King, J.C. 1970. "A Verifying Compiler." In Debugging Techniques in Large Systems. R. Rustin (ed.),

17-39. Englewood Cliffs, NJ: Prentice Hall. **
g'7Sal King, J.C. 1975. "A New Approach to Program Testing." In Proceedings International Conference on

Reliable Software, April 21-23, Los Angeles, CA, 228-233. IEEE Cat. No. 75CH0940-7CSR.
[King75b] King, J.C. 1975. "Program Testing by Symbolic Execution." In Proceedings Computer Science Confer-

ence, February, 228-233. **
[King76] King, J.C. "Symbolic Execution and Program Testing." ACM: Communications of the ACM, 19/7

(Jun 1976):385-394.
[Kite8] Kitchenham, B.A. "Measures of Programming Complexity." ICL Technical Journal, (May

1981):298-316.
[Knlg84] Knight, J.C. 1984. "A Large Scale Experiment in N-Version Programming." In Proceedings 9th

Annual Software Engineering Workshop, November 28, Greenbelt, MD. NASA/GSFC. **
[Knig85a] Knight, J.C., and P.E. Ammann. 1985. "An Experimental Evaluation of Simple Methods for Seeding

Program Errors." In Proceedings 8th International Conference on Software Engineering, August 28-30,
London, England, 337-342. Washington, DC: IEEE Computer Society Press.

[Knigb5b] Knight, J.C., and V.S. Grine. 1985. Symbolic Execution of Concurrent Ada Programs. University of
Virginia.

[Knigg6aj Knight, J.C., and N.G. Leveson. "An Experimental Evaluation of the Assumption of Independence
in Multiversion Programming." IEEE: Transactions on Software Engineering, 12/1 (Jan 1986):96-109.

[Knig86b] Knight, J.C., and N.G. Leveson. 1986. "An Empirical Study of Failure Probabilities in Multi-Version
Software." In Proceedings 16th International Symposium on Fault-Tolerant Computing, July, Vienna,
Austria, 165-170. **

[Knlij78] Knijff, D.J.J. van der. "Software Physics and Program Analysis." Australian Computer Journal, 10/3
(Aug 1978). **

[Knut71 Knuth, D.E. "An Empirical Study of FORTRAN Programs." Software Practice and Experience, 1/1
(Apr-Jun 1971):105-133.

[Knut73] Knuth, D.E., and F.R. Stevenson. "Optimal Measurement Points for Program Frequency Counts."
BIT, 13/3 (1973):313-322.

[Koer84] Koerner, K., R. Mital, D.N. Card, and A. Maione. 1984. "An Evaluation of Programmer/Analyst
Workstations." In Proceedings 9th Annual Software Engineering Workshop, November 28, Greenbelt,
MD. NASA/GSFC. **

[Kopp76] Koppang, R.G. 1976. "Process Design System-An Integrated Set of Software Development Tools."
In Proceedings 2nd International Conference on Software Engineering, October 13-15, San Francisco,
CA, 86-90. Washington, DC: IEEE Computer Society Press.

[Koreg4] Korelsky, T., and D. Sutherland. 1984. "Formal Specification of a Multi-Level Secure Operating Sys-
tem." In Proceedings 1984 Symposium on Security and Privacy, April, 209-218. **

[Kore85] Korel, B., and J.W. Laski. 1985. "A Tool for Data Flow Oriented Program Testing." In Proceedings
SoftFair II: 2nd Conference on Software Development Tools, Techniques, and Alternatives, December
2-5, San Francisco, CA, 34-37. **

102



August 9, 1989

* [Kore86a] Korel, B. 1986. "A Program Error Localization Expert System." In Proceedings Symposium on Appli-
cation of Artificial Intelligence II, April 1-3, Orlando, FL. **

[Koreg6b] Korel, B. August 1986. Dependence-Based Modeling in the Automation of Error Localization in Com-
puter Programs. Ph.d. thesis, Oakland University. **

[KoreS7] Korel, B. "The Program Dependence Network in Static Program Testing." Information Processing
Letters, 24/2 (1987):103-108. **

* [Kore88] Korel, B., and J.W. Laski. 1988. "STAD: A System for Testing and Debugging: User Perspective."
In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff,
Canada, 13-20. Washington, DC: IEEE Computer Society Press.

[Kosa72] Kosaraju, R. "Analysis of Structured Programs." Journal Computer Systems Science, 9/12 (Dec
1974):232-255. Also published by John Hopkins University, Technical Report 72-11, 1972. **

[Koss88] Koss, W.E. 1988. "Software Reliability Metrics for Military Systems." In Proceedings Annual Reli-
* ability and Maintainability Symposium, January, 190-194. **

[Kosy73] Kosy, D.W. 1973. "Approaches to Improved Program Validation Through Programming Language
Design." In Program Test Methods, W.G. Hetzel (ed.). Englewood Cliffs, NJ: Prentice-Hall. **

[Krae78] Kracik, P.J. 1978. "An Example of Software Quality Assurance Techniques Used in a Successful
Large Scale Development." In Proceedings ACM Software Quality Assurance Workshop, November
15-17, San Diego, CA, 181-186. New York: Association for Computing Machinery. **

* [Krau73] Krause, K.W., R.W. Smith, and M.A. Goodwin. "Optimal Testing Through Automated Network
Analysis." In Conference Record 1973 IEEE Symposium on Computer Software Reliability, April 30 -
May 2, New York, 18-22. **

[Krau86] Krauser, E.W., and A.P. Mathur. 1986. "Program Testing on a Massively Parallel Transputer Based
System." In Proceedings 1SMM International Symposium on Mini and Microcomputers and their
Applications, November 10-12, Austin, TX,67-71. **

* [Krau88] Krauser, E.W., A.P. Mathur, and V. Rego. 1988. "High Performance Testing on S1MD Machines." In
Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada,
171-177. Washington, DC: IEEE Computer Society Press.

[KrleSO] Krieg-Brueckner, B., and D.C. Luckham. 1980. "Anna: Towards a Language for Annotating Ada
Programs." In Proceedings ACM-SIGPLAN Symposium on the Ada Programming Language,
December, Boston. Published in ACM: SIGPLAN Notices, 15/11 (Nov-Dec 1980):128-138. Also pub-

* lished in ACM: SIGPLAN Notices, 15/11 (Nov 1984):128-138.
[Krieg3] Krieg-Brueckner, B. "Consistency Checking in Ada and Anna: A Transformational Approach."

ACM: Ada Letters, M11/2 (Sep-Oct 1983):46-54.
[Krie86] Krieg-Brueckner, B., H. Ganzinger, M. Broy, R. Wilhelm, U. Monche, B. Weisgerber, A.D. McGet-

trick, I.G. Campbell, and G. Winterstein. 1985. PROgram Development by SPECification and
TRAnsformation. In Proceedings Ada Europe Conference, May, Edinburgh, Scotland,, 249-258. New

* York: Cambridge University Press
[Krog87] Kroger, F. 1987. Temporal Logic of Programs. Vol. 8 of EATCS Monographs on Theoretical Computer

Science. Berlin: Springer-Verlag. **
[Krug88] Kruger, G.A. "Project Management Using Software Reliability Growth Models." Hewlett-Packard

Journal, June 1988.
[Krus78] Kruszewski, G. 1978. "Software Reliability Modeling." In Proceedings NAVSEA SWS RMQ Seminar,

* September, 271-296. **
[Kuhn82] Kuhn, W.W. 1982. "A Software Lifecycle Case Study Using the PRICE Model." In Proceedings

IEEE NAECON 1982, May. **
[Laem78] Laemmel, A., and M.L. Shooman. 1978. Software Modeling Studies: Statistical (Natural) Language

Theory and Computer Program Complexity. Griffiss Air Force Base, NY: Rome Air Development
Center. Technical Report RADC-TR-78-4. **

* [Lam84] Lam, S.S., and A.U. Shpnkar. "Protocol Verification via Projections." IEEE: Transactions on
Software Engineering, 10/4 (Jul 1984):325-342.

103



August 9, 1989

[Lamb78] Lamb, S.S., V.G. Leck, L.J. Peters, and G.L. Smith. 1978. "SAMM: A Modeling Tool for Require-
ments and Design Specification." In Proceedings 2nd International Computer Software and Applica-
tions Conference, November 13-16, Chicago, IL, 48-53. Long Beach, CA: IEEE Computer Society
Press.

[Lamb83] Lamb, D.A. 1983. Sharing Intermediate Representations: The Interface Description Language. Came-
gie-Mellon University. Technical Report CMU-CS-83-129. **

[Lamp77] Lamport, L. "Proving the Correctness of Multiprocess Programs." IEEE: Transactions on Software
Engineering, 3/2 (Mar 1977):125-143.

[Lamp78] Lamport, L. "Time, Clocks and the Ordering of Events in Distributed Systems." ACM: Communica-
tions of the ACM, 21/7 (Jul 1978):558-564.

[Lamp79a] Lamport, L. "A New Approach to Proving the Correctness of Multiprocess Programs." ACM: Tran-
sactions Programming Languages and Systems, 1/1 (Jul 1979):84-97.

[Lamp79bJ Lamport, L. "On the Proof of Correctness of a Calendar Program." ACM: Communications of the
ACM, 22/10 (Oct 1979):554-557.

[Lamp80] Lamport, L. "The 'Hoare Logic' of Concurrent Programs." Acta Informatica, no. 14 (1980):21-37.
[Lamp82] Lamport, L., R. Shostak, and M. Pease. "The Byzantine Generals Problem." IEEE: Transactions on

Programming Language and Systems, 4/3 (Jul 1982):382-401.
[Lamp83] Lamport, L. "Specifying Concurrent Program Modules." ACM: Transactions on Programming

Languages and Systems, 5/2 (Apr 1983):190-222.
[Lamp84] Lamport, L., and F.B. Schneider. "The 'Hoare Logic of CSP' and All That." ACM: Transactions on

Programming Languages and Systems, 6/2 (Apr 1984):281-296.
[Land77] Landrault, C., and J.-C. Laprie. 1977. "Reliability and Availability Modeling of Systems Featuring

Hardware and Software Faults." In Proceedings 7th International Conference on Fault-Tolerant Com-
puting, 10-15.

[Land79] Landry, S.P., and B.D. Shriver. "Simulated Execution of Dataflow Programs on Processors Having
Finite Resources." ACM: SIGSIM Simuletter, 11 (Aug 1979):141-149. **

[Land86] Landwehr, C.E., J. McLean, S.L. Gerhart, Donald I. Good, and Nancy Leveson. "NRL Invitational
Workshop on Testing and Proving: Two Approaches to Assurance." ACM: SIGSOFT Software
Engineering Notes, 11/5 (Oct 1986):63-64.

[Lapr84] Laprie, J.-C. "Dependability Evaluation of Software Systems in Operation." IEEE: Transactions on
Software Engineering, 10/6 (Nov 1984):701-714.

[Lask79] Laski, J.W. 1979. A Hierarchical Approach to Program Testing. University of Waterloo. Technical
Report 55CFW130779. Also published in ACM: SIGPLAN Notices, 15/1 (Jan 1980):77-85.

[Lask82] Laski, J.W. "On Data Flow Guided Program Testing." ACM: SIGPLAN Notices, 17/9 (Sep
1982):62-71.

[Lask83] Laski, J.W., and B. Korel. "A Data Flow Oriented Program Testing Strategy." IEEE: Transactions
on Software Engineering, 9/3 (May 1983):347-354.

[Lask86] Laski, J.W. "An Algorithm for the Derivation of Codefinitions in Computer Programs." Information
Processing Letters, 23/2 (Aug 1986):85-90.

[Lask87] Laski, J.W. May 1987. A Comparative Analysis of Some Data Flow Testing Strategies. Oakland
University, Technical Report TR-CSE-87-05. **

[Lask88a] Laski, J.W. 1988. "Testing in Top-Down Program Development." In Proceedings 2nd Workshop in
Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 72-79. Washington, DC: IEEE
Computer Society Press.

[Lask88b] Laski, J.W. "Data Testing in STAD." Journal of Systems and Software. To appear. **
[Lass79] Lassez, J.-L., and D.J.J. Van der Knijff. 1979. "Evaluation of Length and Level for Simple Program

Schemes." In Proceedings 3rd International Computer Software and Applications Conference,
November 6-8, Chicago, IL, 688-694. Long Beach, CA: IEEE Computer Society Press.

Lassl] Lassez, J.-L., D.J.J. van der Knijff, and J. Sheppard. "A Critical Examination of Software Science."
Journal of Systems and Software, 2/12 (Dec 1981):105-112.

104



August 9, 1989

* [Late$4] Latella, D. 1984. "User Interface of the ECSP Concurrent Debugger." In MuTEAM: Distributed
Multiprocessor Architecture and ECSP Concurrent Language. Technoprint, 61-87. Bologna. **

[Lato89] Latour, L. 1989. "Ada, Hypertext, and Reuse." In Proceedings 7th Annual National Conference on
Ada Technology, March 13-16, Altantic City, NJ, 434-442. Washington, DC: ACM Ada Technical
Committee. **

[Laue79] Lauesen, S. "Debugging Techniques." Software Practice and Experience, 9/1 (Jan 1979):51-63.
* (Lave8] Lavender, R.G. 1988. Issues Related to the Explication of Process-Product Relationships in DoD-

STD-2167 and DoD-STD-2168 Virginia Polytechnic Institute. TR-85-6.
[Lawr8l] Lawrence, M.J. 1981. "Programming Methodology, Organizational Environment, and Programming

Productivity." ACM: The Journal of Systems and Software, 2 (1981):257-269.
[Lawr87] Lawrynuik, D. 1987. "The T-3 Testing Tool." In Proceedings CIPS Edmonton Fall Conference,

Edmonton, Alberta, November 16-18. **
* [Laws83] Lawson, D.J. 1983. "Failure Mode, Effect, and Criticality Analysis." Electronic Systems Effectiveness

and Life Cycle Costing, J.K. Skwirzynski, ed., NATO ASI Series, Vol. F3, 55-74. Heidelberg:
Springer Verlag. **

[LeDo85I] LeDoux, C.H., and D.S. Parker. 1985. "Saving Traces for Ada Debugging." In Proceedings SIGAda
International Conference, May, Paris, France. Published in ACM: Ada Letters,V/2 (Sep-Oct
1985):97-108.

* (Leac87] Leach, R.J. 1987. "Ada Software Metrics and Their Limitations." In Proceedings Joint Conference of
5th National Conference on Ada Technology and Washington Ada Symposium, March 16-19, Arling-
ton, VA, 285-293. Washington, DC: ACM Ada Technical Committee.

[Leac89] Leach, R.J. 1989. "Software Metric Analysis of the Ada Repository." In Proceedings 7th Annual
National Conference on Ada Technology, March 13-16, Altantic City, NJ, 270-277. Washington, DC:
ACM Ada Technical Committee. **

• [Lee88] Lee, J.A.N, and X. He. September 1988. A Methodology for Test Selection. Virginia Polytechnic
Institute. TR-88-29.

[Lee89a] Lee, P.-N., and A. Tamboli. 1989. "Ada Implementation of Sequential Correspondent Operations
for Software Fault Tolerance." In Proceedings 7th Annual National Conference on Ada Technology,
March 13-16, Altantic City, NJ, 278-283. Washington, DC: ACM Ada Technical Committee. **

[Lee89b] Lee, A.J., W.R. Macre, and D.K. Doi. 1989. "Benchmarking the Real-Time Performance of
• Dynamic Ada Processes." In Proceedings 7th Annual National Conference on Ada Technology,

March 13-16, Altantic City, NJ, 132-138. Washington, DC: ACM Ada Technical Committee. **
[Letk89] Lefkowitz, S., H. Greene, and M. Bender. 1989. "Establish and Evaluate Ada Runtime Features of

Interest for Real-Time Systems." In **
[LehmS0] Lehman, M.M. "On Understanding Laws, Evolution, and Conservation in the Large-Program Life

Cycle." Journal of Systems and Software, 1/3 (1980). **
• [Less8O] Lesser, V.R., P.C. Bates, R. Brooks, D. Corkill, L. Lefkowitz, R. Mukunda, J. Pavlin, S. Reed, and

J.C. Wileden. 1981. A High Level Simulation Testbed for Cooperative Distributed Problem Solving.
University of Massachusetts. Technical Report TR-81-16. **

[Less8l] Lesser, V.R., and D.D. Corkill. "Functionally Accurate, Cooperative Distributed Systems." IEEE:
Transactions on Systems, Man and Cybernetics, SMC-11/1 (Jan 1981):81-96.

[Leun88] Leung, H.K., and L.J. White. September 1988. An Study of Regression Testing. University of Alberta.
• Technical Report 88-15.

[Leve83a] Leveson, N.G., T. Shimeall, J. Stolzy, and J. Thomas. 1983. "Design for Safe Software." In Proceed-
ings AL4A Space Science Meeting, January, Reno, NV.

[Leve83b] Leveson, N.G., and P.R. Harvey. "Analyzing Software Safety." IEEE: Transactions on Software
Engineering, 9/5 (Sep 1983):569-579.

[Leveg3c] Leveson, N.G., and J.L. Stolzy "Safety Analysis of Ada Programs Using Fault Trees." IEEE: Tran-
* sactions on Reliability, R-32/5 (Dec 1983):479-484.

[Leve83d] Leveson, N.G. "Verification of Safety." In Proceedings International IFAC Workshop on Achieving
Safe Real-time Computer Systems. September, Cambridge, England.

• 105



August 9, 1989

[LeveStaJ Levendel, Y., and P.R. Menon. 1986. "Fault Simulation." In Fault-Tolerant Computing, D.K. Prad-
ham (ed.) Vol. 1, Chapter 3, 184-264. Englewood Cliffs, NJ: Prentice Hall. **

Lbeve86b] Leveson, N.G. "Software Safety: Why, What, and How." ACM: Computing Surveys, 18/2 (Jun
1986):125-163.

[Leve] Leveson, N.G., and J.L. Stolzy. "Safety Analysis Using Petri Nets." IEEE: Transactions on Software
Engineering, 13/3 (Mar 1987):386-397.

[LeveS9aI Leveson, N.G. "Safety as a Software Quality." IEEE: Software. 6/3 (May 1989):88-89. **
[Levi78] Levitt, K.N. 1978. "A Panel Session - Formal Methods in Programming-When will they be practi-

cal?" In Proceedings AFIPS National Computer Conference, vol. 47, June 5-8, Anaheim, CA,
665-668. Arlington, VA: AFIPS Press.

[LeviSO] Levin, G.M. August 1980. Proof Rules for Communicating Sequential Processes. Ph.D. diss., Cornell
University.

[LeviglJ Levin, G.M., and D. Gries. "A Proof Technique for Communicating Sequential Processes." Acta
Informatica, no. 15 (1981):281-302.

[Levy84] Levy, M.R. 1984. "Type Checking, Separate Compilation and Reusability." In Proceedings ACM-SIG-
PLAN '84 Symposium on Compiler Construction, June, Montreal. Published in ACM: SIGPLAN
Notices, 19/6 (Jun 1984):285-289.

[Lew8S8] Lew, K.S., T.S. Dillon, and K.E. Forward. "Software Complexity and Its Impact on Software Relia-
bility." IEEE: Transactions on Software Engineering, 14/11 (Nov 1988):1645-1655.

[L87] Li, H.F., and W.K. Cheung. "An Empirical Study of Software Metrics." IEEE: Transactions on
Software Engineering, 13/6 (Jun 1987):697-708.

[Lieb8O] Lieberman, H., and C. Hewitt. 1980. "A Session with TINKER: Interleaving Program Testing with
Program Design." In Proceedings 1980 LISP Conference, August, Stanford University. **

[Llgh76] Light, W. 1976. "Software Reliability/Quality Assurance Practices." In Proceedings AIAA Confer-
ence on Computers in Aerospace. **

[Ligo87] Ligon, W.E. 1987. An Efficient Method for Executing Multiple Mutants on a Vector Processor. Georgia
Institute of Technology. **

[LinL5] Lin, H. June 1985. Software for Ballistic Missile Defense. Center for International Studies. Mas-
sachusetts Institute of Technology. **

[Lind76] Linden, T.A. 1976. "The Use of Abstract Data Types to Simplify Program Modifications." In
Proceedings Conference on Data-Abstraction, Definition and Structure. Published in ACM: SIGPLAN
Notices 11 (1976):12-23. **

[Llnd85] T.E. Lindquist, and J.L. Facemire. 1985. "Using an Ada-Based Abstract Machine Description of
CAIS to Generate Validation Tests." In Proceedings Washington Ada Symposium, March 24-26, John
Hopkins Applied Physics Laboratory, Laurel, MD, 173-178. Washington, DC: ACM Ada Technical
Committee: ACM.

[LindS7] T.E. Lindquist, P.K. Lawlis, and D.P. Levine. 1987. "Typing Information in a Software Engineering
Environment." In Proceedings 6th International Conference on Entity-Relationship Approach.
November. **

[Lind88al Lindquist, T.E., and J.R. Jenkins. "Test-Case Generation with IOGen." IEEE: Software, 5/1 (Jan
1988):72-79.

[Lind88b] Lindquist, T.E., I.S. Kwon, and V.L. Wood. Test Case Generation for Ada Exceptions and Tasking. In
preparation. **

[LindSc] Lindquist, T.E. 1988. Methods and Tools for Increasing Reliability of Embedded Ada Systems." In
Towards SDS Testing and Evaluation: A Collection of Relevant Topics. IDA Memorandum Report
M-513. Alexandria, VA: Institute for Defense Analyses. Draft.

[Lind88d] Lindsay, P.A. "A Survey of Mechanical Support for Formal Reasoning." Software Engineering Jour-
nal, 3/1 (Jan 1988).

[Lind89] Lind, R.K., and K. Vairavan. "An Experimental Investigation of Software Metrics and Their Rela-
tionship to Software Development Effort." IEEE: Transactions on Software Engineering, 15/5 (May
1989):649-653.

106



August 9, 1989

* [Ling79] Linger, R.C., H.D. Mills, and B.I. Witt. 1979. Structured Programming: Theory and Practice. The
Systems Programming Series. Reading, MA: Addison Wesley.

[Linn8g Linn, J.L, C.D. Ardoin, C.J. Linn, S.H. Edwards, M.R. Kappel, and J. Salasin. April 1988. Stra-
tegic Defense Initiative Architecture Dataflow Modeling Technique: Version 1.5. Alexandria, VA: Insti-
tute for Defense Analyses. IDA Paper P-2035.

[Lipo73] Lipow, M. May 1973. Application of Algebraic Methods to Computer Program Analysis. TRW
* Software Series. Report TRW-SS-73-10. *

[Lipo77] Lipow, M., and T.A. Thayer. "Prediction of Software Failures." In Proceedings Annual Reliability
and Maintainability Symposium, 489-494. **

[Llpo79] Lipow, M. "Prediction of Software Errors." Journal of Systems and Software, 1 (1979):71-75. **

[Lpt78] Lipton, R.J., and F.G. Sayward. 1978. "The Status of Research on Program Mutation." In Digest
IEEE Workshop on Software Testing and Test Documentation, December 18-20, Ft. Lauderdale, FL,

• 355-378. IEEE Computer Society Technical Committee on Software Engineering. **
[Llsk75] Liskov, B.H, and S.N. Zilles. "Specification Techniques for Data Abstractions." IEEE: Transac-

tions on Software Engineering, 1/1 (1975):7-19.
[Lisk79] Liskov, B.H., and V. Berzins. 1979. "An Appraisal of Program Specifications." In Research Direc-

tions in Software Technology, P. Wegner (ed.), 276-301. Cambridge, MA: MIT Press. **
[List82] Lister, A.M. "Software Science-The Emperor's New Clothes?" Australian Computer Journal, 14/2

* (May 1982):66-71. **
(Lite76] Litecky, C.R., and G.B. Davis. "A Study of Errors, Error-Proneness, and Error Diagnosis in

Cobol." ACM: Communications of the ACM, 19/1 (Jan 1976):33-37.
[Lltt73] Littlewood, B., and J.L. Verrall. "A Bayesian Reliability Growth Model for Computer Software."

The Journal of the Royal Statistical Society, Series C, 22/3 (1973):332-346.
[Litt75] Littlewood, B. 1975. "A Reliability Model for Markov Structured Software." In Proceedings Interna-

* tional Conference on Reliable Software, April 21-23, Los Angeles, CA, 204-207. IEEE Cat. No.
75CH0940-7CSR.

[Litt76] Littlewood, B. 1976. "A Semi-Markov Model for Software Reliability with Failure Costs." In
Proceedings Symposium on Computer Software Engineering, April 20-22, Polytechnic Institute for
New York218-300. MRI Symposia Series, vol. XXIV, J. Fox (ed.). New York: Polytechnic Press. **

[Litt78] Littlewood, B. 1978. "How to Measure Software Reliability, and How Not To..." In Proceedings 3rd
* International Conference on Software Engineering, March 10-12, Atlanta, GA, 37-45. Washington,

DC: IEEE Computer Society Press.
(Litt79] Littlewood, B. "Software Reliability Model for Modular Program Structure." IEEE: Transactions on

Reliability, R-28/3 (Aug 1979):241-246.
[LittgOa] Littlewood, B. 1980. "What Makes a Reliable Program - Few Bugs, or a Small Failure Rate?" In

Proceedings AFIPS National Computer Conference, vol. 49, May 19-22, Anaheim, CA, 707-713.
* Arlington, VA: AFIPS Press.

[Lltt80bI Littlewood, B. "Theories of Software Reliability: How Good Are They and How Can They Be
Improved?" IEEE: ransactions on Software Engineering, 6/5 (Sep 1980):498-500.

[Litt80c] Littlewood, B. 1980. "A Bayesian Differential Debugging Model for Software Reliability." In
Proceedings 4th International Computer Software and Applications Conference, October 27-31, Chi-
cago, IL, 511-519. Los Alamitos, CA: IEEE Computer Society Press. **

* [Littsla] Littlewood, B. "Stochastic Reliability Growth: A Model for Fault Removal in Computer Programs
and Hardware Designs." IEEE: Transactions on Reliability, R-30/4 (1981):313-320.

[Littglb] Littlewood, B. 1981. "A Critique of the Jelinski-Moranda Model for Software Reliability." In
Proceedings Annual Reliability and Maintainability Symposium, 357-364. **

[LoS3] Lo, P., and D. Wyckoff. July 1983. Software Engineering Laboratory (SEL) Data Base Organization
and User's Guide Revision 1. Greenbelt, MD: NASA/GSFC. Technical Report SEL-81-102. **

* [LoeaS0] Locasso, R., J. Scheid, V. Shorre, and P. Eggert. November 1980. The Ina Jo Specification Language
Reference Manual. Santa Monica, CA: System Development Corp. SDC Document
TM-6889/000/01. **

40 107



August 9, 1989

[Lohs84] Lohse, J.B., and S.H. Zweben. "Experimental Evaluation of Software Design Principles." Journal of
Systems and Software, 4/4 (Nov 1984):301-308.

[Lond7O] London, R. "Bibliography on Proving the Correctness of Computer Programs." Machine Intelli-
gence, (1970). **

[Lond7l] London, R.L. 1971. "Software Reliability through Proving Programs Correct." In Proceedings IEEE
International Symposium on Fault-Tolerant Computing, March. **

[Lond75] London, R.L. 1975. "A View of Program Verification." In Proceedings International Conference on
Reliable Software, April 21-23, Los Angeles, CA, 534-545. IEEE Cat. No. 75CH0940-7CSR.

[Lond85] London, R.L., and R.A. Duisberg. "Animating Programs using Smalltalk." IEEE: Computer, 18/8
(Aug 1985):61-71.

[Long77] Long, A.B., C.V. Ramamoorthy, S.F. Ho, H.H. So, H.L. Reeves, and E.A. Straker. 1977. "A
Methodology for the Development and Validation of Critical Software for Nuclear Power Plants." In
Proceedings Ist International Computer Software and Applications Conference, November 8-11, Chi-
cago, IL, 620-627. Long Beach, CA: IEEE Computer Society Press.

[Long88] Long, D.L., and L.A. Clarke. 1988. "Task Interaction Graphs for Concurrency Analysis." In
Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada,
132-133. Washington, DC: IEEE Computer Society Press.

[Love76] Love, L.T., and A.B. Bowman. "An Independent Test of the Theory of Software Physics." ACM:
SIGPLAN Notices, 11/11 (Nov 1976):42-49.

[Love77a] Love, L.T. 1977. Relating Individual Differences in Computer Programming Performance to Human
Information Processing Abilities. Ph.D. diss., University of Washington, Dept. Psychology. **

[Love77b] Love, L.T. 1977. "An Experimental Investigation of the Effect of Program Structure on Program
Understanding." ACM: SIGPLAN Notices, 12/3 (Mar 1977) :105-113.

[Luck77] Luckham, D.C. 1977. "Program Verification and Oriented Programming." In Proceedings Informa-
tion Processing (IFIP) Congress '77, August 8-12, Toronto, Canada, 783-793. Amsterdam: North-Hol-
land.

[Luck79a] Luckham, D.C., and N. Suzuki. "Verification of Array, Record and Pointer Operations in Pascal."
ACM: ransactions on Programming Languages and Systems, 1/2 (Oct 1979):226-244.

[Luck79b] Luckham, D.C., S.M. German, F.W. von Henke, R.A. Karp, P.W. Milne, D.C. Oppen, W. Polak,
and W.L. Scherlis. March 1979. Stanford Pascal Verifier User Manual. Stanford University. Technical
Report Program Verification Report PV-11, CSD Report STAN-CS-79-731. **

[LuckgOa] Luckham, D.C., and W. Polak. 1980. "A Practical Method of Documenting and Verifying Ada Pro-
grams with Packages." In Proceedings ACM-SIGPLAN Symposium on the Ada Programming
Language, December, Boston. Published in ACM: SIGPLAN Notices, 15/11 (Nov-Dec
1980):113-122.

[LuckgOb] Luckham, D.C., and W. Polak. "Ada Exception Handling: An Axiomatic Approach." Transactions
on Programming Languages and Systems, 2/2 (Apr 1980):225-233.

[Luck80c] Luckham, D.C., and W. Polak. February 1980. Ada Exceptions: Specification and Proof Techniques.
Stanford University. Program Verification Group Report PVG-16, CSD Report STAN-CS-80-789. **

[LuekSl] Luckham, D.C., H.J. Larsen, D.R. Steveson, and F.W. von Henke. July 1981. ADAM -- An Ada
Based Language for Multi-Processing. Stanford University. Technical Report STAN-CS-81-867,
updated and republished as Technical Report CSL-TR-83-240, May 1983. Also published in Software
Practice and Experience, (Jul 1984):605-642. **

[Luck84a] Luckham, D.C., and F.W. von Henke. September 1984. An Overview of ANNA A Specification
Language for Ada. Stanford University. Technical Report CSL-TR-84-265. Also published in IEEE:
Software, 2/2 (Mar 1985):9-24.

[Luck84b] Luckham, D.C., F.W. von Henke, B. Krieg-Brueckner, and 0. Owe. July 1984. ANNA A Language
for Annotating Ada Programs. Stanford University. **

[Luck85] Luckham, D.C. December 1985. "ANNA, A Specification Language for Ada." In Proceedings 1st
IDA Workshop on Formal Specifications and Verification of Ada. Alexandria, VA: Institute for
Defense Analyses. IDA Memorandum Report M-146.

108



August 9, 1989

* [Lukg6a] Luckham, D.C., R. Neff, and D. Rosenblum. August 1986. An Environment for Ada Software
Development Based on Formal Specification. Stanford University. Technical Report CSL-TR-86-305.
Also published in ACM: Ada Letters, VII/3 (May-June 1987):94-106.

[Luck6b] Luckham, D.C., Y. Huh, S. Ghosh, and A. Stanculescu. 1986. Analysis of the VHSIC Hardware
Description Language. Stanford University. **

[Lluck86e] Luckham, D.C., A. Stanculescu, Y. Huh, and S. Ghosh. 1986. "The Semantics of Timing Con-
* structs in Hardware Description Languages." In Proceedings IEEE International Conference on Com-

puter Design ICCD '86, October 10-14. Also published as Stanford University Technical Report
PAVG-32. **

[LuckS7 Luckham, D.C., D.P. Helmbold, S. Meldal, D.L. Bryan, and M.A. Haberler. July 1987. "Task
Sequencing Language for Specifying Distributed Ada Systems." In Proceedings of CRAI Workshop on
Software Factories and Ada, Capri, Italy, A.N. Habermann and U. Montanari (eds). Lecture Notes

* on Computer Science, 275. Springer-Verlag, 249-305. Also published as Stanford University Techni-
cal Report CSL-TR-87-334.

[Luke80] Lukey, F.J. "Understanding and Debugging Programs." International Journal on Man-Machine Stu-
dies, 12/2 (Feb 1980):189-202. **

[Lync8l Lynch, W.C., and J.C. Browne. 1981. "Performance Evaluation: A Software Metrics Success Story."
In Software Metrics, Perlis et al (ed.), 171-183. MIT Press. *

* [MI85] Military Standard. 1985. Technical Reviews and Audits for Systems, Equipment, and Computer Pro-
grams. MIL-STD-1521.

[MaeLS2] MacLean, J. September 1982. A Formal Foundation for the Tace Method of Software Specification.
Washington, DC: Naval Research Laboratory. NRL Memorandum Report 4874. **

[Mat80] Maitland, R. 1980. "NODAL." In NBS Software Tools Database, R. Houghton, and K. Oakley
(eds.). Gaithersburg, MD: National Bureau of Standards. **

* [MaJog3I Majoros, M., and H.M. Sneed. 1983. "Testing Programs Against a Formal Specification." In
Proceedings 7th International Computer Software and Applications Conference, Novemer 7-11, Chi-
cago, IL, 512-519. Los Angeles, CA: IEEE Computer Society.

[ManeS3] Mancarelia, P., and F. Turini. 1983. "A High Level Analysis Tool for Concurrent Programs." In
Proceedings 1983 International Conference on Parallel Processing, August, Bellaire, MI. **

[Manda5] Mandriolo, D., R. Zicari, C. Ghezzi, and F. Tisato. "Modeling the Ada Task System by Petri Nets."
* Computer Languages, 10/1 (1985):43-61.

[Mann70] Manna, Z., and A. Pnueli. "Formalization of Properties of Functional Programs." Journal of the
ACM, 17/3 (1970):555-569.

[Mann74] Manna, Z. 1974. Mathematical Theory of Computation. New York: McGraw-Hill.
[Mann78] Manna, Z. and R. Waldinger. "Is 'Sometime' Sometimes Better than 'Always'?: Intermittent Asser-

tions in Proving Program Correctness." ACM: Communications of the ACM, 21/2 (Feb 1978):159-172.
* [Mart70] Martyn, J., and B.C. Vickery. "The Complexity of the Modeling of Information Systems." Journal of

Documentation, 26/3 (Sep 1970):204-220. **
[Mart83] Martin, D.J. 1983. "Dissimilar Software in High Integrity Applications in Flight Controls." In

Software in Avionics: AGARD Conference Proceedings 330, January, The Hague, The Netherlands,
36.1-36.9. **

[Math86] Mathur, A.P., and E.W. Krauser. 1986. Modeling Mutation on a Vector Processor. Georgia Institute
* of Technology. Technical Report GIT-SERC-87/07. **

[Math87a] Mathur, A.P., E. Galiano, W. Ligon, and T. Greenlaw. 1987. Concurrent Execution Over Multiple
Data Sets on Vector Processors. Purdue University. Technical Report SERC-TR-7-P.

[Math87bJ Mathur, A.P., and E. Galiano. November 1987. Inducing Vectorization: A Formal Analysis. Purdue
University. Technical Report SERC-TR-6-P.

[Math88aj Mathur, A.P., and E.W. Krauser. April 1988. Mutant Unification for Improved Vectorization. Purdue
* University. Technical Report SERC-TR-14-P.

[Mathggb] Mathur, A.P. An Empirical Basis for Program and Mutant Unification. Under preparation. *

109



August 9, 1989

[Maug8S] Mauger, C., and K. Pammett. 1985. "An Event-Driven Debugger for Ada." In Proceedings SIGAda
International Conference, May, Paris, France. Published in ACM: Ada Letters,V/2 (Sep-Oct
1985):124-134.

[Maye891 Mayes, L., R.W. Aragon, D. Terrien, and J. Trost. 1989. "Automatic Test Data Generation and
Assertion Testing for Ada Program Units." In Proceedings 7th Annual National Conference on Ada
Technology, March 13-16, Altantic City, NJ, 537-547. Washington, DC: ACM Ada Technical Com-
mittee. **

[Mayf5] Mayfield, W.T., and S.R. Welke, eds. November 1985. Proceedings 2nd IDA Workshop on Formal
Specifications and Verification of Ada. Alexandria, VA: Institute for Defense Analyses. IDA
Memorandum Report M-135.

[Mayt86] Mayfield, W.T., et al, eds. August 1986. Proceedings 3rd IDA Workshop on Formal Specifications and
Verification of Ada. Alexandria, VA: Institute for Defense Analyses. IDA Memorandum Report
M-241.

[MeCa76] McCabe, T.J. "A Complexity Measure." IEEE: ransactions on Software Engineering, 2/4 (Dec
1976):308-320.

[MeCa7a] McCall, J.A., P.K. Richards, and G.F. Walters. November 1977. Factors in Software Quality, Vols.
I, II and III. Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report
RADC-TR-77-369.

[McCa77b] McCall, J.A., P. Richards, and G. Walters. 1977. "Metrics for Software Quality Evaluation and
Prediction." In Proceedings 2nd Annual Software Engineering Workshop. Greenbelt, MD.
NASA/GSFC. **

[McCa78] McCall, J.A. 1978. "The Utility of Software Quality Metrics in Large-Scale Software System
Development." In Proceedings U.S. Army Computer Systems Command Software Life Cycle Manage-
ment Workshop, August 21-22. **

[McCa79] McCall, J.A. 1979. "An Introduction to Software Quality Metrics." In Software Quality Manage-
ment, J.D. Cooper and M.J. Fisher (eds.), 127-142. Petrocelli Books, Inc.

[MeCal~aj McCall, J.A., and M. T. Matsumoto. April 1980. Software Quality Metrics Enhancements, Vol. L
Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report RADC-TR-80-109.

[McCa8Ob] McCall, J.A., and M. T. Matsumoto. April 1980. Software Quality Measurement Manual, Vol. II.
Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report RADC-TR-80-109.

[McCa82a] McCabe, T.J. (ed.) 1982. Structured Testing. IEEE Computer Society Press, IEEE Catalog No.
EH02006.

[McCa82b] McCabe, T.J., and G.G. Schulmeyer. 1982. "System Testing Aided by Structured Analysis (A Prac-
tical Experience)." In Proceedings 6th International Computer Software and Applications Conference,
March 9-12, San Diego, CA. Los Angeles, CA: IEEE Computer Society.

[McCa82eJ McCabe, T.J. 1982. Structured Testing: A Testing Methodology Using the McCabe Complexity Metric.
Gaithersburg, MD: National Bureau of Standards. Special Publication 500-99. **

[MeCaS4] McCall, J.A., and M.A. Herndon. 1984. "Controlling the Reliability of Software During the O&M
Phase." In Proceedings Annual Reliability and Maintainability Symposium, 275-281. **

[McCa87a] McCall, J.A., W. Randall, C. Bowen, N. McKelvey, R. Senn, J. Morris, H. Hecht, S. Fenwick, P.
Yates, M. Hecht, and R. Vienneau. November 1987. Methodology for Software Reliability Prediction,
Vol. L Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report
RADC-TR-87-171.

[McCa87b] McCall, J.A., W. Randall, C. Bowen, N. McKelvey, R. Senn, J. Morris, H. Hecht, S. Fenwick, P.
Yates, M. Hecht, and R. Vienneau. November 1987. Methodology for Software Reliability Prediction,
Vol. II, Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report
RADC-TC-47-171.

[McCI76] McClure, C.L. 1976. Formalization and Application of Structured Programming and Program Com-
plexity. Ph.D. thesis, Illinois Institute of Technology. **

[MeC178a] McClure, C.L. 1978. "A Model for Program Complexity Analysis." In Proceedings 3rd International
Conference on Software Engineering, March 10-12, Atlanta, GA, 149-157. Washington, DC: IEEE

110



August 9, 1989

* Computer Society Press.
[McCr78b] McClure, C.L. 1978. Reducing COBOL Complexity through Structured Programming. New York: Van

Nostrand Reinold.
[McDa77 McDaniel, G. 1977. "METRIC: A Kernel Instrumentation System for Distributed Environments."

In Proceedings 6th ACM Symposium on Operating System Principles, November, West Lafayette, IN.
**

• [MeGaS2] McGarry, F.E. 1982. "Measuring Software Development Technology." In Proceedings 7th Annual
Software Engineering Workshop, Greenbelt, MD. NASAIGSFC. **

[McGa84] McGarry, F.E., G. Page, D.N. Card, et al. February 1984. An Approach to Software Cost Estimation.
Greenbelt, MD: NASA/GSFC. Technical Report SEL-83-001. **

[McGa85a] McGarry, F.E. 1985. "Recent SEL Studies." In Proceedings 10th Annual Software Engineering
Workshop, December, Greenbelt, MD. NASAIGSFC. **

* [McGaSSb] McGarry, F.E., J. Valett, and D. Hall. January 1985. "Measuring the Quality Impact of Computer
Resource Quality on the Software Development Process and Product." In Proceedings IEEE 18th
Hawaii International Conference on System Sciences, January, Honolulu, HA, 533-541.

[McGe82] McGettrick, A.D. 1982. Program Verification Using Ada. Cambridge Computer Science Texts No.
13. Cambridge University Press. **

[McGi77] McGibbon, T.L., et al. October 1977. Pattern Recognition Methods for Determining Software Quality.
* Griffiss Air Force Base, NY: Rome Air Development Center. **

[Mcn83] Mcntree, J.W. Jr. March 1983. Fault Tree Techniques as Applied to Software (Soft Tree). USAF. **

[McMuSO] McMullin, P.R., and J.D. Gannon. December 1980. Evaluating a Data Abstraction Testing System
Based on Formal Specifications. University of Maryland. Technical Report TR-993. Also published in
Journal of Systems and Software, 2 (1981):177-186.

[McMn82] McMullin, P.R. 1982. DAISTS: A System for Using Specifications to Test Implementations. Ph.D.
, •diss., University of Maryland.

[McMu83] McMullin, P.R., and J.D. Gannon. "Combining Testing with Formal Specifications: A Case Study."
IEEE: Transaction on Software Engineering, 913 (May 1983):328-334.

[McTaXX] McTap, J.L. "The Complexity of an Individual Program." **
[McWe84] McWethy, S., and J. Radatz. August 1984. Software Quality Engineering Handbook. USACSC. **

[MearSi] Mearns, I. October 1981. A Message-Based Run-Time System and Proof Rules for Ada Tasks. M.S.
* diss., University of Manchester. **

[Mear83] Mearns, I. October 1983. A Denotational Semantics for Concurrent Ada Programs. Ph.D. diss,
University of Manchester. **

[Medi81] Medina-Mora, R., and P.H. Feiler. "An Incremental Programming Environment." IEEE Transac-
tions on Software Engineering, 7/5 (May 1981):472-482.

[Meld8]j Meldal, S., D. Luckham, and M.A. Haberler. 1988. "Specifying Ada Tasking Using Patterns of
* Behavior." In Proceedings IEEE 21st Hawaii International Conference on System Sciences, January,

Honolulu, HA, 129-134. **
[Mei182] Melliar-Smith, P.M., and R.L. Schwartz. "Formal Specification and Mechanical Verification of

SIFT: A Fault-Tolerant Flight-Control System." IEEE Transactions on Computers, C-31/7 (Jul
1982):616-630.

[Mend79] Mendis, K.S., and M.L. Gollis. 1979. "Categorizing and Predicting Errors on Software Programs."
In Proceedings 2nd AIAA Conference on Computers in Aerospace, October, Los Angeles, CA,
300-308. **

[Meye67] Meyer, A.R., and D.M. Ritchie. 1967. "The Complexity of Loop Programs." In Proceedings ACM
22nd Annual National Computer Conference, 465-470. Washington, DC: Thompson Books.

[MlarS3] Miara, R.J., J.A. Musselman, J.A. Navarro, and B. Shneiderman. "Program Indentation and
Comprehensibility." ACM: Communications of the ACM, 26/11 (Nov 1983):861-867.

* [Mign82] Migneault, G.E. September 1982. The Cost of Software Fault Tolerance Techniques. NASA Technical
Memorandum 84546. Also published in Software in Avionics: AGARD Conference Proceedings 330,
January, The Hague, The Netherlands, 37:1-37:8. **

0 111



August 9, 1989

[MiI84] Mili, A., and J. Desharnais. 1984. "A System for Classifying Program Verification Methods: Assess-
ing Meaning of Program Verification Methods." In Proceedings 7th International Conference on
Software Engineering, March, 26-29, Orlando, FL, 499-509. Washington, DC: IEEE Computer
Society Press.

[MUL7l] Mills, H.D. 1971. "Top Down Programming in Large Systems." In Debugging Techniques in Large
Systems, 1st Courant Computer Science Symposium. NYU Ed. Randell Rustin (ed.). Englewood
Cliffs, NJ: Prentice-Hall. **

[MIli72aJ Mills, H.D. 1972. Chief Programmer Teams: Principles and Procedures. Gaithersburg, MD: IBM
Corp. Technical Report FSC-71-6012. **

[Mll72b] Mills, H.D. 1972. Mathematical Foundations for Structural Programming. Gaithersburg, MD: IBM
Corp. Technical Report FSL-72-6021. **

[M172c] Miller, E. Jr., et al. October 1972. A Survey of Major Techniques for Program Validation. GRC
RM-1731. **

[MlU7d] Mills, H.D. 1972. On Statistical Validation of Computer Programs. Gaithersburg, MD: BM Federal
Systems Division. IBM Report FSC72-6015. **

[Mlfl74a] Miller, E.F., M.R. Paige, J.P. Benson, and W.R. Wisehart. 1974. "Structural Techniques of Program
Validation." In Proceedings 19th IEEE Computer Society International Conference, 161-164.

[M174b] Miller, E. Jr., et al. 1974. "Structurally Based Automatic Program Testing." In Proceedings EAS-
CON-74, October 7-9, Washington, DC. **

[Mil74c] Miller, E.F. October 1974. Overview and Status -- Program Validation Project. General Research
Corp. **

[M174d] Miller, E.F. Jr. 1974. RXVP, FORTRAN Automated Verification System. Santa Barbara, CA: General
Research Corp., Program Validation Project Report. **

[Ml7Sa] Mills, H. "The New Math of Computer Programs." ACM: Communications of the ACM, 18/1 (Jan
1975):43-48.

[MIl75b] Miller, E.F. 1975. "Engineering Software for Testability." In Proceedings 20th IEEE Computer Society
International Conference, 7-10.

[MiD75c] Miller, E.F., and R.A. Melton. 1975. "Automated Generation of Testcase Datasets." In Proceedings
International Conference on Reliable Software, April 21-23, Los Angeles, CA. IEEE Cat. No.
75CH0940-7CSR. Also published in ACM: SIGPLAN Notices, 10/6 (Jun 1975):51-58.

[Mll7Sd] Mills, H.D. 1975. "How to Write Correct Programs and Know It." In Proceedings International
Conference on Reliable Software, April 21-23, Los Angeles, CA, 363-370. IEEE Cat. No.
75CH0940-7CSR.

[Mll7Sel Miller, E.F. Jr. June 1975. Methodology for Comprehensive Software Testing. Santa Barbara, CA:
General Research Corp. **

[Mil7$f] Miller, E.F. 1975. "RXVP: An Automated Verification System for FORTRAN." In 4th Conference
on Computer Science and Statistics: Proceeedings 8th Symposium on the Interface, February, Los
Angeles, CA, 328. Springer-Verlag. **

[Mii77a] Miller, E. "Program Testing: Art Meets Theory." IEEE: Computer, 10/7 (Jul 1977):42-51.
[MiU77b] Miller, E. "Program Testing Tools - A Survey" 1977. In Proceedings MIDCON '77, 1-14.
[Mli179a] Miller, E. 1979. "Program Testing Technology in the 1980's." The Oregon Report: In Proceedings

Conference on Computing in the 1980's, 72-79. Washington, DC: IEEE Computer Society Press.
[Ml179b] Miller, E.F. "Some Statistics from the Software Testing Service." ACM: SIGSOFT Software

Engineering Notes, 4/1 (Jan 1979):8-11.
[Mil179c] Miller, E. "Software Testing and Test Documentation." IEEE: Computer, 12/3 (Mar 1979):98-107.
[MilS10a] Miller, E. "Coverage Measure Definitions Revisited." Testing Technical Newsletter, 3/4 (1980):6. **
[MIU80b] Mills, H.D. "Function Semantics for Sequential Programs." Information Processing, Vol. 80 (1980).

**

[Mlil80c] Miller, A.M. November 1980. A Study of the Musa Reliability Model. Greenbelt, MD: NASA/GSFC.
Technical Report SEL-80-005. **

112



August 9, 1989

* [Mifl0d] Miller, R.E., and C.K. Yap. "On Formulating Simultaneity Studying Parallelism and Synchroniza-
tion." Journal of Computer Systems Science. 20/2 (Apr 1980):203-218. **

[Mll1a] Miller, E., and W.E. Howden, eds. 1981. Tutorial: Software Testing and Validation, 2nd Edition. Los
Alamitos, CA: IEEE Computer Society Press.

[Mill1b] Millen, J.K., and D.L. Drake. "An Experiment with AFFIRM and HDM." Journal of Systems and
Software, 2 (1981):159-175.

* [M11183 Mills, H.D. 1983. "Software Productivity in the Enterprise." In Software Productivity, 265-270. New
York: Little, Brown. **

[M=841 Miller, B.P. 1984. Performance Characterization of Distributed Programs. Ph.D. diss., University of
California (Berkely).

[Mil8 5] Miller, D.R., and A. Sofer. 1985. "Completely Monotone Regression Estimates of Software Failures
Rates." In Proceedings 8th International Conference on Software Engineering, August 28-30, London,

• England, 343-348. Washington, DC: IEE Computer Society Press.
[Mi!8l6] Miller, D.R., and A. Sofer. "A Non-Parametric Approach to Software Reliability, Using Complete

Monotonicity." In Reliability: State of the Art, A. Bendell and P. Mellor (eds.), 31-44. Oxford: Per-
gamon Infotech. **

[MillS7a] Mills, H.D., M. Dyer, and R.C. Linger. "Cleanroom Software Engineering." IEEE: Software, 4/5
(Sep 1987):19-25.

0 [Mill87b] Millen, J.K., S.C. Clark, and S.B. Freedman. "The Interrogator: Protocol Security Analysis."
IEEE: ransactions on Software Engineering, 13/2 (Feb 1987):274-285.

[Mlns83] Minsky, N.H. 1983. "Locality in Software Systems." In Conference Record of 10th AnnualACM Sym-
posium on Principles of Programming Languages, January, Austin, TX, 299-312. **

[Mlsrgl] Misra, J., and K.M. Chandy. "Proof of Networks of Processes." IEEE: Transactions on Software
Engineering, 7/4 (Jul 1981):417-426.

0 [Misr82] Misra, J., K.M. Chandy, and T. Smith. 1982. "Proving Safety and Liveness of Communicating
Processes with Examples." In Proceedings ACM Symposium on Principles of Distributed Computing.

[Mlsr83] Misra, P.N. 1983. "Software Reliability Analysis." IBM: Systems Journal, 22/3 (1983):262-270.
[Mitt82] Mittermeir, R.T. 1982. "Optimal Test Efforts for Software Systems." Reliability in Electrical and

Electronic Components and Systems, E. Lauger and J. Moltof, eds., 650-654. Amsterdam: Elsevier
* North-Holland Publishing Co. **

[Mlya85] Miyazaki, Y., and K. Mori. 1985. "COCOMO Evaluation and Tailoring." In Proceedings 8th Interna-
tional Conference on Software Engineering, August 28-30, London, England, 292-299. Washington,
DC: IEEE Computer Society Press. **

[Miya87] Miyazaki, Y., and N. Murakami. 1987. "Software Metrics Using Deviation Value." In Proceedings 9th
International Conference on Software Engineering, March 30 - Arpil 2, Monterey, CA, 83-91. Washing-

* ton, DC: IEEE Computer Society Press.
[MiyaXX] Miyamoto, I. "Toward an Effective Software Reliability Evaluation."
[Mzu83] Mizumo, Y. "Software Quality Improvements." IEEE: Computer; 16/3 (Mar 1983):66-72.
[Moha76a] Mohanty, S.N., and M. Adamowicz. 1976. "Proposed Measures for the Evaluation of Software." In

Proceedings Symposium on Computer Software Engineering, April 20-22, Polytechnic Institute for
New York. MRI Symposia Series, vol. XXIV, J. Fox (ed.). New York: Polytechnic Press. **

* [Moha76b] Mohanty, S.N. June 1976. Automatic Program Testing. Ph.D. diss., Polytechnic Institute of New
York. **

[Moha79] Mohanty, S.N. "Models and Measurement for Quality Assessment of Software." ACM: Computing
Surveys, 11/3 (Sep 1979):251-257.

[MoheI2J Moher, T., and G.M. Schneider. "Methodology and Experimental Research in Software Engineer-
ing." International Journal of Man-Machine Studies, 16/1 (1982):65-87. **

* [Moor8 Moore. J.S. 1988. PITON: A Verified Assembly Level Language. Computational Logic Inc. Technical
Report CLI-22. **

113



August 9, 1989

[Mora/21 Moranda, P.B., and J. Jelinski. 1972. Final Report on Software Reliability Study, McDonnell Douglas
Astronautics Co. MDC Report 63921. **

[Mora75] Moranda, P.B. 1975. "Predictions of Software Reliability During Debugging." In Proceedings of the
1975 Annual Reliability and Maintainability Symposium, 327-332, Washington, DC, 327-332.

[Mora7a] Moranda, P.B. "Software Reliability Revisited." IEEE: Computer, 11/4 (Apr 1978):92-94.
[Mora78b]Moranda, P.B. July 1978. Critique of: An Analysis of Computing Software Reliability Models by Schick

and Wolverton. Computer Repository. Report R78-B1. **
[Mora78c] Moranda, P.B. "Is Software Science Hard?" In Surveyors' Forum. ACM: Computing Surveys, 10/4

(Dec 1978):503-504.
[MoraS0] Moranda P.B. 1980. "Error Detection Models for Application During Program Development." In

Proceedings ACM/NBS 19th Annual Technical Symposium: Pathways to System Integrity, June, Gaith-
ersburg, MD, 75-78.

[MoraSb] Moran, M.L. 1985. A Graphical Debugger for Concurrent Ada. Ph.D. diss., George Washington
University.

[MoreSl] Morel, L.J., and R.G. Hamlet. July 1981. Error Propagation and Elimination in Computer Programs.
University of Maryland. Technical Report 81-1065. **

[Moreg4J Morell, L. 1984. A Theory of Error-Based Testing. Ph.D. thesis, University of Maryland. Technical
Report TR-1395. **

[More87] Morell, L.J. 1987. "A Model for Assessing Code-Based Testing Techniques." In Proceedings 5th
Annual Pacific Northwest Software Quality Conference: Effective Software Practices, October, Port-
land, OR, 309-326.

Moreg8] Morell, L.J. 1988. "Theoretical Insights into Fault-Based Testing." In Proceedings 2nd Workshop in
Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 45-62. Washington, DC: IEEE
Computer Society Press.

[Morg84] Morgan, E.T. December 1984. RGA Users Manual. University of California at Irvine. Technical
Report 243. **

[Morg86] Morgan, E.T., and R.R. Razouk. 1985. "Computer-Aided Analysis of Concurrent Systems." In
Proceedings 6th International Workshop on Protocol Specification, Testing, and Verification, no. V,
M. Diaz, ed., June, Toulouse, France, 49-58. North-Holland: Elsevier Science Publishers.

[Morg87] Morgan, E.T., and R.R. Razouk. "Interactive State-Space Analysis of Concurrent Systems." IEEE:
Transactions on Software Engineering, 13/10 (Oct 1987):1080-1091.

Mori83] Moriconi, M. 1983. "PegaSys: An Environment for Displaying, Animating, and Reasoning About
Graphical Descriptions of Systems." In Proceedings Symposium on Software Validation, H.-L. Han-
sen (ed.), September, Darmstadt. Amersterdam: North-Holland.

[Morr7l] Morris, J.H. "Another Recursion Induction Principle." ACM: Communications of the ACM, 14/5
(1971):351-354.

[Mor"'] Morris, J.H., and B. Wegbreit. 1977. "Program Verification by Subgoal Induction." In Current Trends
in Programming Methodology, no. 2, Ch. 8. Englewood Cliffs, NJ: Prentice Hall.

[Mod76] Motley, R.W., and W.D. Brooks. November 1976. Statistidal Prediction of Programming Errors. Grif-
fiss Air Force Base, NY: Rome Air Development Center. **

[Muno88] Munoz, C.U. "An Approach to Software Product Testing." IEEE: Transactions on Software
Engineering, 14/11 (Nov 1988):1589-1596.

[Muns89] Munson, J.C. and T.M. Khoshgoftaar. 1989 "The Dimensionality of Program Complexity." In
Proceedings 11th International Conference on Software Engineering, May 15-18, Pitsburgh, PA,
245-253. Washington, DC: IEEE Computer Society Press.

[Mura89] Murata, T., B. Shenker, and S.M. Shatz. "Detection of Ada Static Deadlocks Using Petri Net
Invariants." IEEE: Transactions on Software Engineering, 15/3 (May 1989):314-325.

[Musa7S] Musa, J.D. "A Theory of Software Reliability and Its Application." IEEE: Transactions on Software
Engineering, 1/1 (Mar 1975):312-327.

[Musa76] Musa, J.D. 1976. "An Exploratory Experiment with "Foreign" Debugging of Programs." Proceed-
ings Symposium on Computer Software Engineering, April 20-22, Polytechnic Institute for New York.

114



August 9, 1989

* MRI Symposia Series, vol. XXIV, J. Fox (ed.). New York: Polytechnic Press.
[Musa77] Musa, J.D. 1977. "Measuring Software Reliability." In Proceedings TIMS-ORSA Joint National Meet-

ing, May 9-11, San Francisco, CA. **
[Musa79a]Musa J.D. "Validity of Execution-Time Theory of Software Reliability." iEEE: ransactions on Reli-

ability, R-28/3 (Aug 1979):181-191.
[Mnua79b] Musa, J.D. 1979. "Software Reliability Measures Applied to System Engineering." In Proceedings

* AFIPS National Computer Conference, vol. 48, June 4-7, New York, NY, 941-946. Arlington, VA:
AFIPS Press.

[Musa80a]Musa, J.D. "Software Reliability Measurement." Journal of Systems and Software, 1/3
(1980):223-241. **

[MusaOb] Musa, J.D. "The Measurement and Management of Software Reliability." In Proceedings of the
IEEE, 68/9 (Sep 1980):1131-1141.

• [Musa4] Musa, J.D., and K. Okumaoto. 1984. "A Logarithmic Poisson Execution Time Model for Software
Reliability Measurements." In Proceedings 7th International Conference on Software Engineering,
March, 26-29, Orlando, FL, 230-238. Washington, DC: IEEE Computer Society Press.

[Musa87] Musa, J., A. lannino, K. Okumoto. 1987. Software Reliability: Measurement, Prediction, Application.
New York: McGraw Hill.

[Musa89] Musa, J.D, and R.U. Fujii. "Quantifying Software Validation: When to Stop Testing." IEEE:
• Software, 6/3 (May 1989):19-27.

[Muss79] Musser, D.R. 1979. "Abstract Data Type Specification in the AFFIRM System." In Proceedings
International Conference on Specification of Reliable Software, 47-57. Also published in IEEE: Tran-
sactions on Software Engineering, 6/1 (Jan 1980):24-32.

[Myer76] Myers, G.J. 1976. Software Reliability: Principles and Practices. New York: John Wiley & Sons.
[Myer77 Myers, G.J. "An Extension to the Cyclomatic Measure of Program Complexity." ACM: SIGPLAN

* Notices, 12/12 (Oct 1977):61-64.
[Myer78a] Myers, G.J. "A Controlled Experiment in Program Testing and Code Walkthroughs/Inspections."

ACM: Communications of the ACM, 21/9 (Sep 1978):760-768.
[Myer78b] Myers, G.J. "Software Reliability is Not an Equation." IEEE: Computer, 11/6 (Jun 1978):82-83.
[Myer79] Myers, G.J. 1979. The Art of Software Testing.
[Myer83J Myers, B.A. "Incense: A System for Displaying Data Structures." Computer Graphics, 17/3 (Jul

* 1983):115-125.
[MyerS6] Myers, W. "Can Software for the Strategic Defense Initiative ever be Error-Free?" IEEE: Computer,

19/10 (Nov 1986):61-67. **
[Myhr68] Myhre, J.M., and S.C. Saunders. "Comparison of Two Methods of Obtaining Approximate Confi-

dence Intervals for System Reliability." Technometrics, 10/2 (Feb 1968):37-49.
[NASA81] National Aeronautics and Space Administration. September 1981. "Software Engineering Labora-

tory (SEL) Data Base Organization and User's Guide." In Software Engineering Laboratory Series,
Greenbelt, MD: NASA. Report SEL-81-002. **

[NBS74] NBS FORTRAN Test Programs, Vols. 1-3. Gaithersburg, MD: National Bur-eau of Standards. Special
Publication 399, October 1974. **

[NBS82a] Planning for Software Validation, Verification, and Testing. Gaithersburg, MD: National Bureau of
Standards. Special Publication 500-98, September 1982.

f[NBS82b] Software Validation, Verification, and Testing Technique and Tool Reference Guide. Gaithersburg,
MD: National Bureau of Standards. Special Publication 500-93, November 1982.

[Nage82] Nagel, P.M., and J.A. Skrivan. February 1982. Software Reliability: Repetitive Run Experimentation
and Modeling. Seattle, WA: Boeing Computer Services. Technical Report BCS-40366. **

[Nag. 8] Nagel, P.M., F.W. Scholz, and J.A. Skrivan. June 1984. Software Reliability: Additional Investiga-
tions Into Modeling with Replicated Experiments. NASA Contractor Report 172378.

[Najm87] Najm, E. 1987. "A Verification Oriented Specification in Lotos of the Transport Protocol." In
Proceedings 7th IFIP Protocol Symposium, May, Zurich, Switzerland, 181-203. **

• 115



August 9, 1989

[Naka89] Nakagawa, Y. and S. Hanata. 1989. "An Error Complexity Model for Software Reliability Measure-
ment." In Proceedings 11th International Conference on Software Engineering, May 15-18, Pitsburgh,
PA, 123-236. Washington, DC: IEEE Computer Society Press.

[Naur69] Naur, P. "Programming by Action Clusters." BIT, 9/3 (1969):250-258.
[Nels66] Nelson, E.A. October 1966. Management Handbook for the Estimation of Computer Programming

Costs. System Development Corp. Report AD-A648750. **
[Neis73] Nelson, E.C. 1973. A Statistical Basis for Software Reliability Assessment. Redondo Beach, CA:

TRW. TRW Software Series TRW-SS-73-03. **
[Nels78] Nelson, E.C. "Estimating Software Reliability from Test Data." Microelectronics and Reliability,

Vol. 17 (1978):67-74.
[Neum75] Neumann, P.G., L. Robinson, K. Levitt, R.S. Boyer, and A.R. Saxema. 1975. A Provably Secure

Operating System. Menlo Park, CA: SRI International. SRI Project 2581. **
[Ng78] Ng, P.H., and G. Young. "A 1900 Fortran Postmortem Dump System." Software Practice and Experi-

ence, 8/4 (Jul 1978):421-428.
[Nguy86] Nguyen, V., A. Demers, D. Gries, and S. Owicki. "A Model and Temporal Proof System for Net-

works of Processes." Distributed Computing, January 1986, 7-25. **
[Nico87] Nicola, V.F., V.G. Kulkarni, and K.S. Trivedi. "Queueing Analysis of Fault-Tolerant Computer Sys-

tems." IEEE: Transactions on Software Engineering, 13/3 (Mar 1987):363-375.
[Noon75] Noonan, R.E. "Structured Programming and Formal Specification." IEEE: Transactions on Software

Engineering, 1/4 (Dec 1975).
[Ntaf79] Ntafos, S.C., and S.L. Hakimi. "On Path Cover Problems in Digraphs and Applications to Program

Testing." IEEE: Transactions on Software Engineering, 5/5 (Sep 1979):520-529.
[Ntafgla] Ntafos, S.C. 1981. On Testing with Required Elements. University of Texas at Dallas. Technical

Report 90. Also published in Proceedings 5th International Computer Software and Applications
Conference, November 18-20, Chicago, IL, 132-139. Los Alamitos, CA: IEEE Computer Society
Press.

[Ntaf8lbl Ntafos, S.C., and S.L. Hakimi. "On Structured Diagraphs and Program Testing." IEEE: Transac-
tions on Computing, C-30/1 (Jan 1981):67-71.

[Ntaf82] Ntafos, S.C. November 1984. On Required Element Testing. University of Texas at Dallas. Technical
Report No. 123. Also published in IEEE: Transactions on Software Engineering, 10/6 (Nov
1984):795-803.

[Ntaf84] Ntafos, S.C. 1984. "An Evaluation of Required Element Testing Strategies." In Proceedings 8th
International Conference on Software Engineering, August 28-30, London, England, 250-256. Wash-
ington, DC: IEEE Computer Society Press. **

[NtafS5] Ntafos, S.C. June 1985. A Comparison of Some Structural Testing Strategies. University of Texas.
Technical Report No. 210. Also published in IEEE: Transactions on Software Engineering, 14/6 (Jun
1988):868-874.

[Offki87] Offutt, A.J., and K.N. King. 1987. "A Fortran 77 Interpreter for Mutation Analysis." In Proceedings
SIGPLAN '87 Symposium on Interpreters and Interpretive Techniques, June, St. Paul, MN. Published
as ACM: SIGPLAN Notices, 22/7 (Jul 1987):177-188.

[Ohba84] Ohba, M. "Software Reliability Analysis Models." IBM: Journal of Research and Development, 28/4
(Jul 1984):428-443.

[Ohba89] Ohba, M. and X. Chou. 1989. "Does Imperfect Debugging Affect Software Reliability Growth?" In
Proceedings 11th International Conference on Software Engineering, May 15-18, Pitsburgh, PA,
237-244. Washington, DC: IEEE Computer Society Press.

[Okad82] Okada, M., and M. Azuma. 1982. "Software Development Estimation Study-A Model from
CAD/CAM System Development Experiences." In Proceedings 6th International Computer Software
and Applications Conference, March 9-12, San Diego, CA, 555-564. Los Angeles, CA: IEEE Com-
puter Society.

[Olde77] Oldehoeft, R.R. "A Contrast Between Language Level Measures." A Short Note in IEEE: Transac-
tions on Software Engineering, 3/6 (Nov 1977):476-478.

116



August 9, 1989

S[01de83] Oldehoeft, R.R. "Program Graphs and Execution Behavior." IEEE: Transactions on Software
Engineering, 9/1 (Jan 1983):103-108.

[Olen86] Olender, K.M., and L.J. Osterweil. 1986. "Specification and Static Evaluation of Sequencing Con-
straints in Software." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 14-22.
Washington, DC: IEEE Computer Society Press.

[Oste7Sa] Osterweil, L.J., and L.D. Fosdick. 1975. "DAVE-A FORTRAN Program Analysis Systems." In 4th
* Conference on Computer Science and Statistics: Proceeedings 8th Symposium on the Interface, Febru-

ary, Los Angeles, CA, 329-335. Springer-Verlag. **
[Oste7Sb] Osterweil, L.J., and L.D. Fosdick. September 1975. Data Flow Analysis as an Aid in Documentation,

Assertion Generation, Validation, and Error Detection. University of Colorado. Technical Report 15.
**

[Oste76a] Osterweil, L.J., and L.D. Fosdick. "DAVE - A Validation Error Detection and Documentation Sys-
* tem for Fortran Programs." Software Practice and Experience, 6/4 (Oct-Dec 1976):473-486.

[Oste76b] Osterweil, L.J., and L.D. Fosdick. 1976. "Some Experience with DAVE-A Fortran Program
Analyzer." In Proceedings AFIPS National Computer Conference, vol. 45, June 7-10, New York, NY,
909-915. Montvale, NJ: AFIPS Press.

[Oste77] Osterweil, L.J. 1977. "The Detection of Unexecutable Program Paths Through Static Data Flow
Analysis." In Proceedings 1st International Computer Software and Applications Conference,

* November 8-11, Chicago, IL, 406-413. Long Beach, CA: IEEE Computer Society Press.
[Oste80] Osterweil, L.J. July 1980. A Strategy for Effective Integration of Verification and Testing Techniques.

University of Colorado. Technical Report CU-CS-181-80.
[Oste8la] Osterweil, L.J. 1981. "Using Data Flow Tools in Software Engineering." In Program Flow Analysis:

Theory and Applications, Muchnick and Jones (eds.). Englewood Cliffs, NJ: Prentice Hall. **
[OsteSib] Osterweil, L.J. 1981. "A Strategy for Integrating Program Testing and Analysis." In Computer Pro-

gram Testing, B. Chandrasekaran and S. Radicchi (eds.), 187-229. North-Holland. **
[Oste83] Osterweil, L.J. "Toolpack - An Experimental Software Development Environment Research Pro-

ject." IEEE: Transactions on Software Engineering, 9/6 (Nov 1983):673-685.
[Oste84] Osterweil, L.J. 1984. "Integrating the Testing, Analysis, and Debugging of Programs." In Software

Validation, H.-L. Hausen (ed.), 73-102. North Holland.
[OsteS6a] Osterweil, L.J. July 1986. Notes on Object Management in Arcadia. University of Colorado. Technical

* Report CU-86-04. **
[OsteS6b] Osterweil, L.J. 1986. Software Environment Architecture. University of Colorado. Technical Report

CU-CS-332-86. **
[Oste87] Osterweil, L.J. March 1987. "Software Processes are Software Too." In Proceedings 9th International

Conference on Software Engineering, March 30 - Arpil 2, Monterey, CA, 2-13. Washington, DC:
IEEE Computer Society Press.

* [Ostr78] Ostrand, T.J., and E.J. Weyuker. 1978. "Remarks on the Theory of Test Data Selection." In Digest
IEEE Workshop on Software Testing and Test Documentation, December 18-20, Ft. Lauderdale, FL,
1-18. IEEE Computer Society Technical Committee on Software Engineering. **

[Ostr79] Ostrand, T.J., and E.J. Weyuker. 1979. "Error-Based Program Testing." In Proceedings 1979 Confer-
ence on Information Sciences and Systems, March, Baltimore, MD, 444-449. **

[OstrS0] Ostrand, T.J., and E.J. Weyuker. 1980 "Current Directions in the Theory of Testing." In Proceedings
* 4th International Computer Software and Applications Conference, October 27-31, Chicago, IL,

386-389. Los Alamitos, CA: IEEE Computer Society Press.
[Ostr4] Ostrand, T.J., and E.J. Weyuker. "Collecting and Categorizing Software Error Data in an Industrial

Environment." Journal of Systems and Software, 4/4 (1984):289-300.
[Ostr6I Ostrand, T.J., R. Sigal, and E.J. Weyuker. 1986. "Design for a Tool to Manage Specification-Based

Testing." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 41-50. Washing-
S' ton, DC: IEEE Computer Society Press.

[OstrSJ Ostrand, T.J., and M.J. Balcer. "The Category-Partition Method for Specifying and Generating
Functional Tests." ACM: Communications of the ACM, 31/6 (Jun 1988):676-686.

117



August 9, 1989

[Ote76] Ottenstein, K.J. 1976. A Program to Count Operators and Operands for ANSI-FORTRAN Modules.
Purdue University. Technical Report CSU-TR-196. **

[Otte7f] Ottenstein, L.M. August 1978. Predicting Parameters of the Software Validation Effort. Ph.D. diss.,
Purdue University. **

[Otte79 Ottenstein, L.M. "Quantitative Estimates of Debugging Requirements." IEEE: Transactions on
Software Engineering, 5/5 (Sep 1979):504-514.

[Ottedl] Ottenstein, L. 1981. "Predicting Numbers of Errors Using Software Science." In Proceedings ACM
SIGMETRICS Symposium/Workshop: Quality Metrics, March:157-167.

[Owic7f] Owicki, S.S. 1975. Axiomatic Proof Techniques for Parallel Programs. Ph.D. diss., Cornell University.
Also published inActa Informatica, no. 6 (1976):319-340.

[Owic76] Owicki, S., and D. Gries. "Verifying Properties of Parallel Programs: An Axiomatic Approach."
ACM: Communications of the ACM, 19/5 (May 1976):279-285.

[OwicS2] Owicki, S.S., and L. Lamport. "Proving Liveness Properties of Concurrent Programs." ACM: Tran-
sactions on Programming Languages and Systems, 4/3 (Jul 1982):445-495.

[Omna7] Oxman, S.W. 1978. "The Testing of the TRIDENT Command and Control System." In Digest IEEE
Workshop on Software Testing and Test Documentation, December 18-20, Ft. Lauderdale, FL,
284-295. IEEE Computer Society Technical Committee on Software Engineering. **

[Page74] Page, M.P., and J.P. Benson. "The Use of Software Probes in Testing FORTRAN Programs."
IEEE: Computer, Vol. 7 (1974):18-25. **

[Page82] Page, G.T., D.N. Card, and F.E. McGarry. September 1982. Evaluation of Management Measure of
Software Development. Greenbelt, MD: NASAIGSFC. Technical Report SEL-82-001, Vols. I and 2.
**

[Page84] Page, G.T., F.E. McGarry, and D.N. Card. November 1985. "A Practical Experience with Indepen-
dent Verification and Validation." In Proceedings 8th International Computer Software and Applica-
tions Conference. Washington, DC: IEEE Computer Society. **

[Page85] Page, G.T., F.E. McGarry, and D.N. Card. June 1985. Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics. Greenbelt, MD: NASA/GSFC. Technical
Report SEL-81-110. **

[Pag72] Paige, M.R., and E.F. Miller. 1972. "A Method for Ranking Priorities in Testing Computer Pro-
grams." In Proceedings Computer Systems Design Conference.

[Palg75] Paige, M.R. "Program Graphs, an Algebra, and Their Implication for Programming." IEEE: Tran-
sactions on Software Engineering, 1/3 (Sep 1975):286-291.

[Paig77a] Paige M.R. 1977. "Software Testing Principles and Practice Using a Testing Coverage Analyzer." In
Proceedings Software '77 Conference, October. **

[Palg77b] Paige, M.R. "On Partitioning Program Graphs." IEEE: Transactions on Software Engineering, 3/6
(Nov 1977):386-393.

[Pag78a] Paige, M. 1978. "An Analytical Approach to Software Testing." In Proceedings 2nd International
Computer Software and Applications Conference, November 13-16, Chicago, IL, 527-531. Long
*Beach, CA: IEEE Computer Society Press.

[Palg78b] Paige, M. 1978. "Software Design for Testability." In Proceedings IEEE 11th Hawaii International
Conference on System Sciences, January, Honolulu, HA. **

[Palg8l] Paige, M. 1981. "Data Space Testing." In Proceedings ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March:117-127.

[Panz76] Panzl, D.J. 1976. "Test Procedures-A New Approach to Software Verification." In Proceedings 2nd
International Conference on Software Engineering, October 13-15, San Francisco, CA, 477-485. Wash-
ington, DC: IEEE Computer Society Press.

[Panz78a] Panzl, D.J. "Automatic Software Test Drivers." IEEE: Computer, 11/4 (Apr 1978):44-50.
[Panz78bj Panzl, D.J. 1978. "A Language for Specifying Software Tests." In Proceedings AFIPS National Com-

puter Conference, vol. 47, June 5-8, Anaheim, CA, 5-8. Arlington, VA: AFIPS Press.
[Panz78c] Panzl, D.J. 1978. "Automatic Revision of Formal Test Procedures." In Proceedings 3rd International

Conference on Software Engineering, March 10-12, Atlanta, GA, 320-326. Washington, DC: IEEE

118



August 9, 1989

* Computer Society Press.
[Panzgla] Panzl, D.J. 1981. "Experience with Automatic Program Testing." In Proceedings NBS Trends and

Applications, May 28, 25-28. Gaithersburg, MD: National Bureau of Standards. **
[Pauz81b] Panzl, D. "A Method for Evaluating Software Development Techniques." ACM: SIGSOFT STME

(1981). **
[Pari76] Pariseau, R.J. November 1976. A Screening Criteria for Delivered Source in Military Software. Naval

* Air Development Center. Technical Report NADC-7916350, Vol. I. **
(Parn72a] Parnas, D.L. "Some Conclusions from an Experiment in Software Engineering Techniques." In

Proceedings AFIPS Fall Joint Computer Conference, vol. 41, December 5-7, Anaheim, CA, 325-329.
Montvale, NJ: AFIPS Press.

[Parm72b] Parnas, D.L. "On the Criteria to be Used in Decomposing Systems into Modules." ACM: Communi-
cations of the ACM, 15/12 (Dec 1972):1053-1058.

* [Parm72e] Parnas, D.L. "A Technique for Software Module Specification with Examples." ACM: Communica-
tions of the ACM, 15/5 (1972):330-336.

[Parn74] Parnas, D. "On a 'Buzzword': Hierarchical Structure." In Proceedings Information Processing (IFIP)
Congress '74, August 5-10, Stockholm, Sweden. Amsterdam: North-Holland.

[Parn77] Parnas, D.L. 1977. "The Use of Precise Specifications in the Development of Software." In Proceed-
ings Information Processing (IFIP) Congress '77, August 8-12, Toronto, Canada, 861-867. Amster-

* dam: North-Holland.
[Parn78] Parnas, D.L. 1978. "Designing Software for Ease of Extension and Contraction." In Proceedings 3rd

International Conference on Software Engineering, March 10-12, Atlanta, GA, 264-277. Washington,
DC: IEEE Computer Society Press.

[Parn79] Parnas, D.L. 1979. "The Role of Program Specification." In Research Directions in Software Technol-
ogy, P. Wegner (ed.), 364-370. MIT Press.

* [Parm8S] Parnas, D.L. "Software Aspects of Strategic Defense Systems." ACM: SIGSOFT Software Engineer-
ing Notes, 10/5 (Oct 1985):15-23.

[Parn88] Parnas, D.L., A.J. van Schouwen, and S.P. Kwan. May 1988. Evaluation Standards for Safety Criti-
cal Software. Queens University. Technical Report 88-220.

[ParrS0] Parr, F.N. "An Alternative to the Rayleigh Curve Model for Software Development Effort." IEEE:
7ansactions on Software Engineering, 6/5 (May 1980):291-296.

* [Pase87a] Pase, B., M. Saaltink, and S. Kromodimoeljo. November 1987. m-EVES User's manual. I.P. Sharp
Associates. Technical Report TR-87-5402-14. **

[Pase87b] Pase, B., and S. Kromodimoeljo. January 1987. NEVER: An Interactive Theorem Prover. I.P. Sharp
Associates. Conference Paper CP-87-5402-20. **

[Pate89] Pate, S., R.A. Orr, and M.T. Norris. May 1989. "Tools to Support Formal Methods." In Proceedings
11th International Conference on Software Engineering, May 15-18, Pitsburgh, PA, 123-132. Washing-

* ton, DC: IEEE Computer Society Press.
[PaytS2J Payton, T., S. Keller, J. Perkins, S. Rowan, and S. Mardinly. 1982. "SSAGS: A Syntax and Seman-

tics Analysis and Generation System." In Proceedings 6th International Computer Software and Appli-
cations Conference, March 9-12, San Diego, CA, 424-433. Los Angeles, CA: IEEE Computer
Society.

[Pearg4l Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Reading, MA:
* Addison Wesley.

[PereS'] Perera, I.A., and L.J. White. 1985. Selecting Test Data for the Domain Testing Strategy. University of
Alberta. Technical Report TR85-5. **

[PerkU6] Perkins, J., D.M. Lease, and S.E. Keller. 1986. "Experience Collecting and Analyzing Automatable
Software Quality Metrics for Ada." In Proceedings 4th Annual National Conference on Ada Technol-
ogy, March, Atlanta, GA, 67-74.

• [Perk$7] Perkins, J.A., and R.S. Gorzela. 1987. "Experience Using an Automated Metric Framework to
Improve the Quality of Ada Software." In Proceedings Joint Conference of 5th National Conference
on Ada Technology and Washington Ada Symposium, March 16-19, Arlington, VA, 277-284.

119



August 9, 1989

Washington, DC: ACM Ada Technical Committee.
[PerI8l] Perlis, A.J., F.G. Sayward, and M. Shaw (eds.). 1981. Software Metrics: An Analysis and Evaluation.

Cambridge, MA: MiT Press. **
[Perr83] Perry, W.E. 1983. A Structured Approach to Systems Testing. Wellesley, MA: QED Information Sci-

ences, Inc.
[Perr86J Perry, W.E. 1986. How to Test Software Packages. New York: John Wiley & Sons.
[Perr87] Perry, S., et al. March 1987. Product Assurance Policies and Procedures for Flight Dynamics Software

Development. Greenbelt, MD: NASAIGSFC. Technical Report SEL-87-001. **
[PerrSS] Perry, W.E. 1988. "A Structured Approach to Systems Testing." In Welilesley, MA: QED Informa-

tion Sciences, Inc. **
[Pesc85] Pesch, H., H. Schaller, P. Schnupp, and A.P. Spirk. 1985. "Test Case Generation Using Prolog." In

Proceedings 8th International Conference on Software Engineering, August 28-30, London, England,
' Cl ,,ashington, DC: IEEE Computer Society Press.

[Pete76] . eterson, R.J. 1976. "TESTER/i: An Abstract Model for the Automatic Synthesis of Program Test
Case Specifications." In Proceedings Symposium on Computer Software Engineering, April 20-22,
Polytechnic Institute for New York. MRI Symposia Series, vol. XXIV, J. Fox (ed.). New York:
Polytechnic Press. **

[Pete77] Peterson, J. "Petri Nets." ACM: Computing Surveys, 9/3 (Sep 1977):223-252.
[Petell] Peterson, J. 1981. Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ: Prentice-Hall.

[PetsS'] Petschenik, N.H. "Practical Priorities in System Testing." IEEE: Software, 2/5 (Sep 1985):18-23.
[PlatSO] Piatkowski, T.F. 1980. "Remarks on the Feasibility of Validating and Testing ADCCP Implementa-

tions." In Proceedings Trends and Applications Symposium. **
[Pica8l] Picasso, G.O. December 1981. The Rayleigh Curve as a Model for Effort Distribution Over the Life of

Medium Scale Software Systems. Greenbelt, MD: NASA/GSFC. Technical Report SEL-81-012. **
[Piku76] Pikul, R.A., and R.T. Wojcik. 1976. "Software Effectiveness: A Reliability Growth Approach." In

Proceedings Symposium on Computer Software Engineering, April 20-22, Polytechnic Institute for
New York. MRI Symposia Series, vol. XXIV, J. Fox (ed.). New York: Polytechnic Press.

[Pimo75] Pimont, S., and J.-C. Rault. "A Software Reliability Assessment Based on a Structural and
Behavioral Analysis of Programs." In Proceedings 2nd International Conference on Software
Engineering, October 13-15, San Francisco, CA, 486-491. Washington, DC: IEEE Computer Society
Press.

[Ppp78J Pippenger, N. "Complexity Theory." Scientific American (Jun 78):114-124.
[Piwo82] Piwowarski, P. "A Nesting Level Complexity Measure." ACM: SIGPLAN Notices, 17/9 (Sep

1982):44-50.
[Ploe79] Ploedereder. E. 1979. "Pragmatic Techniques for Program Analysis and Verification." In Proceedings

4th International Conference on Software Engineering, September 27-29, Munich, Germany, 63-72.
Washington, DC: IEEE Computer Society Press. **

[Pnue77] Pnuenuli, A. 1977. "The Temporal Logic of Programs." In Proceedings of the 18th Annual Symposium
on Foundations of Computer Sciences, Oct 31 - Nov 2. **

[Pola81] Polak, W. 1981. "Compiler Specification and Verification." In Lecture Notes in Computer Science.
Cimpiler Specification and Verification, 124. G. Goos and J. Hartmanis (eds.) New York: Springer-
Verlag. **

[Pooe74] Pooch, U.W. "Translation of Decision Tables." ACM: Computing Surveys, 6/2 (Jun 1974):125-151.
[Pool73] Poole, P.C. 1973. "Debugging and Testing." In Advanced Course on Software Engineering, F.L. Bauer

(ed.), 278-318. New York: Springer-Verlag. **
[Popk78] Popkin, G.S., and M.L. Shooman. November 1978. On the Number of Tests Necessary to Verfy a

Computer Program. Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report
RADC-TR-78-229

[Post87] Poston, R.M., and M.W. Bruen. "Counting Down to Zero Software Failures." IEEE: Software, 4/5
(Sep 1987):54-61.

120



August 9, 1989

* [PoutS87 Poutanen, 0. 1987. "Two Portable Ada Testing Tools TBGEN and TCMON." In Proceedings Ada
Europe Conference, May 26-28, Stockholm, Sweden, :197-208. New York: Cambridge University
Press

[PratSO] Prather, R.C. 1980. "Model Evaluation Strategy." In Proceedings ACM/NBS 19th Annual Technical
Symposium: Pathways to System Integrity, June, Gaithersburg, MD, 137-142.

[Prat83] Prather, R.E. "Theory of Program Testing." Bell System Technical Journal, 10/2/v62 (Dec
1983):3073-3105. **

[Prat87] Prather, R.E., and J.P. Myers, Jr. "The Path Prefix Software Testing Strategy." IEEE: Transactions
on Software Engineering, 13/7 (Jul 1987):761-766.

[Press83] Presson, P.E., J. Tsai, T.P. Bowen, J.V. Post, and R.L. Schmidt. July 1983. Software Interoperability
and Reusability, Vols. I and II. Griffiss Air Force Base, NY: Rome Air Development Center. Techni-
cal Report RADC-TR-83-174.

* [Prin7S] Principato, R.N. 1978. A Formalization of the State Machine Specification Technique. MIT Labora-
tory of Computer Science. Report MIT/hcs/TR-2-2. **

[ProbS0] Probert, R.L. 1980. New and Old Test Techniques: Grey Box Testing and Software Instrumentation.
University of Ottowa. Technical Report 80-13. **

[Prob82a] Probert, R.L. 1982. "Grey-Box (Design-Based) Testing Techniques." In Proceedings 15th Hawaii
International Conference on System Sciences, January, Honolulu, Hawaii, 94-102. **

* [Prob82b] Probert, R.L., and H. Ural. 1982. "Incremental Improvement of Specifications by Testing." In
Proceedings Workshop on Effectiveness of Testing and Proving Methods, May, Avalon, CA, 37-49. **

[ProbSic] Probert, R.L. "Optimal Insertion of Software Probes in Well-Delimited Programs." IEEE: Transac-
tions on Software Engineering, 8/1 (Jan 1982):34-42.

[Prob83] Probert, R.L., D.R. Skuce, and H. Ural. 1983. "Specification of Representative Test Cases Using
Logic Programming." In Proceedings IEEE 16th Hawaii International Conference on System Sciences,

• January, Honolulu, HA, 190-196. **
[Prob84] Probert, R.L., and H. Ural. "High-Level Testing and Example-Directed Development of Software

Specifications." Journal of Systems and Software, 4/4 (Nov 1984):317-325.
[Prot88] Protzel, P.W. 1988. "Automatically Generated Acceptance Test: A Software Reliability Experi-

ment." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff,
Canada, 196-203. Washington, DC: IEEE Computer Society Press.

• [Pryc82] Prycker, M. de. "On the Development of a Measurement System for High Level Language Program
Statistics." IEEE: Transactions on Software Engineering, C-31 (Sep 1982):883-891. **

[Purd72] Purdom, P. "A Sentence Generator for Testing Parsers." BIT 12/3 (Jul 1972):366-375.
[Putn77] Putnam, L.H., and R.W. Wolverton. 1977. "Quantitative Management: Software Cost Estimating."

In Proceedings 1st International Computer Software and Applications Conference, November 8-11,
Chicago, IL. Long Beach, CA: IEEE Computer Society Press. **

S[Putn78] Putnam, L.H. "A General Empirical Solution to the Macro Software Sizing and Estimation Prob-
lem." IEEE: Transactions on Software Engineering, 4/4 (Jul 1978):301-316.

[Putn79] Putnam, L.H., and A. Fitzsimmons. "Estimating Software Costs." Datamation, (Sep 1979):189-198,
continued in Datamation, (Oct 1979):171-178 and (Nov 1979):137-140.

[Putn82] Putnam, L.H. 1982. "The Real Economics of Software Development." In The Economics of Infor-
mation Processing, R. Goldberg and H. Lorin. New York: John Wiley. **

• [Quir85l Quirk, W.J., ed. 1985. Verification and Validation of Real-Time Software. New York: Springer-Verlag.
[RADC76a] Rome Air Development Center. August 1976. Software Reliability Study. Griffiss Air Force Base,

NY: Rome Air Development Center. Technical Report RADC-TR-76-238.
[RADC76b] JAVS: Jovial Automated Verification System. Griffiss Air Force Base, NY: Rome Air Development

Center. Technical Report RADC-TR-76-20, February 1976. **
[RADC86] Rome Air Development Center. 1986. Ada Test and Verification System (ATVS). Griffiss Air Force

• Base, NY: Rome Air Development Center. RADC Contract F30602-86-C-0192. **
[Rabi77] Rabin, M.O. "Complexity of Computations." ACM: Communications of the ACM, 20/9 (Sep

1977):625-633.

121



August 9, 1989

[RamaT73] Ramamoorthy, C.V., R.E. Meeker, and J. Turner. 1973. "Design and Construction of an Automated
Software Evaluation System." In Conference Record 1973 IEEE Symposium on Computer Software
Reliability, April 30 -May 2, New York, 28-37. **

[Ra=a74a] Ramamoorthy, C.V., and S.F. Ho. August 1974. FORTRAN Automatic Code Evaluation System.
University of California at Berkeley. Technical Report ERL-M-466. **

[Rama74b] Ramamoorthy, C.V., R. Cheung, and K.H. Kim. March 1974. Reliability and Integrity of Large Com-
puter Programs. University of California at Berkeley. Technical Report (ERL-M430). **

[Rama75a] Ramamoorthy, C.V., and S-B.F. Ho. "Testing Large Software with Automated Software Evaluation
Systems." IEEE: Transactions on Software Engineering, 1/1 (Mar 1975):187-199.

[Rama]75b Ramamoorthy, C.V., K.H. Kim, and W.T. Chen. "Optimal Placement of Software Monitors Aiding
Systematic Testing." **

[Rama76] Ramamoorthy, C.V., S.-B.F. Ho, and W.T. Chen. "On the Automated Generation of Program Test
Data." IEEE: Transactions on Software Engineering, 2/4 (Dec 1976):293-300.

[RamaS0] Ramamoorthy, C.V., and S.F. Ho. 1980. "Modeling of the Software Reliability Growth Process." In
Proceedings 4th International Computer Software and Applications Conference, October 27-31, Chi-
cago, IL, 161-169. Los Alamitos, CA: IEEE Computer Society Press. **

[Rama81] Ramamoorthy, C.V., Y.R. Mok, F.B. Bastani, G.H. Chin, and K.S. Suzuki. "Application of a
Methodology for the Development and Validation of Reliable Process Control Software." IEEE:
Transactions on Software Engineering, 7/6 (Nov 1981):537-555.

[Rma82] Ramamoorthy, C.V., and F.B. Bastani. "Software Reliability - Status and Perspectives." IEEE:
Transactions on Software Engineering, 8/4 (Jul 1982):354-367.

[Rand75] Randell, B. "System Structure for Software Fault Tolerance." IEEE: Transactions on Software
Engineering, 1/2 (Jun 1975):220-232.

[RappSO] Rapps, S., and E.J. Weyuker. August 1980. Data Flow Analysis Techniques for Program Test Data
Selection. New York University, Courant Institute of Mathematical Sciences. Technical Report 023.
Published in Proceedings 6th International Conference on Software Engineering, September 13-16,
Tokyo, Japan, 272-278. Washington, DC: IEEE Computer Society Press. Also published in IEEE:
Transactions on Software Engineering, 11/4 (Apr 1985):367-375.

[Rsu[73] Rault, J.-C. 1973. "Extension of Hardware Fault Detection Models to the Verification of Software."
In Program Test Methods, W.C. Hetzel (ed.), 255-262. Englewood Cliffs, NJ: Prentice-Hall. **

[Razo85] Razouk, R.R., and C.V. Phelps. 1985. "Performance Analysis Using Timed Petri Nets." In Protocol
Specification, Verification, and Testing, IV, Y. Yemini, R. Strom, and S. Yemini (eds.), 561-576.
Amersterdam: North-Holland. **

[Redd84a] Reddy, G.R. May 1984. Application of Software Quality Metrics to a Relational Data Base System.
M.S. thesis. Virginia Polytechnic Institute. **

[Reddg4b] Reddy, G. June 1984. Analysis of a DataBase Management System Using Software Metrics. M.S.
thesis, Virginia Polytechnic. **

[RedwS3] Redwine, S.T. Jr. "An Engineering Approach to Software Test Data Design." IEEE: Transactions on
Software Engineering, 9/2 (Mar 1983):191-200.

[RegoXX] Rego, V., and A.P. Mathur. Stochastic Models of a Program Unification Technique for Concurrent
Enhancement. Purdue University. **

[R.if/5] Reifer, D.J. 1975. "Automated Aids for Reliable Software." In Proceedings International Conference
on Reliable Software, April 21-23, Los Angeles, CA, 131-142. IEEE Cat. No. 75CH0940-7CSR.

[Reif781 Reifer, D.J. September 1978. Verification, Validation, and Certification: A Software Acquisition
Guidebook. Redondo Beach, CA: TRW Defense and Space Systems. Report TRW-SS-78-05. **

[Reif7a] Reifer, D.J. "Software Failure Modes and Effects Analysis." IEEE: ransactions on Reliability,
R-28/3 (Aug 1979):247-249. Previously published in Proceedings Industry/SAMSO Conference and
Workshop on Mission Assurance, April, Los Angeles, CA.

[Reif79b] Reifer, D.J., and S. Trattner. "A Glossary of Software Tools and Techniques." IEEE: Computer,
10/7 (Jul 1977):6-14.

122



August 9, 1989

* [Reif79e] Reif, J.H. 1979. "Data Flow Analysis of Communicating Processes." In Proceedings 6th ACM
Annual Symposium on Principles of Programming Languages, San Antonio, TX, 257-268. **

[Reft79] Reiter, R.W. Jr. December 1979. Empirical Investigation of Computer Program Development
Approaches and Computer Programming Metrics. Ph.D. diss., University of Maryland. **

[ReynS6] Reynolds, R.G., and D. Roberts. 1986. "PARTIAL: A Tool to Support the Metrics Driven Design of
Ada Programs." In Proceedings 15th ACM Computer Science Conference, February, 213-219. **

* [ReynS7] Reynolds, R.G. "The Partial Metrics System: Modeling the Stepwise Refinement Process Using Par-
tial Metrics." ACM: Communications of the ACM, 30/11 (Nov 1987):956-963.

[Reyn891 Reynolds, R.G. "The Partial Metrics System: A Tool to Support the Metrics-Driven Design of
Psuedocode Programs." Journal of Systems and Software, no. 9 (1989):287-295.

[Ricb76] Richards, P., and P. Chang. December 1976. Localization of Variables: A Measure of Complexity. GE
Technical Information Series 76CIS07. **

• [Rich7g] Richardson, D.J., L.A. Clarke, and D.L. Bennett. July 1978. SYMPLR, SYmbolic Multivariate Poly-
nomial Linearization and Reduction. University of Massachusetts. Technical Report 78-16. **

[Rch$la] Richardson, D.J., and L.A. Clarke. 1981. "A Partition Analysis Method to Increase Program Relia-
bility." In Proceedings 5th International Conference on Software Engineering, March 9-12, San Diego,
CA, 244-253. Washington, DC: E Computer Society Press.

[RIchSlb] Richardson, D.J. August 1981. Examples of the Application of the Partition Analysis Method. Univer-
* sity of Massachusetts. Technical Report TN-48. **

[Rich81e] Richardson, D.J. September 1981. A Partition Analysis Method to Demonstrate Program Reliability.
Ph.D. diss., University of Massachusetts. **

[Rich8ld] Richardson, D.J. September 1981. Specifications for Partition Analysis. University of Massachusetts.
Technical Report TR-81-35. **

[PIch8le] Rich, C., and R.C. Waters. June 1981. Abstraction, Inspection, and Debugging in Programming. MIT
* Artificial Intelligence Laboratory. Memo 634. **

[Rich82] Richardson, D.J., and L.A. Clarke. 1982. "On the Effectiveness of the Partition Analysis Method."
In Proceedings 6th International Computer Software and Applications Conference, March 9-12, San
Diego, CA, 529-538. Los Angeles, CA: IEEE Computer Society.

(Rlch8$a] Richardson, D.J., and L.A. Clarke. 1985. "Testing Techniques Based on Symbolic Evaluation." In
Software: Requirements, Specification, and Testing, T. Anderson (ed.), 93-110. Blackwell Scientific

• Publications.
[Rcih85b] Richardson, D.J., and L.A. Clarke. "Partition Analysis: A Method of Combining Testing and Verifi-

cation." IEEE: ransactions on Software Engineering, 11/12 (Dec 1985):1477-1490.
[Rch86al Richardson, D.J., and M.C. Thompson. December 1986. An Analysis of Test Data Selection Criteria

Using the RELAY Model of Error Detection. University of Massachusetts. Technical Report 86-65. **
[Rich86b] Richardson, D.J., and M.C. Thompson. December 1986. A New Model for Error Detection. Univer-

• sity of Massachusetts. COINS Technical Report 86-64. **
[Rlch87a] Richardson, D.J., and M.C. Thompson. December 1987. Testing Based on the RELAY Model of

Error Detection. University of Massachusetts. Technical Report 87-119.
[Rich87b] Richier, J.L., et al. "Verification in XESAR of the Sliding Window Protocol." In Proceedings 7th

IFIP Protocol Symposium, May, Zurich, Switzerland, 235-248. *0
[Ich88a] Richardson, D.J., and M.C. Thompson. 1988. "The RELAY Model of Error Detection and Its

* Application." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21,
Banff, Canada, 223-230. Washington, DC: IEEE Computer Society Press.

[Ridd781 Riddle, W.E., J. Wileden, J. Sayler, A. Segal, and A. Stavely. "Behavior Modeling During Software
Design." IEEE: ransactions on Software Engineering, 4/7 (Jul 1978):283-292.

[Rldd79] Riddle, W.E. "An Approach to Software System Behavior Modeling." Comput. Lang., 4
(1979):29-47.**

* (RIddS8O Riddell, I.J., M.A. Henneil, M.R. Woodward, and D. Hedley. 1980. Practical Aspects of Program
Mutation. University of Liverpool. **

123



August 9, 1989

[Rae8OJ Roach, M.G. 1980. "A Comparison of Cost Estimation Techniques for Software Development Pro-
jects." In Proceedings ACM/NBS 19th Annual Technical Symposium: Pathways to System Integrity,
June, Gaithersburg, MD, 229-235.

Robi77] Robinson, L., and 0. Roubine. January 1977. SPECIAL - A Specification and Assertion Language.
Menlo Park, CA: SRI International. Technical Report CSL-46. **

[Robl79] Robinson, L., K.N. Levitt, and B.A. Silverburg. 1979. The HDM Handbook. SRI International. Pro-
ject No. 4628. **

[Roby&S] Roby, C.G., ed. December 1985. Proceedings 1st IDA Workshop on Formal Specifications and Verifi-
cation ofAda. Alexandria, VA: Institute for Defense Analyses. IDA Memorandum Report M-146.

[Roe87J Roe, R.P., and J.H. Rowland. "Some Theory Concerning Certification of Mathematical Subroutines
by Black Box Testing." IEEE: TRansactions on Software Engineering, 13/6 (Jun 1987):677-682.

[RoggSO] Roggio R.F. 1980. A Code-Based Model for Predicting Path Faults in COBOL Programs. Ph.D. diss.,
Auburn University.

[Rola86] Rolandelli, C., T.J. Shimeall, C. Genung, and N. Leveson. February 1986. Software Fault 7)ee
Analysis Tool User's Manual. University of California at Irvine. Technical Report 86-06 **

[Romb84] Rombach, H.D. 1984. "Software Design Metrics for Maintenance." In Proceedings 9th Annual
Software Engineering Workshop, November 28, Greenbelt, MD. NASA/GSFC, 100-135.

[RombSa] Rombach, H.D., and V.R. Basili. 1985. "A Methodology for Evaluating and Improving Life Cycle
Support by Techniques." In Proceedings &h Minnowbrook Workshop on Software Performance
Evaluation, July 30 - August 2, Blue Mountain Lake, NY. **

[Romb85b] Rombach, H.D., and R.W. Selby Jr. 1985. "The Use and Interpretation of Characteristics Metrics
Sets with Change, Error, and Fault Data." In Proceedings NSIA National Joint Conference on
Software Qualiy and Productivity, Williamsburg, VA, March. **

[Romb87a] Rombach, H.D. 1987. "A Controlled Experiment on the Impact of Software Structure on Maintai-
nability." IEEE: ransactions on Software Engineering, 12/3 (Mar 1987):344-354.

[RombS7b] Rombach, H.D., and V.R. Basili. 1987. "A Quantitative Assessment of Software Maintenance: An
Industrial Case Study." In Proceedings IEEE Conference on Software Maintenance, September 21-24,
Austin, TX, 134-144. **

[Romb87e] Rombach, H.D., and L. Mark. July 1987. A Meta Information Base for Software Engineering.
University of Maryland. Technical Report TR-1765. **

[Romb88a] Rombach, H.D., and L. Mark. July 1988. Software Process and Product Specifications: A Basis for
Generating Customized Software Engineering Information Bases. University of Maryland. Technical
Report CS-TR-2062/UMIACS-TR-88-51. **

[Romb88b] Rombach, H.D., V.R. Basili, K. Reed, L. Mark, D. Stotts, and other members of the TAME pro-
ject. October 1988. TAME: Requirements and System Architecture. University of Maryland. Techni-
cal Report TAME-TR-3-1988. **

[Romb88c] Rombach, H.D. 1988. Software Specification: A Framework. Carnegie-Mellon University. Published
as CMU/SEI TR (curriculum module). **

[RombS8d] Rombach, H.D. 1988. "A Specification Language for Software Engineering Processes and Pro-
ducts." In Proceedings 4th Software Process Workshop, London, May 11-13. **

[RombgSe] Rombach, H.D. 1988. "What Data are Needed for Meaningful Reliability Assessment and Predic-
tion?" In Proceedings Annual National Joint Conference on Software Quality and Productivity, Arling-
ton, VA, March 1-3. **

[Rombg8f]Rombach H.D. 1988 "The Evolution of Design Metrics Research: A Subjective View." In Proceed-
ings Design Metrics Workshop, sponsored by the SPS and US **

Romb8g] Rombach H.D., V.R. Basili, J. Bailey, and A. Delis. 1988. "Ada Reusability Analysis and Measure-
ment." In Proceedings 6th Symposium on Empirical Foundations of Information and Software Sci-
ences, Atlanta, GA, October 19-21. **

[Romb8Sh] Rombach H.D., V.R. Basili, J. Bailey, A. Delis, and F. Farhat. 1988. "Ada Reuse Metrics."
In Proceedings AIRMICS Workshop on Ada Reusability and Metrics, Atlanta, GA, October
19-21. **

124



August 9, 1989

* [Romb89aJ Rombach, H.D., and T. Ulery. 1989. "Improving Software Maintenance Through Measurement."
IEEE Proceedings, special issue on Software Maintenance, to be published in April 1989. **

[Romb89bI Rombach, H.D., and L. Mark. July 1989. Generating Customized Software Engineering Information
Bases from Software Process and Product Specifications. University of Maryland. Technical Report
CS-TR-2063. **

[Roqu86] Roquet, J.C., and P.J. Traverse. 1986. "Safe and Reliable Computing Onboard the Airbus and ATR
* Aircraft." In Proceedings Safety of Computer Control Systems (SAFECOM) '86, October, Sarlat,

France, 93-97. **
[Rose75] Rosen, B. 1975. Data Flow Analysis for Recursive PLI Programs. Yorktown Heights, NY: IBM T.J.

Watson Research Center. Report RC5211. 0*
[RoseM4] Rosenblum, D.S. "A Method of Designing Ada Tools using DIANA Trees as an Internal Form." In

Proceedings IEEE Computer Society Conference on Ada Applications and Environments, October
* 15-18, St. Paul, MN, 63-70. Also published in IEEE: Software, 2/2 (Mar 1985):24-33.

[RosegSa] Rosenblum, D.S. "A Methodology for the Design of Ada Transformation Tools in a DIANA
Environment." IEEE: Transactions on Software Engineering, 2/2 (Mar 1985):24-33.

[RoseS5b] Rosenthal, L.S. January 1985. Guidance on Planning and Implementing Computer System Reliability.
Gaithersburg, MD: National Bureau of Standards. NBS Special Publication 500-12.

[RossUS] Rosson, C.V. 1988. Management Indicators: Assessing Product Reliability and Maintainability. Vir-
* ginia Polytechnic Institute. TR-88-40.

[Ronb77] Roubine, 0., and L. Robinson. 1977. SPECIAL (SPECIfication and Assertion Language): Reference
Manual. Menlo Park, CA. SRI International. Technical Report TR-CSG-45. **

[RowiSla] Rowland, J.H., and P.J. Davis. "On the Use of Transcendentals for Program Testing." Journal of the
ACM, 28/1 (Jan 1981):181-190.

[RowlSlb] Rowland, J.H., and P.J. Davis. "On the Selection of Test Data for Recursive Mathematical Subrou-
* tines." SLAM: Journal on Computing, 10/1 (Feb 1981):59-72. **

[Rowl8] Rowland, J.H. 1988. "Artificial Systems for Software Engineering Studies." In Proceedings 2nd
Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 80-88. Washing-
ton, DC: IEEE Computer Society Press.

[Rube75] Rubey, R.J., J.A. Dana, and P.W. Biche. "Quantitative Aspects of Software Validation." IEEE:
Transactions on Software Engineering, 1/2 (Jun 1975):150-155.

* [Rubi82] Rubin, J., and C.H. West. "An Improved Protocol Validation Technique." Computer Networks, 6
(1982):65-73. **

[Rums77] Rumsey, J.R., and D.W. Abmayr. 1977. "An Effective Method for Measurement and Analysis of
System Software Performance." In Proceedings AFIPS National Computer Conference, vol. 46, June
13-16, Dallas, TX, 523-527. Arlington, VA: AFIPS Press.

[Rush84I Rushby, J. 1984. Mathematical Foundations of the MLS Tool for Revised Special. Menlo Park, CA:
* SRI International. Draft Internal Note. **

[Russ83] Russinoff D.M. 1983. An Experiment with the Boyer-Moore Program Verification System: A Proof of
Wilson's Theorem. M.S. thesis, University of Texas. **

[Rustll] Rustin, R. (ed.). 1971. Debugging Techniques in Large Systems. Englewood Cliffs, NJ: Prentice-Hall.
[SAMS77] Failure Modes and Effects Analysis for Satellite, Launch Vehicle and Reentry Systems. SAMSO-STD

77-2, November 1977. **
* [SDIOS7] Strategic Defense Initiative Organization. 30 June 1987. Strategic Defense System Test and Evaluation

Master Plan (TEMP).
[SDIO88a] Strategic Defense Initiative Organization. 16 November 1988. Strategic Defense System Software Pol-

icy.
[SDIO88b] Strategic Defense Initiative Organization. 16 November 1988. Software Policy. SDIO Management

Directive No. 7.
* [SELS2] Annotated Bibliography of Software Engineering Laboratory (SEL) Literature. Greenbelt, MD:

NASA/GSFC. Report SEL-82-006. November 1982.

125



August 9, 1989

[SERCS/] Software Engineering Research Center. 1987. The Mothra Testing Environment, User's Manual. Pur-
due University. Technical Report SERC-TR-4-P.

[STARMS] Guidebook for the STARS Measurement Program, version 1. DoD STARS, September 1985. **
[STES6] Software Test and Evaluation Project. October 1986. Software Test and Evaluation Manual, Vol. III,

Good Examples of Software Testing in the Department of Defense. Georgia Institute of Technology.
Technical Report GIT-SERC-86/06. **

[SYSCS3] Avionics Software Support Cost Model. SYSCON Corp. USAF Avionics Laboratory, Technical
Report AFWAL-TR-1173, February 1983. **

[SabnS5] Sabnani, K.K., and A.T. Dahbura. 1985. "A New Technique for Generating Protocol Tests." In
Proceedings 9th Data Communications Symposium. Published in ACM: SIGCOM, 15/4 (1985):36-43.

[Sack6g] Sackman, H., W.J. Erickson, and E.E. Grant. "Exploratory Experimental Studies Comparing
On-Line and Off-Line Programming Performance." ACM: Communications of the ACM, 11/1 (Jan
1968):3-11.

[Sag186] Saglietti, F., and W. Ehrenberger. 1986. "Software Diversity - Some Considerations about its Bene-
fits and its Limitations." In Proceedings Safety of Computer Control Systems (SAFECOM) '86,
October, Sarlat, France. **

[Sahn87] Sahner, R.A., and K.S. Trivedi. "Performance and Reliability Analysis Using Directed Acycic
Graphs." IEEE: Transactions on Software Engineering, 10/4 (Jul 1984):432-437.

[Salt82] Salt, N. "Defining Software Science Counting Strategies." ACM: SIGPLAN Notices, 17/3 (Mar
1982):58-67.

[Same76] Samet, H. 1977. "Compiler Testing via Symbolic Interpretation." In Proceedings ACM 29th Annual
National Computer Conference, October 20-22, Houston, TX, 429-497. New York: Association for
Computing Machinery.

[SanA83] San Antonio, R.C., and K.L. Jackson. 1983. "Application of Software Metrics During Early Pro-
gram Phases." In Proceedings National Security Industrial Conference of Software Test and Evalua-
tion, February, Washington, DC. **

[Sane83] Sanela, D., and M. Wirsing. 1983. "A Kernel Language for Algebraic Specification and Implementa-
tion." In Proceedings International Conference on Foundations Computing Theory, August, Ber-
gholm, Sweden. **

[Sank85] Sankar, S., D.S. Rosenblum, and R. Neff. 1985. "An Implementation of Anna." In Proceedings
SIGAda International Conference, May, Paris, France. Published in ACM: Ada Letters,V/2 (Sep-Oct
1985):285-296.

[Sank86] Sankar, S., and D.S. Rosenblum. 1986. The Complete Transformation Methodology for Sequential
Runtime Checking of an Anna Subset. Stanford University. **

[SarS2] Sarikaya, B., and G.v. Bochmann. 1982. "Some Experience with Test Sequence Generation for Pro-
tocols." In Proceedings 2nd Workshop on Protocols, May, 555-567. **

[Sari4ej Sarikaya, B. March 1984. Test Design for Computer Network Protocols. Ph.D. thesis, McGill Univer-
sity. **

[SarIS4b] Sarikaya, B., and G.v. Bochmann. "Synchronization and Specification Issues in Protocol Testing."
IEEE: 7ansactions on Communications, COM-32/4 (Apr 1984):389-395.

[SariS7] Sarikaya, B., G.v. Bochmann, and E. Cerny. "A Test Design Methodology for Protocol Testing."
IEEE: Transactions on Software Engineering, 13/5 (May 1987):518-531.

[SarSlal Sarikaya, B. 1988. "Protocol Test Generation, Trace Analysis, and Verification Techniques." In
Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada,
123-130. Washington, DC: IEEE Computer Society Press.

[Sari$ib] Sarikaya, B., S. Eswara, V. Koukoulidis, and M. Barbeau. February 1988. A Formal Specification
Based Test Generation Tool. Concordia University. Research Report. **

[Sadi88c] Sarikaya, B., and G.v. Bochmann. March 1988. Dynamic Analysis of Specifications in an Extended
Finite-State Machine Model. Available from author at Concordia University. *

126



August 9, 1989

* [Sark89] Sarkar, D., and S.C. De Sarkar. "Some Inference Rules for Integer Arithmetic for Verification of
Flowchart Programs on Integers." IEEE: ransactions on Software Engineering, 15/1 (Jan 1989).

[Satt72] Satterthwaite, E. "Debugging Tools for High-Level Languages." Software Practice and Experience,
2/3 (Jul 1972):197-217.

[Satt75] Satterthwaite, E.H. 1975. Source Language Debugging Tools. Ph.D. thesis, Stanford University.
Technical Report STAN-CS-75-494. **

* [Saud62] Sander, R.L. 1962. "A General Test Data Generator for COBOL." In Proceedings 1962 SJCC, May,
San Francisco, CA, 317-323. $*

[Saxe77] Saxena, A.R. 1977. Static Detection of Deadlock. University of Colorado. Technical Report
CU-CS-122-77. **

[Scha79] Schaffer, R.E., et al. June 1979. Validation of Software Reliability Models. Griffiss Air Force Base,
NY: Rome Air Development Center. Technical Report RADC-TR-79-147.

* [Sche85] Scheid, J., and S. Anderson. March 1985. The Ina Jo1 Specification Language Reference Manual
(draft). System Development Corp. Technical Report TM(L) 6021/001/01. **

[Sch173] Schick, G.J., and R.W. Wolverton. 1973. "Assessment of Software Reliability." In Proceedings of
Operations Research, 395-422. Wurzburg-Wien: Physica-Verlag. **

[Schi78] Schick, G.J., and R.W. Wolverton. "An Analysis of Competing Software Reliability Models."
IEEE: Transactions on Software Engineering, 4/2 (Feb 1978):104-120.

* [Schl81] Schiffenbauer, R.D. September 1981. Interactive Debugging in a Distributed Computational Environ-
ment. Massachusetts Institute of Technology. Technical Report MIT/LCS/TR-264. **

[Schn75] Schneidewind, N.F. 1975. "Analysis of Error Processes in Computer Software." In Proceedings
International Conference on Reliable Software, April 21-23, Los Angeles, CA, 337-346. IEEE Cat.
No. 75CH0940-7CSR.

[Schn76] Schneidewind, N.F., et al. November 1976. Software Error Detection Models, Validation Tests and
* Program Complexity. Naval Postgraduate School. Report NPS52SS76111. **

[Schn77a] Schneidewind, N.F., and H.M. Hoffman. 1977. "Software Structure and Error Properties: Models
vs. Real Programs." In Proceedings TIMS-ORSA Joint National Meeting, May 9-11, San Francisco,
CA. **

[Schn77b] Schneidewind, N.F. "The Use of Simulation in the Evaluation of Software." IEEE: Computer, 10/4
(Apr 1977):47-53.

* [Schn77c] Schneidewind, N.F. "Modularity Considerations in Real Time Operating System Structures." In
Proceedings 1st International Computer Software and Applications Conference, November 8-11, Chi-
cago, IL, 397-403. Long Beach, CA: IEEE Computer Society Press.

[Schn7S] Schneider, V. "Prediction of Software Effort and Project Duration: Four New Formulas." ACM:
SIGPLAN Notices, 13 (Jun 1978):49-59. **

[Schn79a] Schneidewind, N.F., and H.-M. Hoffman. "An Experiment in Software Error Data Collection and
* Analysis." IEEE: Transactions on Software Engineering, 5/3 (May 1979):276-286.

[Schn79b] Schneidewind, N.F. 1979. "Software Metrics for Aiding Program Development and Debugging." In
Proceedings AFIPS National Computer Conference, vol. 48, June 4-7, New York, NY, 989-994. Arling-
ton, VA: AFIPS Press.

[Schr84] Schroeder, A. 1984. "Integrated Program Measurement and Documentation Tools." In Proceedings
7th International Conference on Software Engineering, March, 26-29, Orlando, FL, 304-313. Washing-

* ton, DC: IEEE Computer Society Press.
(Schu77] Schutts, D. 1977. "On a Hypergraph Oriented Measure for Applied Computer Science." In Proceed-

ings COMPCON Fall 1977, Long beach, CA, 295-296. IEEE.

1. Ina Jo is a trademark of the System Development Group of the Unisys Corp.

127



August 9, 1989

[Schu8] Schuman, S.A., E.M. Clarke, and C.N. Nikolaou. 1981. "Programming Distributed Applications in
Ada: A First Approach." In Proceedings 10th International Conference on Parallel Processing,
August, Ohio State University, OH, 38-49. Los Angeles, CA: IEEE Computer Society.

[Schw70a] Schwartz, J.T. 1970. "An Overview of Bugs." In Debugging Techniques in Large Systems, 1st Courant
Computer Science Symposium,1-16. NYU Ed. Randell Rustin (ed.). Englewood Cliffs, NJ: Prentice-
Hall.

[Scotg3a] Scott, R.K. 1983. Data Domain Modeling of Fault Tolerant Software Reliability. Ph.D. diss., North
Carolina State University. **

[Scot83b] Scott, R.K., et al. 1983. "Modeling Fault-Tolerant Software Reliability." In Proceedings 3rd Sympo-
sium on Reliability Distrib. Software Database Systems, Clearwater Beach, FL. **

[Scot84a] Scott, R.K., J.W. Gault, D.F. McAllister, and J.E. Wiggs. "Investigating Version Dependence in
Fault-Tolerant Software." AGARD Conference Proceedings 361, 21.1-21.10.

[Scot84b] Scott, R.K., J.W. Gault, D.F. McAllister, and J.E. Wiggs. 1984. "Experimental Validation of Six
Fault-Tolerant Software Reliability Models." In Proceedings 14th Fault-Tolerant Computing Sympo-
sium, 102-107.

[Scotg7] Scott, R.K., J.W. Gault, and D.F. McAllister. "Fault-Tolerant Software Reliability Modeling."
IEEE: Transactions on Software Engineering, 13/5 (May 1987):582-592.

[Sed183] Sedlmeyer, R.L., W.B. Thompson, P.E. Johnson. 1983. "Knowledge-Based Fault Localization in
Debugging." In Proceedings ACM SIGSOFT-SIGPLAN Software Engineering Symposium on High-
Level DebuS qing, March 20-23, Asilomar, CA. Published in ACM: Software Engineering Notes, 8/4
(Aug 1983).25-31. Baltimore,.MD: ACM Order Department.

[Selb831 Selby, R.W. Jr. "An Empirical Study Comparing Software Testing Techniques." In Proceedings 6th
Minnowbrook Workshop on Software Performance Evaluation, July 19-22, Blue Mountain Lake, NY.

[Selbg4] Selby, R.W. Jr. "Evaluating Software Testing Strategies." In Proceedings 9th Annual Software
Engineering Workshop, November 28, Greenbelt, MD. NASA/GSFC. **

[SelbS] Selby, R.W. Jr. May 1985. Evaluations of Software Technologies: Testing, CLEANROOM, and
Metrics. Ph.D. diss, University of Maryland. Technical Report-1500.

[Selb86] Selby, R.W. Jr. 1986. "Combining Software Testing Strategies: An Empirical Evaluation." In
Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 82-90. Washington, DC: IEEE
Computer Society Press.

[Selb87a] Selby, R.W. Jr. 1987. "Incorporating Metrics into a Software Environment." In Proceedings Joint
Conference of 5th National Conference on Ada Technology and Washington Ada Symposium, March
16-19, Arlington, VA, 326-331. Washington, DC: ACM Ada Technical Committee.

[Seib87b] Selby, R.W. Jr., V.R. Basili, and F.T. Baker. "CLEANROOM Software Development: An Empirical
Evaluation." IEEE: Transactions on Software Engineering, 13/9 (Sep 1987):1027-1037.

[Selb87c] Selby, R.W. Jr. 1987. "Automatically Generating Software Metric Decision Trees for Identifying
Error-Prone and Costly Modules." In Proceedings 12th Annual Software Engineering Workshop,
Greenbelt, MD. NASA/GSFC. **

[Selb87d] Selby, R.W. Jr. 1987. "Analyzing Software Reuse at the Project and Module Design Levels." In
Proceedings 1st European Software Engineering Conference. Strasbourg, France, September, 227-235.
**

[Selb88a] Selby, R.W. Jr. 1988. "Generating Hierarchical System Descriptions for Software Error Localiza-
tion." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff,
Canada, 89-96. Washington, DC: IEEE Computer Society Press.

(Selb88b] Selby, R.W. Jr., and V.R. Basili. 1988. Analyzing Error-Prone System Coupling and Cohesion. Univer-
sity of California at Irvine. **

[Selb88c] Selby, R.W. Jr., and V.R. Basili. 1988. "Empirically Analyzing Software Reuse in a Production
Environment." In Software Reuse -- Emerging Technologies. W. TRacz (ed.). New York: IEEE Com-
puter Society. **

128



August 9, 1989

* [Seib891 Selby, R.W. Jr., and A.A. Porter. "Learning from Examples: Generation and Evaluation of Decision
Trees for Software Resource Analysis." To appear in IEEE: Transactions on Software Engineering.

[Shang0l Shanthikumar J.G. 1980. "Software Performance Prediction Using a State-Dependent Error
Occurrence-Rate Model." In Proceedings ACM/NBS 19th Annual Technical Symposium: Pathways to
System Integrity, June, Gaithersburg, MD, 65-66.

* [Shanil] Shanthikumar, J.G. 1981. "A State- and Time-Dependent Error Occurrence-Rate Software Reliabil-
ity Model with Imperfect Debugging." In Proceedings AFIPS National Computer Conference, vol. 50,
May 4-7, Chicago, IL, 311-315. Arlington, VA: AFIPS Press.

[Shan82] Shankar, K.S. "A Functional Approach to Module Verification." IEEE: Transactions on Software
Engineering, 8/2 (Mar 1982):147-160.

[Shan87] Shankar, N. Proof Checking Metamathematics: Volumes I and I. Computational Logic Inc. Techni-
* cal Report CLI-9. **

[ShapSl] Shapiro, D.S. June 1981. A System that Understands Bugs. M.S. thesis, MIT Artificial Intelligence
Laboratory. Memo 638. **

[Shat88] Shatz, S.M., and W. K. Cheng. "A Petri Net Framework for Automated Static Analysis of Ada
Tasking Behavior." Journal of Systems and Software, (1988).

[Shaw78] Shaw, A.C. "Software Descriptions with Flow Expressions." IEEE: Transactions on Software
• Engineering, 4/3 (May 1978):242-254.

[ShawSO] Shaw, M. June 1980. "When is Good Enough." In Software Metrics Panel Final Report. ONR (AD
A087 412). **

[Shaw89] Shaw, W.H., J.W. Howatt, R.S. Maness, D.M. Miller. "A Software Science Model of Compile
Time." IEEE: Transactions on Software Engineering, 15/5 (May 1989):543-549.

[Shei81] Sheil, B.A. "The Psychological Study of Programming." ACM: Computing Surveys, 13/1 (Mar
* 1981):101-120.

[Shen8O] Shen, V.Y., and H.E. Dunsmore. August 1980. A Software Science Analysis of COBOL Programs.
Purdue University. Technical Report CSD-TR-348, Revised September 1981. **

[Shen83] Shen, V.Y., S.D. Conte, and H.E. Dunsmore. "Software Science Revisited: A Critical Analysis of
the Theory and Its Empirical Support." IEEE: Transactions on Software Engineering, 9/2 (Mar
1983):155-165.

* [Shen85] Shen, V.Y., T.J. Yu, S.M. Thebaut, and L.R. Paulsen. "Identifying Error-Prone Software-An
Empirical Study." IEEE: Transactions on Software Engineering, 11/4 (Apr 1985):317-324.

[Shep77] Sheppard, S.B., and L.T. Love. 1977. "A Preliminary Experiment to Test Influences on Human
Understanding of Software." In Proceedings 21st Annual Meeting of the Human Factors Society, Vol.
21, 167-171. **

[Shep78] Sheppard, S.B., M.A. Borst, B. Curtis, and L.T. Love. 1978. Factors Influencing the Understandabil-
* ity and Modifiability of Computer Programs. Arlington, VA: General Electric Co.

[Shep79] Sheppard, S.B., B. Curtis, P. Milliman, and L.T. Love. "Modem Coding Practices and Programmer
Performance." IEEE: Computer 12/12 (Dec 1979):41-49.

[Shep8l] Sheppard, S.B., and E. Kruesi. 1981. The Effects of the Symbology and Spatial Arrangement of
Software Specifications on a Coding Task. Arlington, VA: General Electric Co. Technical Report
TR-81-388200-3. **

* [Shim88] Shimeall, T.J., and N.G. Leveson. 1988. "An Empirical Comparison of Software Fault Tolerance
and Fault Elimination." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis,
July 19-21, Banff, Canada, 180-187. Washington, DC: IEEE Computer Society Press.

[Shne75] Shneiderman, B. 1975. "Experimental Testing in Programming Languages, Stylistic Considerations
and Design Techniques." In Proceedings AFIPS National Computer Conference, vol. 44, May 19-22,
Anaheim, CA, 653-656. Montvale, NJ: AFIPS Press.

* [Shne77a] Shneiderman, B., R.E. Mayer, D. McKay, and P. Heller. "Experimental Investigations of the Utility
of Detailed Flowcharts in Programming." ACM: Communications of the ACM, 20/6 (1977):373-381.

129



August 9, 1989

[Shne77b] Slmeiderman, R. "Measuring Computer Program Quality and Comprehension." International Jour-
nal of Man-Machine Studies, 9 (1977):465-478. **

[Shne77e] Shneiderman, R. "Human Factors Experiments for Developing Quality Software." In The Infotech
State of the Art Report on Software Engineering, Berkshire, England: Infotech International Ltd. **

[ShneSO] Shneiderman, B. 1980. Software Psychology: Human Factors in Computer and Information Systems.
Cambridge, MA: Winthrop Publishers. **

[Shol75] Shol, H.A., and T.L. Booth. "Software Performance Modeling Using Computational Structures."
IEEE: Transactions on Software Engineering, 1/4 (Dec 1975).

[Shoo72] Shooman, M.L. 1972. "Probabilistic Models for Software Reliability Prediction." In Statistical Com-
puter Performance Evaluation, W. Freiderberg, ed., 485-502. New York: Academic Press.

[Shoo73] Shooman, M.L. 1973. "Operational Testing and Software Reliability Estimation During Program
Development." In Conference Record 1973 IEEE Symposium on Computer Software Reliability, April
30 -May 2, New York, 51-57. **

[Shoo74] Shooman, M.L. January 1974. Meaning of Exhaustive Software Testing. Polytechnic Institute of New
York. Report PINY EE/IP 74-006/EER/106. **

[Shoo7S] Shooman, M.L., and M.I. Bolsky. 1975. "Types, Distribution, and Test and Correction Times for
Programming Errors." In Proceedings International Conference on Reliable Software, April 21-23, Los
Angeles, CA, 347-357. IEEE Cat. No. 75CH0940-7CSR.

[Shoo76] Shooman, M.L. 1976. "Structural Models for Software Reliability Prediction." In Proceedings 2nd
International Conference on Software Engineering, October 13-15, San Francisco, CA. Washington,
DC: IEEE Computer Society Press.

[Shoo77a] Shooman, M.L. 1977. "The Spectre of Software Reliability and Its Exorcism." In Proceedings Joint
Automatic Control Conference, 225-231. New York: IEEE Computer Society Press.

[Shoo77b] Shooman, M.L., and A. Laemmel. 1977. "Statistical Theory of Computer Programs in Information
Content and Complexity." In Proceedings COMPCONFall 1977, Long beach, CA, 341-347. IEEE. **

[Shoo77c] Shooman, M.L. 1977. "The Role of Reliability Analysis and Measurement." In Proceedings Joint
Automatic Control Conference, June, 466-471. **

[Shoo79 Shooman, M.L., and H. Ruston. July 1979. Summary of Technical Progress, Investigation of Software
Models. Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report
RADC-TR79-188.

[Shoo83] Shooman, M.L. 1983. Software Engineering: Design, Reliability, and Management. New York:
McGraw Hill. **

[Shoo86] Shooman, M.L. 1986. Probabilistic Reliability: An Engineering Approach. New York: McGraw-Hill,
1968. Updated and reprinted, Malabar, FL: Krieger, 1986. **

[Sidh89] Sidhu, D.P., and T.-K. Leung. "Formal Methods for Protocol Testing: A Detailed Study." IEEE:
Transactions on Software Engineering, 15/4 (Apr 1989):413-426.

[Sief88] Siefert, P.T. and T.A. Babst. May 1988. Automated Measurement System (AMS). Griffiss Air Force
Base, NY: Rome Air Development Center. RADC Contract F30602-88-101.

[Sika88] Sikaczowski, R.O. January 1988. "Measuring Customer Satisfaction and Software Productivity
through Quality Metrics." In Quality Data Processing, 37-44. **

[Si1v79] Silverburg, B.A., L. Robinson, and K.N. Levitt. June 1979. The Languages and Tools of HDM. Stan-
ford University, Research Project 4828. **

[Sing86] Singh, R., and N.F. Schneidewind. 1986. "Concept of a Software Quality Metrics Standard." In Dig-
est of Papers, Spring COMPCON 86, A.G. Bell (ed.), March 3-6, 362-368. IEEE Computer Society.
**

[SlstS8] Sistla, A.P., and E.M. Clarke. "The Complexity of Propositional Linear Temporal Logic." ACM:
Journal of the ACM, (1988). **

[Site74] Sites, S.L. May 1974. Proving that Programs Terminate Cleanly. Stanford University. Technical
Report STAN-CS-74-418. **

[Slya80] Siyan, K.S. December 1980. The Specification, Design and Implementation of an Input/Output Asser-
tion Verifier. M.S. Report, University of California at Berkeley. **

130



August 9, 1989

* [Skli89] Skillicorn, D.B., and J.L. Glasgow. "Real-Tme Specification Using Lucid." IEEE: Transactions on
Software Engineering, 15/2 (Feb 1989).

[Slav75] Slavinski, R.T. November 1975. Static FORTRAN Analyzer. Griffiss Air Force Base, NY: Rome Air
Development Center. **

[Sliv841 Slivinski, T., et al. 1984. Study of Fault Tolerant Software Technology. Mandex Inc., NASA Langley
Research Center Report. **

* [Smit79] Smith, C.P. June 1979. Practical Applications of Software Science. IBM Santa Teresa Laboratories.
Technical Report 03.067. **

[SmItB0a] Smith, C.P. 1980. A Software Science Analysis of IBM Programming Products. Santa Theresa, CA:
IBM Corp. Technical Report TR 03.081. **

[SmItS0b] Smith, C.P. 1980. "A Software Science Analysis of Programming Size." In Proceedings ACM
National Computer Conference, October, 179-185. **

* [Smlt88] Smith, M.K., D. Craigen, and M. Saaltink. May 1988. The nanoAVA Definition. Computational
Logic Inc. Technical Report CLI-21 (draft). **

[Snee78] Sneed, H., and K. Kirchoff. 1978. "Prufstand-A Testbed for Systematic Software Components." In
Proceedings INFOTECH State of the Art Conference on Software Testing, London. Infotech. **

[Snee84] Sneed, H.M. "Software Renewal - A Case Study." IEEE: Software, 11/3 (Jul 1984):56-64.
[Snee85] Sneed, H., and A. Merey. "Automated Software Quality Assurance." IEEE: Transactions on

* Software Engineering, 11/9 (Sep 1985):909-916.
[Snee86] Sneed, H.M. 1986. "Data Coverage Measurement in Program Testing." In Proceedings Workshop on

Software Testing, July 15-17, Banff, Canada, 34-40. Washington, DC: IEEE Computer Society Press.
[Sold89] Solderitsch, J.J., K.C. Wallnau, and J.A. Thalhamer. 1989. "Constructing Domain-Specific Ada

Reuse Libraries." In Proceedings 7th Annual National Conference on Ada Technology, March 13-16,
Altantic City, NJ, 419-433. Washington, DC: ACM Ada Technical Committee. **

• [So1183] Sois, D.M., R.A. Kemmerer, and S. Eckmann. December 1983. UNISEX Pascal Language Refer-
ence Manual. University of California at Santa Barbara. Revised April 1985. **

[Soli85] Solis, D.M. 1985. "AutoParts-A Tool to Aid in Equivalence Partition Testing." In Proceedings Soft-
Fair II: 2nd Conference on Software Development Tools, Techniques, and Alternatives, December 2-5,
San Francisco, CA, 122-125. **

[Solo83] Soloway, E. 1983. "You Can Observe a Lot by Just Watching How Designers Design." In Proceedings
* 8th Annual Software Engineering Workshop, November, Greenbelt, MD. NASA/GSFC. **

[Solog4] Soloway, E., and K. Ehrlich. "Empirical Studies of Programming Knowledge." IEEE: Transactions
on Software Engineering, 10/5 (Sep 1984):595-609.

[SoneS0] Soneriu, M.D., and D.S. Suk. 1980. "Markov Model for Estimating the Reliability of Duplicated and
Repairable Computing Systems." In Proceedings ACM/NBS 19th Annual Technical Symposium: Path-
ways to System Integrity, June, Gaithersburg, MD, 87-96.

• [SoneS1] Soneriu, M.D. 1981. A Methodology for the Design and Analysis of Fault-Tolerant Operating Systems.
Ph.D. diss., Illinois Intstitute of Technology.

[Soon77] Soong, N.L. "A Program Stability Measure." In Proceedings 30th ACM Annual National Computer
Conference, October 16-19, Seattle, WA, 163-173. New York: Association for Computing Machinery.

[Sopp86] Soppe, M. October 1986. A Tool for User Guided Test Suite Derivation from Formal Specifications.
M.S. thesis, Twente University. **

• [Sork79] Sorkowitz, A.R. "Certification Testing: A Procedure to Improve the Quality of Software Testing."
IEEE: Computer, 12/8 (Aug 1979):20-24.

[Srln85J Srinia, V.P. "A Fault-Tolerant Dataflow System." IEEE: Computer, 18/3 (Mar 1985):54-68.
[StJe85] St. Jean, L.D. 1985. Testing Version Independence in Multi-Version Programming. M.S. thesis,

University of Virginia. **
[Stan77] Stanfield, J.R., and A.M. Skrukrud. November 1977. Software Acquisition Management Guidebook

* -- Software Maintenance Volume. System Development Corp. Technical Report TM-5772/004/02. **
[StanSO] Stankovic, J.A. 1980. "Debugging Commands for a Distributed Processing System." In Proceedings

COMPCON Fall 198n, 701-705. **

131



August 9, 1989

[Stan83] Standish, T.A. "Interactive Ada in the Arcturus Environment. ACM: Ada Letters, II/1
(1983):23-35.

[Stan84a] Standish, T.A., and R.N. Taylor. "Arcturus: a Prototype Advanced Ada Programming Environ-
ment." In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments. Published in SIGPLAN Notices, 19/5 (Aug 1984):57-64.

[Stana4b] Stanat, D.F., T.A. Thomas, and J.R. Dunham. 1984. Proceedings of a Formal Venification/Design
Proof Peer Review. Research Triangle Institute. Technical Report RTI/2094/13O1F. **

[Stee86] Steenberger, C. August 1986. Conformance Testing of OSl Systems. M.S. thesis. Twente University. **
[Step74] Stepczyk, F.M. June 1974. "Requirements for Secure Operating Systems." In TRW Software Series.

Report TRW-SS-74-05. **
[Stet86] Stetter, F. "Comments on "Number of Faults per Line of Code"." IEEE: Transactions on Software

Engineering, 12/12 (Dec 1986):1145.
[Stev74] Stevens, W.P., G.J. Myers, and L.L. Constantine. 1974. "Structured Design." IBM: Systems Journal,

13/2 (1974):115-139.
[Stc7g] Stickney, M.E. "An Application of Graph Theory to Software Test Data Selection." ACM: Software

Engineering Notes, 3/5 (Nov 1978):72-78. **
[Stig74] Stigall, P.D., and 0. Tsar. "Special Tutorial: A Review of Directed Graphs 2s A pplied to Coinput-

ers." IEEE: Computer, 7/10 (Oct 1974):39-47.
[Stoi84] Stolzy, J.L. December 1984. Software Fault ree Analysis Tool. University of California at Irvine. **
[Stoy77] Stoy, J. 1977. Denotational Semantics: The Scott-Strachey Approach to Language Theory. Boston, NJ:

MIT Press. **
[Stuc72] Stucki, L.G. 1972. "A Prototype Automatic Program Testing Tool." In Proceedings AFIPS Fall Joint

Computer Conference, vol. 41, December 5-7, Anaheim, CA, 829-836. Montvale, NJ: AFIPS Press.
[Stuc73] Stucki, L.G. 1973. "Automatic Generation of Self-Metric Software." In Conference Record 1973

IEEE Symposium on Computer Software Reliability, April 30- May 2, New York, 94-100. **
[Stuc74] Stucki, L.G., and N.P. Svegel. January 1974. Software Automated Verification System Study. Hunting-

ton Beach, CA: McDonnell Dougals Astronautics Corp. Technical Report AD-784086. **
[Stuc75a] Stucki, L.G., and Foshee. 1975. "New Assertion Concepts for Self-Metric Software Validation." In

Proceedings International Conference on Reliable Software, April 21-23, Los Angeles, CA. IEEE Cat.
No. 75CH0940-7CSR. Published in ACM: SIGPLAN Notices, 10/6 (Jun 1975):59-71.

[Stuc75b] Stucki, L.G. 1975. "Testing Impact on the Future of Software Engineering." In Proceedings 4th
Annual Texas Conference on Computing Systems, November, Austin, TX. **

[Stuc77] Stucki, L.G. 1977. "New Directions in Automated Tools for Improving Software Quality." In Current
Trends in Programming Methodology, Vol. II: Programming Validation, 80-111. Englewood Cliffs, NJ:
Prentice-Hall. Also in Tutorial: Software Testing and Validation Techniques, 2nd Edition, E. Miller
and W.E. Howden (eds.). Los Alamitos, CA: IEEE Computer Society Press.

[Suke77a] Sukert, A.N. 1977. "An Investigation of Software Reliability Models." In Proceedings Annual Relia-
bility and Maintainability Symposium.

[Suke77] Sukert, A.N. 1977. "A Multi-Project Comparison of Software Reliability Models." In Proceedings
AIAA Conference on Computers in Aerospace: Exploration of the Outer Solar System, vol. 50,
November, Los Angeles, CA, 413-455. New York: American Institute of Aeronautics and Astronau-
tics. **

[Suke79] Sukert, A.N. "Empirical Validation of Three Software Error Prediction Models." IEEE: Transac-
tions on Reliability, R-28/3 (Aug 1979):199-205.

[SuI75] Sullivan, J.E. January 1975. Measuring the Complexity of Computer Software. Bedford, MA: Mitre
Corp. Technical Report MTR-2648, Vol. V. **

[Suno82] Sunohara, T., A. Takano, K. Uehara, and T. Ohkawa. 1981. "Program Complexity Measure for
Software Development Management." In Proceedings 5th International Conference on Software
Engineering, March 9-12, San Diego, CA, 100-106. Washington, DC: IEEE Computer Society Press.

[Suns77] Sunshine, C.A., et al. "Specification and Verification of Communication Protocols in AFFIRM
Using State Transition Models." IEEE: Transactions on Software Engineering, 3/3 (May 1977).

132



August 9, 1989

* [Sn-s2] Sunshine, C.A., et al. "Specification and Verification of Communication Protocols in AFFIRM
Using State Transition Models." IEEE: Transactions on Software Engineering, 8/5 (Sep
1982):460-489.

[Svob76] Svobodova, L. "Computer System Measurability." IEEE: Computer, 9/6 (Jun 1976):9-17.
[SymoSS] Symons, C.R. "Function Point Analysis: Difficulties and Improvements." IEEE: Transactions on

Software Engineering, 14/1 (Jan 1988):2-11.
* [S=l80] Szulewski, P.A., M.H. Whitworth, P. Buchan, and J.B. DeWolf. May 1980. Quality Assurance

Guidelines and Quality Metrics for Embedded Real-Time Software Designs. Cambridge, MA: The
Charles Stark Draper Laboratory, Inc. NBS Contract NB76SBCA0220. **

[SzulS1] Szulewski, P.A., M.H. Whitworth, P. Buchan, and J.B. DeWolf. "The Measurement of Software
Science Parameters in Software Design." ACM: SIGMETRICS Performance Evaluation Review, 10/1
(Spring 1981). **

* [Szui83] Szulewski, P.A., N.M. Sodano, A.J. Rosner, and J.B. DeWoilf. September 1983. Automating
Software Design Metrics. Charles Stark Draper Laboratory. Technical Report CSDL-R-1662. Also
published as Rome Air Development Center, Technical Report RADC-TR-84-27, February 1984. **

[Szu1841 Szulewski, P.A., and N.M. Sodano. 1984. "Design Metrics and Ada." In Washington Ada Sympo-
sium, March 25-27, Laurel, MD, 105-114. Washington, DC: ACM Ada Technical Committee.

[TaI79] Tai, K.C. 1979. "On Program Testing Criteria." In Proceedings 3rd International Computer Software
* and Applications Conference, November 6-8, Chicago, IL, 695-701. Long Beach, CA: iEEE Com-

puter Society Press. **
[Tai80] Tai, K.C. "Program Testing Complexity and Test Criteria." IEEE: Transactions on Software

Engineering, 6/6 (Nov 1980):531-538.
[Tai85a] Tai, K.C., and C.Y. Din. 1985. "Validation of Concurrency in Software Specification and Design." In

Proceedings 3rd International Workshop on Software Specification and Design, August, 223-227.
• [Taff5b] Tai, K.C. 1985. "Reproducible Testing of Concurrent Ada Programs." In Proceedings 2nd Conference

on Software Development Tools, Techniques, and Alternatives, December, San Francisco, CA,
114-121. **

[TaIS$c] Tai, K.C. 1985, "On Testing Concurrent Programs." In Proceedings 9th International Computer
Software and Applications Conference, October 9-11, 310-317. Los Angeles, CA: IEEE Computer
Society.

[Ta86] Tai, K.C., and R.H. Carver. 1986. "Reproducible Testing of Concurrent Programs Based on Shared
Variables." In Proceedings IEEE 6th International Conference on Distributed Computing Systems,
May.

[Taka89] Takahashi, M., and Y. Kamayachi. 1989. "An Empirical Study of a Model for Program Error Predic-
tion." In Proceedings 8th International Conference on Software Engineering, August 28-30, London,
England, 330-336. Washington, DC: IEEE Computer Society Press. Also published in IEEE: Tran-

* sactions on Software Engineering, 15/1 (Jan 1989):82-86.
[Tana1] Tanaka, A. 1981. Equivalence Testing for the Fortran Mutation System Using Data Flow Analysis.

M.S. thesis, Georgia Institute of Technology. **
[Taus8l] Tausworthe, R.C. 1981. Deep Space Network Software Cost Estimation. Pasadena, CA: Jet Propulsion

Laboratory. **
[Taus82] Tausworthe, R.C. 1982. "Staffing Implications of Software Productivity Models." In Proceedings 7th

Annual Software Engineering Workshop, Greenbelt, MD. NASA/GSFC. **
[Tus87a] Tauson-Conte, H.J., J.P. Salvador, C.A. Finnell, G. Baratta-Perez, and D.R. Clarson. March 1987.

Extending McCabe's Cyclomatic Complexity Metric for Analysis of Ada Software. McCabe Associ-
ates. Technical Report MC87-McCabe 1-0003. **

fTaus87b] Tauson-Conte, H.J., G. Baratta-Perez, C.A. Finnell, and D.R. Clarson. April 1987. Modified
A-Level Software Design Specification for the Ada Complexity Analysis Tool which Automates the ACE

0 Metric. McCabe Associates. Technical Report MC87-McCabe II-0005. **
[Taus8i] Tauson-Conte, H.J. 1988. "Ada Complexity Extension (ACE) An Extension of McCabe's

Cyclomatic Complexity Metric for Analysis of Ada Software." In Proceedings 6th National

* 133



August 9, 1989

Conference on Ada Technology, March 14-17, Arlington, VA, 7-12. Washington, DC: ACM Ada
Technical Committee.

[TayI77a] Taylor, D.J. 1977. Robust Data Structure Implementation for Software Reliability. Ph.D. thesis,
University of Waterloo. **

(Tayf77b] Taylor, J.R., and S. Bologna. 1977. "Validation of Safety Related Software." In Proceedings
JAFA/NPPCI Specialists' Meeting on Software Reliability, July, Pittsburgh, PA. **

[TayfI8a] Taylor, D.J., D.E. Morgan, and J.P. Black. 1978. Theoretical Foundations for Robust Data Structure
Implementations. University of Waterloo. Technical Report CS-78-52. **

[Tayi78b] Taylor, R.N., and L.J. Osterweil. 1978. "A Facility for Verification, Testing, and Documentation of
Concurrent Process Software." In Proceedings 2nd International Computer Software and Applications
Conference, November 13-16, Chicago, IL, 36-41. Long Beach, CA: IEEE Computer Society Press.

[Tayl8Oal Taylor, D.J., D.E. Morgan, and J.P. Black. "Redundancy in Data Structures: Some Theoretical
Results." IEEE: Transactions on Software Engineering, 6/6 (Nov 1980):585-594.

[Tayl80b] Taylor, R.N., and L.J. Osterweil. "Anomaly Detection in Concurrent Software by Static Data Flow
Analysis." IEEE: Transactions on Software Engineering, 6/3 (May 1980):265-278.

[Tayl8Oel Taylor, R.N., 1980. Static Analysis of the Synchronization Structure of Concurrent Programs. Ph.D.
thesis, University of Colorado. **

[Taysi1] Taylor, R.N. May 1981. An Algorithm for Analyzing Concurrent Programs. University of Victoria.
Technical Report DCS-10-IR. **

[Tayl82a] Taylor, T., and T.A. Standish. "Initial Thoughts on Rapid Prototyping Techniques." ACM: Software
Engineering Notes, 7/5 (Dec 1982):160-166.

[Tayli82b] Taylor, R.N. November 1982. Debugging Real-Time Software in a Host-Target Environment. Univer-
sity of California at Irvine. Technical Report 212. Also published in Technique et Science Informa-
tiques, 3/4 (1984):281-288, and in Proceedings 8th International Conference on Software Engineering,
August 28-30, London, England, 194-201. Washington, DC: IEEE Computer Society Press.

[TayI8Ze] Taylor, R.N. 1982. An Integrated Verification and Testing Environment. University of Victoria. Techni-
cal Report DCS-15-IR. **

[TayI83al Taylor, R.N. "A General-Purpose Algorithm for Analyzing Concurrent Programs." ACM: Communi-
cations of the ACM, 6/5 (May 1983):362-376.

[Tay183b] Taylor, R.N. Complexity of Analyzing the Synchronization Structure of Concurrent Programs. Univer-
sity of Victoria. Technical Report DCS-9-IR. Also published in Acta Informatica, 19/1 (Apr
1983):57-84.

[Tayi83c] Taylor, R.N. 1983. "Analysis of Concurrent Software by Cooperative Application of Static and
Dynamic Techniques." In Proceedings Symposium on Software Validation, H.-L. Hansen (ed.), Sep-
tember, Darmstadt. Amersterdam: North-Holland. Also published in Software Validation, H.-L.
Hausen (ed.), 127-137. Amsterdam: North Holland.

[Tay184] Taylor, R.N., and L.J. Osterweil. 1984. "Analysis and Testing Based on Sequential Specifications."
In Proceedings 4th Jerusalem Conference on Information Technology, May. **

[Tayl85] Taylor, R.N., and T.A. Standish. "Steps to an Advanced Ada Programming Environment." IEEE:
Transactions on Software Engineering, 11/3 (Mar 1985):302-310.

[Tayl86a Taylor, R.N., and C.D. Kelly. 1986. "Structural Testing of Concurrent Programs." In Proceedings
Workshop on Software Testing, July 15-17, Banff, Canada, 164-169. Washington, DC: IEEE Com-
puter Society Press.

[Tayl86b] Taylor, R.N., L. Clarke, L.J. Osterweil, J.C. Wileden, and M. Young. 1986. "Arcadia: A Software
Development Environment Research Project." In Proceedings IEEE Conference on Ada Applications
and Environments, April 8-10, Miami Beach, FL.

[Tay187] Taylor, R.N., D.A. Baker, F.C. Belz, B.W. Boehm, L.A. Clarke, D.A. Fisher, L.J. Osterweil, R.W.
Selby Jr., J.C. Wileden, A.L. Wolf, and M. Young. July 1987. Next Generation Software Environ-
ments: Principles, Problems, and Research Directions. University of Massachusetts. Arcadia Docu-
ment, Technical Report 87-63. **

134



August 9, 1989

* [Tayl8] Taylor, R.N., F.C. Belz, L.A. Clarke, L. Osterweil, R.W. Selby Jr. , J.C. Wileden, A.L. Wolf, and
M. Young. 1988. "Foundations for the Arcadia Environment Architecture." In Proceedings ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environ-
ments, November 28-30, Boston, MA, 1-13.

[Telc74] Teichroew, E., M.J. Bastarache, and E.A. Hershey III. March 1974. An Introduction to PSL/PSA,
ISDOS Working Paper No. 86. University of Michigan. **

* [Teic77] Teichroew, D., and E.A. Hershey III. "PSL/PSA: A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems." IEEE: Transactions on Software
Engineering, 3/1 (Jan 1977):41-48.

[Teltil] Teitelman, W., and L. Masinter. "The InterLisp Programming Environment." IEEE: Computer, 14/4
(Apr 1981):25-33.

[Teitg4] Teitelman, W. "A Tour Through Cedar." In Proceedings 7th International Conference on Software
* Engineering, March, 26-29, Orlando, FL, 181-195. Washington, DC: IEEE Computer Society Press.

[Thay75] Thayer, T.A. 1975. "Understanding Software Through Empirical Reliability Analysis." In Proceed-
ings AFIPS National Computer Conference, vol. 44, May 19-22, Anaheim, CA, 335-341. Montvale,
NJ: AFIPS Press.

[Thay761 Thayer, T.A. 1976. Software Reliability Study. Griffiss Air Force Base, NY: Rome Air Development
Center. **

• [Thay78] Thayer, T.A., M. Lipow, and E.C. Nelson. 1978. Software Reliability. In TRW Series of Software Tech-
nolog, Vol. 2. New York: North Holland. **

[ThayS0] Thayer, R.H., A.B. Pyster, and R.C. Wood. "The Challenge of Software Engineering Project
Management." IEEE: Computer, 3/1 (Aug 1980):51-59.

[Theb83] Thebaut, S.M. 1983. The Saturation Effect in Large-Scale Software Development: Its Impact and Con-
trol. Ph.D. thesis, Purdue University. **

• [Theb84] Thebaut, S.M., and V.Y. Shen. "An Analytic Resource Model for Large-Scale Software Develop-
ment." Information Processing and Management, 20(1-2) (1984):293-315.

[Ihlb78] Thibodeau, R. January 31, 1978. The State-of-the-Art in Software Error Data Collection and
Analysis-- Final Report. Huntsville, AL: General Research Corp. **

[ThibSl1] Thibodeau, R. April 1981. An Evaluation of Software Cost Estimating Models. General Research
Corp. Technical Report T10-2670. **

* [ThomS0] Thompson, W.E., and P.O. Chelson. 1980. "On the Specification and Testing of Software Reliabil-
ity." In Proceedings Annual Reliability and Maintainability Symposium, 379-383.

[ThomSl] Thompson, D., and R. Erickson (eds.). February 1981. AFFIRM Reference Manual. University
Southern California. **

[Thom83] Thomas, J., and N.G. Leveson. 1983. "Applying Safety Design Techniques to Software Safety." In
Proceedings AIAA Space Science Meeting, January, Reno, NV. **

* [Tlch79] Tichy, W.F. 1979. "Software Development Control Based on Module Interconnection." In Proceed-
ings 4th International Conference on Software Engineering, September 27-29, Munich, Germany,
2941. Washington, DC: IEEE Computer Society Press. **

[Tlch86] Tichy, W.F. "Smart Recompilation." ACM: Transactions on Programming Languages and Systems,
8/3 (Jul 1986):273-291.

[Tlsc83J Tischler, R., R. Schaufler, and C. Payne. 1983. "Static Analysis of Programs as an Aid to Debug-
• ging." In Proceedings ACM SIGSOFT-SIGPLAN Software Engineering Symposium on High-Level

Debugging, March 20-23, Asilomar, CA. Published in ACM: Software Engineering Notes, 8/4 (Aug
1983):155-158. Baltimore, MD: ACM Order Department.

[Trio86] Triolet, R. 1986. "Interprocedural Analysis Based Restructuring of Programs." In Proceedings Inter-
national Workshop on Parallel Algorithms and Architectures, April 14-18, Luminy, France, 203-217.

* [TrIv80] Trivedi, K.S., J.W. Gault, and J.B. Clary. 1980. "A Validation Prototype of System Reliability in
Life-Critical Applications. In Proceedings ACM/NBS 19th Annual Technical Symposium: Pathways to
System Integrity, June, Gaithersburg, MD, 79-86.

* 135



August 9, 1989

[TroySl] Troy, D.A., and S.H. Zweben. "Measuring the Quality of Structured Designs." Journal of Systems
and Software, 2/2 (Jun 1981):113-120.

[oy6 Troy, R. and Y. Romain. "A Statistical Methodology for the Study of the Software Failure Process
and Its Application to the ARGOS Center." IEEE: Transactions on Software Engineering 12/9 (Sep
1986):968-979.

[TsaiS6] Tsalalilhin, L. 1986. "Dialog with a Tester (Architecture and Function of One Unit Test Facility)." In
Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 51-60. Washington, DC: IEE
Computer Society Press.

[ruzck6SI Tucker, A.E. January 1965. The Correlation of Computer Program Quality with Testing Effort. System
Development Corp. Report TM 2219/000/00. **

[TuraS0] Turner, J. "The Structure of Modular Programs." ACM: Communications of the ACM, 25/5 (May
1980):272-277.

[Turula] Turner, C., and G. Caron. May 1981. A Comparison of RADC and NASA/SEL Software Development
Data. Data and Analysis Center for Software. Special Publication. **

TurnSlb] Turner, C., G. Caron, and G. Brement. April 1981. NASA/SEL Data Compendium. Data and
Analysis Center for Software. Special Publication. **

[Ulm73] Ullman, J.D. "Fast Algorithms for the Elimination of Common Subexpressions." Acta Informatica,
2/3 (Dec 1973):191-123.

[Unde63] Underhill, L.H. "The Growth of Complexity of a General-Purpose Program." Computer Journal, 6/1
(Jan 1963):37-38.

[UralS3] Ural, H., and R.L. Probert. 1983. "User Guided Test Sequence Generation." In Protocol Specifica-
tion, Testing, and Verification, H. Rudin and C.H. West (eds.), 421-436. North Holland. **

[UraIS4] Ural, H., and R. Probert. 1984. "Automated Testing of Protocol Specifications and Their Implemen-
tations." In Proceedings ACM SIGCOMM 1984 Symposium, June, Montreal, Canada. **

[Urba73] Urban, R.J. December 1973. SELFMET: A Program Package for Full Self-Metric Instrumentation of
FORTRAN Programs. General Research Corp. Report RM-1851. **

[Uren87] Uren, E., E. Miller, and J. Irwin. 1987. "Automated Software Testing - Case Studies." In Proceed-
ings IEEE Conference on Software Maintenance, September 21-24, Austin, TX. **

[Uyar86] Uyar, M.U., and A.T. Dahbura. 1986. "Optimal Test Sequence Generation for Protocols: The
Chinese Postman Algorithm Applied to Q.931." In Proceedings IEEE Global Telecommunications
Conference, December, 3.1.1-5. **

(Vaid83] Valdes, P.M., and A.L. Goel. 1983. "An Error-Specific Approach to Testing." In Proceedings 8th
Annual Software Engineering Workshop, November, Greenbelt, MD. NASA/GSFC. **

[Vale89] Valett, J.D. and F.E. McGarry. "A Summary of Softwar Measurement Experiences in the Software
Engineering Laboratory." Journal of Systems and Software, no. 9 (1989):137-148.

[Vali4 Valiant, L.G. "A Theory of the Learnable." ACM: Communications of the ACM, 27/11 (Nov
1984):1134-1142.

[VemuS0] Vemuri, V., and J.V. Cornacchio. 1980. "Figures of Merit for Software Quality." In Proceedings 4th
International Computer Software and Applications Conference, October 27-31, Chicago, IL, 744-750.
Los Alamitos, CA: IEEE Computer Society Press.

[Vern89] Verner, J.M., G. Tate, B. Jackson, and R.G. Hayward. 1989. "Technology Dependence in Function
Point Analysis: A Case Study and Critical Review." In Proceedings 11th International Conference on
Software Engineering, May 15-18, Pitsburgh, PA, 375-382. Washington, DC: IEEE Computer Society
Press.

[Vese8l] Vesely, W.E., F.F. Goldberg, N.H. Roberts, and D.F. Haasl. January 1981. Fault Tree Handbook.
U.S. Nuclear Regulatory Commission. Nureg-0492. **

[VessM3] Vessey, L., and R. Weber. "Some Factors Affecting Program Repair Maintenance: An Empirical
Study." ACM: Communications of the ACM, 26/2 (Feb 1983): 128-134.

[VogeSO] Voges, U., L. Gmeiner, and A.A. von Mayrhauser. "SADAT - An Automated Testing Tool." IEEE:
Ransactions on Software Engineering, 6/5 (May 1980):286-290.

136



August 9, 1989

* [VosbS] Vosburgh, J., B. Curtis, R.W. Wolverton, B. Albert, H. Malec, S. Hoben, and Y. Liu. 1984. "Pro-
ductivity Factors and Programming Environments." In Proceedings 7th International Conference on
Software Engineering, March, 26-29, Orlando, FL, 143-152. Washington, DC: IEEE Computer
Society Press.

[Vose88] Vose M.D. August 1988. Applications of Compositional Test Generation to Recursively Specify Combi-
national Logic. Computational Logic Inc. Technical Report CLI-26. **

* [Vonk35a] Vouk, M.A., D.F. McAllister, K.C. Tai, and L.E. Deimel. 1985. Effectiveness of Random Testing in
Detecting Dependent Failures of Fault-Tolerant Software. North Carolina State University. Technical
Report TR-85-02. **

[VoukS'bj Vouk, M.A., D.F. McAllister, and R.K. Scott. 1985. Influence of Programmer Profile on Correlated
Software Errors. North Carolina State University. Technical Report TR-855-21. **

[Voukg8e] Vouk, M.A., D.F. McAllister, and K.C. Tam. 1985. "Identification of Correlated Failures of Fault-
i Tolerant Software Systems." In Proceedings 9th International Computer Software and Applications

Conference, October 9-11, 437-444. Los Angeles, CA: IEEE Computer Society.
[Vouk86a] Vouk, M.A., D.F. McAllister, and K.C. Ta. 1986. "An Experimental Evaluation of the Effectiveness

of Random Testing of Fault-Tolerant Software." In Proceedings Workshop on Software Testing, July
15-17, Banff, Canada, 74-81. Washington, DC: IEEE Computer Society Press.

[Vouk86b] Vouk, M.A., M.L. Helsabeck, K-C. Tai, and D.F. McAllister. 1986. "On Testing of Functionally
* Equivalent Components of Fault-Tolerant Software." In Proceedings 10th International Computer

Software and Applications Conference, 414-419. Washington, DC: IEEE Computer Society Press.
[Wah186] Wahl, N.J., S.R. Schach, and R.I. Winner. 1986. "A Very High Level Debugging Simulator for Low

Level Microprograms." In Proceedings 19th Annual Microprogramming Workshop, New York,
148-155. **

[Wadgs] Wahl, N.J., and S.R. Schach. 1988. "A Methodology and Distributed Tool for Debugging Dataflow
* Programs." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21,

Banff, Canada, 98-105. Washington, DC: IEEE Computer Society Press.
[Waka89] Wakahara, Y., Kakuda Y., A. Ito, and E. Utsunomiya. "Escort: An Environment for Specifying

Communication Requirements." IEEE: Software, 6/2 (Mar 1989):38-45.
[WakeSS] Wake, S. and S.M. Henry. 1988. A Model Based on Software Quality Factors which Predicts Maintai-

nability. Virginia Polytechnic Institute. TR-88-8.
* [WalkS1] Walker, M. 1981. Managing Software Reliability. Amsterdam: Elsevier North-Holland Publishing.

[Wai189] Wallace, D.R., and R.U. Fujii. "Verification and Validation: Techniques to Assure Reliability."
IEEE: Software, 6/3 (May 1989):8-9.

[Wals77aJ Walston, C.E., and C.P. Felix. "A Method of Programming Measurement and Estimation." IBM Sys-
tems Journal, 16/1 (Jan 1977):54-73.

[Wais77b] Walston, C.E., and C.P. Felix. Author's response in letters section. IBM Systems Journal, 4 (1977).
* **

[Wals77c] Walsh, D.A. "Structured Testing." Datamation, 23/7 (Jul 1977):111-118.
[Wals79] Walsh, T.J. 1979. "A Software Reliability Study Using a Complexity Measure." In Proceedings

AFIPS National Computer Conference, vol. 48, June 4-7, New York, NY, 761-768. Arlington, VA:
AFIPS Press. **

[Wais85] Walsh, P.J. 1985. A Measure of Test Case Completeness. Ph.D. diss., State University of New York,
* Watson School of Engineering. **

[Wait78] Walters, G., and J.A. McCall. 1978. "The Development of Metrics for Software R&M." In Proceed-
ings Annual Reliability and Maintainability Symposium. **

[Walt79] Walters, G.F. 1979. "Application of Metrics to a Software Quality Management (QM) Program." In
Concepts of Software Quality, J.D. Cooper and M.J. Fisher (eds.), 143-157. Petrocelli Books.

[WampS5] Wampler, G.K. 1985. Static Concurrency Analysis of Ada Programs. Masters thesis, University of Cal-
• ifornia (Irvine).

[Wand79] Wand, M. "Final Algebra Semantics and Data Type Extensions." Journal of Computer and System
Science, 19/1 (1979). *

137



August 9, 1989

[Wa"S3] Wang, A.S., and H.E. Dunsmore. 1983. "Back-To-Front Programming Effort Prediction." In
Proceedings Symposium Empirical Foundations of Infornation and Software Science, November 3-5.
Atlanta, GA. Published in Information Processing and Management, (1983). **

[Wang84] Wang, A.S. 1984. The Estimation of Software Size and Effort: An Approach Based on the Evolution of
Software Metrics. Ph.D. thesis, Purdue University. **

[Wam72] Warner, D.C. 1972. "System Performance and Evaluation-Past, Present and Future." In Proceedings
AFIPS Fall Joint Computer Conference, vol. 41, December 5-7, Anaheim, CA, 959-964. Montvale.
NJ: AFIPS Press.

[Warr82] Warren, S. "MAP - A Tool for Understanding Software." In Proceedings 6th International Confer-
ence on Software Engineering, September 13-16, Tokyo, Japan, 28-37. Washington, DC: IEEE Com-
puter Society Press.

[Wate79J Waters, R.C. "A Method for Analyzing Loop Programs." IEEE: Transactions on Software Engineer-
ing, 5/5 (May 1979):237-247.

[WebeS3] Weber, J.C. 1983. "Interactive Debugging of Concurrent Programs." In Proceedings ACM SIGSOFT-
SIGPLAN Software Engineering Symposium on High-Level Debugging, March 20-23, Asilomar, CA.
Published in ACM: Software Engineering Notes, 8/4 (Aug 1983):112-113. Baltimore, MD: ACM Order
Department.

[Wegb74 Wegbreit, B. "The Synthesis of Loop Predicates." ACM: Communications of the ACM, 16/2 (Feb
1974):102-112.

[Wegb75] Wegbreit, B. "Mechanical Program Analysis." ACM: Communcations of the ACM, 18/9 (Sep
1975):528-539.

[Wegb76 Wegbreit, B., and J.M. Spitzen, "Proving Properties of Complex Data Structures." ACM: Journal of
the ACM, 23/2 (Apr 1976):389-396.

[Wegb77] Wegbreit, B. "Constructive Methods in Program Verification." IEEE: Transactions on Software
Engineering, 3/3 (May 1977):193-207.

[Wegn79] Wegner, P. (ed). Research Directions in Software Technology. Cambridge, MA: MIT Press.
[Weld86] Weiderman, N.H., A.N. Habermann, M.W. Borger, and M.H. Klein. 1986. "A Methodology for

Evaluating Environments." In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environments, December 9-11, Palo Alto, CA. Published in
SIGPLAN Notices, 22/1 (Jan 1987):199-207.

[Wein7l] Weinberg, G.M. 1971. The Psychology of Computer Programming. Princeton, NJ: Van Nostrand-
Reinhold.

[WeinS0] Weinberger, E. 1980. "The Applied Bayesian Decision Model in the Risk Assessment Process." In
Proceedings ACM/NBS 19th Annual Technical Symposium: Pathways to System Integrity, June, Gaith-
ersburg, MD, 55-56.

[Weis74] Weissman, L.M. 1974. Psychological Complexity of Computer Programs. Ph.D. diss., University of
Toronto. Also published in ACM: SIGPLAN Notices, 9/6 (Jun 1974):25-36. **

[Weis78] Weiss, D.M. December 1978. Evaluating Software Development by Error Analysis. Naval Research
Laboratory. Technical Report NRL-8268. Also published in Journal of Systems and Software, Vol. 1
(1979):57-70. **

[Wels8l] Weiss, D.M. November 1981. Evaluating Software Development by Analysis of Change Data. Univer-
sity of Maryland. Technical Report TR-1120. **

[Weis82] Weiss, D.M. July 1982. A Comparison of Errors in Different Software-Development Environments.
Naval Research Laboratory, Computer Science and Systems Branch. NRL Report 8598. Also pub-
lished in Proceedings 6th Annual Software Engineering Workshop, December, Grenbelt, MD.
NASA/GSFC.

[Weis84] Weiser, M.D. "Program Slicing." IEEE: Transactions on Software Engineering, 10/4 (Jul
1984):352-357.

[Wels8$a] Weiser, M.D., J.D. Gannon, and P.R. McMullin. "Comparison of Structural Test Coverage
Metrics." IEEE: Software, 2/2 (Mar 1985):80-85.

138



August 9, 1989

* [Wels8lb] Weiss, S.N., and E.J. Weyuker. February 1985. A Time-Independent Definition of Software Reliability.
Courant Institute of Mathematical Sciences, New York University. Technical Report #146.

[WeisScl Weiss, D.M., and V.R. Basili. "Evaluating Software Development by Analysis of Changes: Some
Data from the Software Engineering Laboratory." IEEE: Transactions on Software Engineering, 11/2
(Feb 1985):157-168.

[Wels86] Weiss, S.N., and EJ. Weyuker. 1986. "A Generalized Domain-Based Definition of Software Reliabil-
* ity." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 98-107. Washington,

DC: IEEE Computer Society Press. Previously published as Courant Institute of Mathematical Sci-
ences, New York University, Technical Report #146, February 1985. Also published in IEEE: Tran-
sactions on Software Engineering, 14/10 (Oct 1988):1512-1524.

[Weis871 Weiss, S.N. 1987. A Theory of Concurrent Programs and Test Data Adequacy. Ph.D. diss., New York
University. **

• [Welsg8a] Weiss, S.N. 1988. "A Formal Framework for the Study of Concurrent Program Testing." In Proceed-
ings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 106-113.
Washington, DC: IEEE Computer Society Press.

[WelsUb] Weiss, S.N., and E.J. Weyuker. "An Extended Domain-Based Model of Software Reliability." IEEE:
Transactions on Software Engineering, 14/10 (Oct 1988):1512-1524.

[WeisS&] Weiss, S.N. 1988. A Formal Theory of Concurrent Program Testing. Hunter College of CUNY. Techn-
* ical Report CS-TR 88-02. **

[Weis83] Welsh, H.O. 1983. "Distributed Recovery Block Performance in a Real-Time Control Loop." In
Proceedings Real-Time Systems Symposium, Arlington, VA, 268-276. **

[Wexe$7] Wexelblat, A. May 1987. Report on Scenario Technology. MCC. Technical Report STP-139-87.
[Weyu79] Weyuker, E.J. "The Applicability of Program Schema Results to Programs." International Journal

Computer Information Sciences, 8 (1979):387-403. **
S[Weyu8a] Weyuker, E.J. 1980. "The Oracle Assumption of Program Testing." In Proceedings IEEE 13th Hawaii

International Conference on System Sciences, January, Honolulu, HA, 44-49. **
[Weyu~b] Weyuker, E.J. May 1980. Measuring the Adequacy of Test Data. New York University, Courant Insti-

tute of Mathematical Sciences. Technical Report 022. **
[Weyng0c]Weyuker, E.J., and T.J. Ostrand. "Theories of Program Testing and the Application of Revealing

Subdomains." IEEE: Transactions on Software Engineering, 6/3 (May 1980):236-246.
S[Weyu8l] Weyuker, E.J. January 1981. An Error-Based Testing Strategy. New York University, Courant Institute

of Mathematical Sciences. **
[Weyu82] Weyuker, E.J. "On Testing Non-Testable Programs." Computer Journal, 15/4 (1982):465-470.
[Weyu83] Weyuker, E.J. "Assessing Test Data Adequacy through Program Inference." ACM: Transactions on

Programming, Languages and Systems, 5/4 (Oct 1983):641-655.
[Weyu84a]Weyuker, E.J. "The Complexity of Data Flow Criteria for Test Data Selection." Information Process-

* ing Letters, 19/2 (Aug 1984):103-109.
[WeyuS4bJ Weyuker, E.J. January 1984. Axiomatizing Software Test Data Adequacy. New York University,

Courant Institute of Mathematical Sciences. Technical Report 99 (Revised April 1986). Also pub-
lished in IEEE: Transactions on Software Engineering, 12/12 (Dec 1986):1128-1138.

[Weyu88ajWeyuker, E.J. 1988. "An Empirical Study of the Complexity of Data Flow Testing." In Proceedings
2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 188-195.

"* Washington, DC: IEEE Computer Society Press.
[Weyu89] Weyuker, E.J. Author's Reply to "On the Adequacy of Weyuker's Test Data Adequacy Axioms."

IEEE: Transactions on Software Engineering, 15/4 (Apr 1989):500-501.
[WhitSa] White, L.J., F.C. Teng, H. Kuo, and D. Coleman. 1978. An Error Analysis of the Domain Testing

Strategy. Ohio State University. Technical Report CISRC-TR-78-2. **
[Whit78bJ White, L.J., E.I. Cohen, and B. Chandrasekaran. August 1978. A Domain Strategy for Computer Pro-

A gram Testing. Ohio State University. Technical Report 78-4. Also published in IEEE: Transactions on
Software Engineering, 6/3 (May 1980):247-257.

40 139



August 9, 1989

[WhitS0] Whitworth, M.H., and P.A. Szulewski. 1980. "The Measurement of Control and Data Flow Com-
plexity in Software Designs." In Proceedings 4th International Computer Software and Applications
Conference, October 27-31, Chicago, IL, 735-743. Los Alamitos, CA: IEEE Computer Society Press.

[Whit8l] White, L.J. 1981. "Basic Mathematical Definitions and Results in Testing." In Computer Program
Testing, B. Chandrasekaran and S. Radicchi (eds.), 3-24. New York: North Holland. **

[WhltS5I White, L.J., and P.N. Sahay. "Experiments Determining Best Paths for Testing Computer Program
Predicates." In Proceedings &h International Conference on Software Engineering, August 28-30, Lon-
don, England, 238-243. Washington, DC: IEEE Computer Society Press. **

[Whit86] White, L.J., and I.A. Perera. 1986. "An Alternative Measure for Error Analysis of the Domain Test-
ing Strategy." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 122-131.
Washington, DC: IEEE Computer Society Press.

[WhltgSa] White, L.J., and B. Wiszniewski. 1988. "Complexity of Testing Iterated Borders for Structured Pro-
grams." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21,
Banff, Canada, 231-237. Washington, DC: IEEE Computer Society Press.

[Whlt88b] White, L. 1988. Position Statements from Panel On: Testing and Verification Problems in Industry:
Technology Transfer. In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis,
July 19-21, Banff, Canada, 239-245. Washington, DC: IEEE Computer Society Press.

[Wieh79] Wichman, B.A., and A.H.J. Sale. July 1979. Pascal Validation Suite. University of Tasmania. Report
R79-3(PVS/4). **

[WlenS4] Wiener-Ehrlich, W.K., J.R. Hamrick, and V.F. Rupolo. "Modeling Software Behavior in Terms of a
Formal Life Cycle Curve: Implications for Software Maintenance." IEEE: Transactions on Software
Engineering, 10/4 (Jul 1984):376-383.

[Wigg84] Wiggs, J.E. 1984. Experimental Validation of Fault-Tolerant Software Reliability Models. M.S. thesis,
North Carolina State University. **

[Wlld$7] Wild, C. "Automating Software Fault Tolerance." Journal of Spacecraft and Rockets, 24/1 (Jan-Feb
1987):86-89. **

[Wild8g] Wild, C. 1988. "Generic Constraint Logic Programming and Incompleteness in the Analysis of
Software." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21,
Banff, Canada, 140. Washington, DC: IEEE Computer Society Press.

[WileS0] Wileden, W. "Techniques for Modelling Parallel Systems with Dynamic Structure." Journal of Digital
Systems, (Summer 1980):177-197. **

[Wlle83] Wileden, J.C., J. Sayler, W.E. Riddle, A. Segal, and A. Stavely. "Behavior Specification in a
Software Design System." Journal Computer Systems Software, 3 (Jun 1983):123-135. **

[Wile84] Wileden, J.C., and L.A. Clarke. 1984. "Feedback-Directed Development of Complex Software Sys-
tems." In Proceedings 1st Software Process Workshop, February 6-8, Egham, England, 89-93. Los
Angeles, CA: IEEE Computer Society. **

[Wile88] Wileden, J.C., A.L. Wolf, C. Fisher, and P. Tarr. 1988. "PGRAPHITE: An Experiment in Persistent
Typed Object Management." In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environments, November 28-30, Boston, MA, 130-142.

[W11179] Williams, G. 1979. "Program Checking." In Proceedings SIGPLAN '79 Symposium on Compiler Con-
struction, August, Denver, CO. Published in ACM: SIGPLAN Notices, 14/8 (Aug 1979):13-25.

[Wiil89] Williams, R., and P. Brashear. 1989. "Ada Compiler Validation: Purpose and Practice." In Proceed-
ings 7th Annual National Conference on Ada Technology, March 13-16, Altantic City, NJ, 522-527.
Washington, DC: ACM Ada Technical Committee. **

[Wing89] Wing, J.M., and M.R. Nixon. "Extending Ina Jo with Temporal Logic." IEEE: Transactions on
Software Engineering, 15/2 (Feb 1989):181-197.

[Wint7g] Winters, D., N. Ogden, and L.A. Clarke. December 1978. A Definition of AID: The ATTEST Inter-
face Description Language. University of Massachusetts. Technical Report 78-15. **

[Wirs83] Wirsing, M., P. Pepper, H. Partsch, W. Dosch, and M. Broy. "On Hierarchies of Abstract Data
Types." Acta Informatica, 20/1 (Oct 1983):1-34.

140



August 9, 1989

* [Wisz87] Wiszniewski, B. Jaunary 1987. Collected Ideas: Can Domain Testing Overcome Loop Analysis?
University of Alberta. Technical Report TR-87-1. **

[WolfSSa] Wolf, A.L., L.A. Clarke, and J.C. Wileden. "Ada-Based Support for Programming-in-the-Large."
IEEE: Software, 2/2 (Mar 1985):58-71.

[WoifSl] Wolf, A.L. September 1985. Language and Tool Support for Precise Interface Control. Ph.D. diss.,
University of Massachusetts. COINS Technical Report 85-23. **

* [Wo~f~Se] Wolf, A.L., L.A. Clarke, and J.C. Wileden. 1985. "Interface Control and Incremental Development
in the PIC Environment." Proceedings &h International Conference on Software Engineering, August
28-30, London, England. Washington, DC: IEEE Computer Society Press. **

[WoLff6a] Wolf, A.L., L.A. Clarke, and J.C. Wileden. 1986. "A Formal Model for Describing and Evaluating
Visibility Control Mechanisms." In Proceedings IEEE Computer Society 1986 International Confer-
ence on Computer Languages, October, Miami Beach, FL, 182-189. **

* [Wolf86b] Wolf, A.L. 1986. "An Overview of Arcadia." In Proceedings ACM SIGAda Future APSE '86
Workshop, September, Saratoga Springs, NY. Published in ACM: Ada Letters. **

[Wolf86e] Wolf, A.L., L.A. Clarke, and J.C. Wileden. September 1986. The AdaPIC Toolset: Supporting Inter-
face Control and Analysis Throughout the Software Development Process. University of Mas-
sachusetts. COINS Technical Report 86-51. Also published in IEEE: Transactions on Software
Engineering, 15/3 (Mar 1989):250-263.

* (Wolv74] Wolverton, R.W. "The Cost of Developing Large Scale Software." IEEE: Transactions on Comput-
ers, C-23/6 (Jun 1974):615-636.

[Wood77] Woodward, M.R., M.A. Hennell, and D. Hedley. 1977. "The Analysis of Control Flow Structure in
Computer Programs." In Proceedings Liverpool University Conference on Combinatorial Program-
ming (CP77), T.B. Boffey (ed.), September, 190-201. **

[Wood7g] Woods, J.L. 1978. Path Selection for Symbolic Execution Systems. Ph.D. thesis, University of Mas-
* sachusetts. **

[Wood79a] Woodward, M.R., M.A. Hennell, and D. Hedley. "A Measure of Control Flow Complexity in Pro-
gram Text." IEEE: 7ansactions on Software Engineering, 5/1 (Jan 1979):45-50.

[Wood79b] Woodfield, S.N. "An Experiment on Unit Increase in Programming Complexity." IEEE: Transac-
tions on Software Engineering, 5/2 (Mar 1979):76-79.

[Wood80a] Woodfield, S.N. 1980. Enhanced Effort Estimation by Extending Basic Programming Models to
* Include Modularity Factors. Ph.D. thesis, Purdue University. **

[WoodS~b] Woodward, M.R., D. Hedley, and M. Hennell. "Experience with Path Analysis and Testing of Pro-
grams." IEEE: Transactions on Software Engineering, 6/3 (May 1980):278-286.

[Woodg0e] Woods, J.L. May 1980. Path Selection for Symbolic Execution Systems. Ph.D. diss., University of
Massachusetts. **

[WoodSla] Woodfield, S.N., V.Y. Shen, and H.E. Dunsmore. "A Study of Several Metrics for Programming
* Effort." Journal of Systems and Software, 2/2 (Jun 1981):97-103.

[Wood8lb] Woodfield, S.N., H.E. Dunsmore, and V.Y. Shen. 1981. "The Effect of Modularization and Com-
ments on Program Comprehension." In Proceedings 5th International Conference on Software
Engineering, March 9-12, San Diego, CA, 215-223. Washington, DC: IEEE Computer Society Press.

[WoodSlc] Woodfield, S.N., V.Y Shen, and H.E. Dunsmore. A Module Interconnection Complexity Measure.
Authors from Computer Science Dept. at Arizona State University and Purdue University.

* [Wood88] Woodward, M.R., and K. Halewood. 1988. "From Weak to Strong, Dead or Alive? An Analysis of
Some Mutation Testing Issues." In Proceedings 2nd Workshop in Software Testing, Verification, and
Analysis, July 19-21, Banff, Canada, 152-158. Washington, DC: IEEE Computer Society Press.

[Wu87a] Wu, D. March 1987. Syntax Directed and Semantics Aided Mutation. University of Liverpool. **
[Wu87b] Wu, D., I.J. Riddell, M.A. Hennell, and D. Hedley. April 1987. The Minimum Set of Test Data on

Syntax Directed Mutation of Boolean Expression. University of Liverpool. **
* [Wu87c] Wu, L., V. R. Basili, and K. Reed. 1987. "A Structure Coverage Tool for Ada Software Systems." In

Proceedings Joint Conference of 5th National Conference on Ada Technology and Washington Ada
Symposium, March 16-19, Arlington, VA, 294-302. Washington, DC: ACM Ada Technical

141



August 9, 1989

Committee.
[WuU] Wu, D., M.A. Hennell, D. Hedly, and I.J. Riddell. 1988. "A Practical Method for Software Quality

Control via Program Mutation." In Proceedings 2nd Workshop in Software Testing, Verification, and
Analysis, July 19-21, Banff, Canada, 159-170. Washington, DC: iEEE Computer Society Press.

[Wuf761 Wuif, W.A., R.L. London, and M. Shaw. "An Introduction to the Construction and Verification of
Alphard Programs." IEEE: ransactions on Software Engineering, 2/4 (Dec 1976):253-265.

(Yama83] Yamada, S., M. Ohba, and S. Osaki. "S-Shaped Reliability Growth Modeling for Software Error
Detection." IEEE: ransactions on Reliability, R-35/5 (May 1983):475-478.

[Yau78] Yau, S.S., J.S. Collofello, and T. McGregor. 1978. "Ripple Effect Analysis of Software Mainte-
nance." In Proceedings 2nd International Computer Software and Applications Conference, November
13-16, Chicago, IL, 60-65. Long Beach, CA: IEEE Computer Society Press.

[Yau79] Yau, S.S., and J.S. Collofello. 1979. "Some Stability Measures for Software Maintenance." In
Proceedings 3rd International Computer Software and Applications Conference, November 6-8, Chi-
cago, IL, 674-679. Long Beach, CA: IEEE Computer Society Press. Also published in IEEE: Tran-
sactions on Software Engineering, 6/11 (Nov 1980):545-552.

[Yan$0] Yau, S.S., and F.-C. Chen. "An Approach to Concurrent Control Flow Checking." IEEE: Transac-
tions on Software Engineering, 6/3 (Mar 1980):126-137.

[Yeh77] Yeh, R.T. (ed.) 1977. Current Trends in Programming Methodology, Vol. 2 Program Validation.
Englewood Cliffs, NJ: Prentice-Hall.

[Yeh79] Yeh, R.T. "In Memory of Maurice H. Haistead." IEEE: Transactions on Software Engineering, 5/2
(Mar 1979):74-75.

[Yin7$] Yin, B.H., and J.W. Winchester. 1978. "The Establishment and Use of Measures to Evaluate the
Quality of Software Designs." In Proceedings ACM Software Quality Assurance Workshop, November
15-17, San Diego, CA:45-52. New York: Association for Computing Machinery.

[Yin79] Yin, B.H., and J.W. Winchester. 1979. "Software Design Quality Metrics System." In Proceedings
2nd International Conference on Mathematical Modeling, July. **

[Yln80] Yin, B.H. 1980. "Software Design Testability Analysis." In Proceedings 4th International Computer
Software and Applications Conference, October 27-31, Chicago, IL, 729-734. Los Alamitos, CA:
IEEE Computer Society Press.

[Youn7l] Youngs, E.A. 1971. Error-Proneness in Programming. Ph.D. thesis, University of North Carolina. **
[Youn74] Youngs, E.A. "Human Errors in Programming."

International Journal of Man-Machine Studies, Vol. 6 (1974):361-376. **
[YounSS] Yount, L.J., K.A. Lievel, and B.H. Hill. 1985. "Fault Effect Protection and Partitioning for

Fly-By-Wire/Fly-By-Light Avionics Systems." In Proceedings 5th AIAA Conference on Computers in
Aerospace, October, Long Beach, CA, 275-284. **

[Young6a] Young, M., and R.N. Taylor. 1986. "Combining Static Concurrency Analysis with Symbolic Execu-
tion." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 170-178. Washington,
DC: IEEE Computer Society Press.

[Youn86b] Young, B. April 1986. The Low-Water-Mark Problem Using Non-Interference. Honeywell Secure
Computing Technology Center. Internal Note. **

[Youmg6c] Young, W.D. 1986. A Verified Compiler for Micro Gypsy. Ph.D. diss., University of Texa, (in pro-
gress). **

[YounS1a] Young, M. 1988. "How to Leave Out Details: Error Preserving Abstractions of State-Space Models."
In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff,
Canada, 63-70. Washington, DC: IEEE Computer Society Press.

[Younugb] Young, M., R.N. Taylor, D.B. Troup, and C.D. Kelly. 1988. "Design Principles Behind Chiron: A
UIMS for Software Environments." In Proceedings 10th International Conference on Software
Engineering, April 11-15, Singapore, 367-376. Washington, DC: IEEE Computer Society Press. **

[Youn$9a] Youngblut, C., B. Brykczynski, K. Gordon, R.N. Meeson, and J. Salasin. February 1989. SDS
Software Testing and Evaluation: A Review of the State-of-the-Art in Software Testing and Evaluation
With Recommended R&D Tasks. Alexandria, VA: Institute for Defense Analyses. IDA Paper P-2132.

142



August 9, 1989

* [Youn89b] Youngblut, C., and B. Brykczynski. Bibliography of Testing and Evaluation Reference Material. Alex-
andria, VA: Institute for Defense Analyses. Draft IDA Memorandum M-496.

[YounS9c] Young, M., and R. Taylor. May 1989. "Rethinking the Taxonomy of Fault Detection Techniques." In
Proceedings 11th International Conference on Software Engineering, May 15-18, Pitsburgh, PA, 53-62.
Washington, DC: IEEE Computer Society Press.

[Your76] Yourdon, E., and L.L. Constantine. 1975. Structured Design. New York: Yourdon Inc.
* [Yu84] Yu, T.J., and B.A. Nejmeh. 1984. Software Metrics Data Collection. Purdue University. Technical

Report CSD-TR-421. **
[YuS'] Yu, T.J. 1985. The Static and Dynamic Models of Software Defects and Reliability. Ph.D. thesis, Pur-

due University. **
[YuSga] Yu, T.J., B.A. Nejmeh, H.E. Dunsmore, and V.Y. Shen. "SMDC: An Interactive Software Metrics

Data Collection and Analysis System." Journal of Systems and Software, no. 8 (1988).
* [Yn8gb] Yu, T., V.Y Shen, and H.E. Dunsmore. "An Analysis of Several Software Defect Models," IEEE:

Transactions on Software Engineering, 14/9 (Sep 1988):1261-1270.
[Zafl80] Zafiropulo, P., C.H. West, H. Rudin, D.D. Cowan, and D. Brand. "Towards Analyzing and Syn-

thesizing Protocols." IEEE: Transactions on Communications, COM-28/4 (Apr 1980):651-661.
[Zeig89] Zeigler, J., J.M. Grasso, L.G. Burgermeister, and L.D. Moilod. 1989. "Developing a Universal Ada

Test Language for Generating Software/System Integration and Fault Isolation Test Programs." In
* Proceedings 7th Annual National Conference on Ada Technology, March 13-16, Altantic City, NJ,

494-510. Washington, DC: ACM Ada Technical Committee. **
[ZeiiSla] Zeil, S.J. 1981. Selecting Sufficient Sets of Test Paths for Program Testing. Ph.D. diss., Ohio State

University. Technical Report OSU-CISRC-TR-81-10. **
[ZeilSib] Zeil, S.J., and L.J. White. 1981. "Sufficient Test Sets for Path Analysis Testing Strategies." In

Proceedings 5th International Conference on Software Engineering, March 9-12, San Diego, CA,
* 184-191. Washington, DC: IEEE Computer Society Press.

[ZeU83a] Zeil, S.J. "Testing for Perturbations of Program Statements." IEEE: Transactions on Software
Engineering, 9/3 (May 1983):335-346.

[Zei183b] Zeil, S.J. December 1983. Perturbation Testing for Domain Errors. University of Massachusetts.
Technical Report 83-38. **

[Zei184] Zeil, S.J. 1984. "Perturbation Testing for Computation Errors." In Proceedings 7th International
* Conference on Software Engineering, March, 26-29, Orlando, FL, 257-265: . Washington, DC: IEEE

Computer Society Press.
[ZeII86] Zeil, S.J. 1986. "The EQUATE Testing Strategy." In Proceedings Workshop on Software Testing, July

15-17, Banff, Canada, 142-151. Washington, DC: IEEE Computer Society Press.
[Zeii87] Zeil, S.J., and E.C. Epp. October 1987. Interpretation in a Tool-Fragment Environment. University of

Massachusetts. COINS Technical Report 87-108. Also published in Proceedings 10th International
* Conference on Software Engineering, April 11-15, Singapore, 241-248. Washington, DC: IEEE Com-

puter Society Press.
[Zei18a] Zeil, S.J. 1988. "Selectivity of Data-Flow and Control-Flow Path Criteria." In Proceedings 2nd

Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 216-222. Wash-
ington, DC: IEEE Computer Society Press.

[Zel88b] Zeil, S.J. "Complexity of the EQUATE Testing Strategy." Journal of Systems and Software, 8/2 (Mar
* 1988):91-104.

[Zei188c] Zeil, S.J. 1988. "Testing Criteria versus Abstraction: Incidental and Inherent Limitations." In
Towards SDS Testing and Evaluation: A Collection of Relevant Topics. IDA Memorandum Report
M-513. Alexandria, VA: Institute for Defense Analyses. Draft.

[Zei1S9] Zeil, S.J. "Perturbation Techniques for Detecting Domain Errors." IEEE: Transactions on Software
Engineering, 15/6 (Jun 1980):737-746.

* [Zelk77] Zelkowitz, M.V. 1977. "Operational Aspects of a Software Measurement Facility." In Proceedings
2nd Life Cycle Management Workshop, August. **

* 143



August 9, 1989

[Zelk7$] Zelkowitz, M.V. "Perspectives on Software Engineering." ACM: Computing Surveys, 10/2 (Jun 1978):
197-216.

[Zelk79] Zelkowitz, M.V. 1979. "Resources Estimation for Medium Scale Software Projects." In 12th Confer-
ence on Computer Science and Statistics: Proceedings Annual Symposium on the Interface. New York:
IEEE Computer Society Press. **

[Zelk82] Zelkowitz, M.V. 1982. "Data Collection and Evaluation for Experimental Computer Science
Research." In Proceedings Empirical Foundations for Computer and Information Science, November.
**

[Zhao86] Zhao, J.-R., and G.v. Bochmann. 1986. "Reduced Reachability Analysis of Communication Proto-
cols: A New Approach." In Proceedings (h IFIP Workshop on Protocols, June, 243-254. North-Hol-
land. **

[Zhou$l] Zhou, C.C., and C.A.R. Hoare. 1981. Partial Correctness of Communicating Processes and Protocols.
University of Oxford. Technical Monograph PRG-20. **

[Zili74] Zilles, S.N. "Algebraic Specification of Data Types." In Project MAC Progress Report for 1973-1974.
MIT. CSG Memo 119. **

[Zoln76] Zolnowski, J.M.C. 1976. A System for Measuring Program Complexity. Ph.D. diss., Texas A&M
University.

[Zoin77] Zolnowski, J.C., and D.B. Simmons. 1977. "Measuring Program Complexity." In Proceedings
COMPCON Fall 1977, Long beach, CA, 336-340. IEEE. **

[Zoin8l] Zolnowski, J.M.C., and D.B. Simmons. 1981. "Taking the Measure of Program Complexity." In
Proceedings AFIPS National Computer Conference, vol. 50, May 4-7, Chicago, IL, 329-336. Arlington,
VA: AFIPS Press.

[Zwan84] Zwanzig, K. (ed.) November 1984. Handbook for Estimating Using Function Points. GUIDE Int.,
GUIDE Project DP-1234. **

[Zweb79] Zweben, S.H., and M. H. Halstead. "The Frequency Distribution of Operators in PL/I Programs."
IEEE: Transactions on Software Engineering, 5/2 (Mar 1979):91-94.

[Zweb89] Zweben, S.H., and J.S. Gourlay. "On the Adequacy of Weyuker's Test Data Adequacy Axioms."
IEEE: Transactions on Software Engineering, 15/4 (Apr 1989):496-500.

[vanH68] van Horn, E.C. "Three Criteria for Designing Computing Systems to Facilitate Debugging." ACM:
Communications of the ACM, 11/5 (May 1968):360-365.

[vanT74] van Tassel, D. 1974. Program Style, Design, Efficiency, Debugging, and Testing. Englewood Cliffs, NJ:
Prentice-Hall. **

[vonH8$] von Henke, F.W., D.C. Luckham, B. Krieg-Brueckner, and 0. Owe. 1985. "Semantic Specification
of Ada Packages." In Proceedings SIGAda International Conference, May, Paris, France. Published
in ACM: Ada Letters,V/2 (Sep-Oct 1985):185-196.

144



August 9, 1989

0 3. AUTHOR MNEX
Abdel-Glialy A.A .................................................... (Abde86J

Abmayr D.W..........................................................[(Ruxns77]
Acree A.T ............................................... [Acre79], [AcreBO]
Adam A.............................................................. [Adam8O]

0 Adazowicz M........................................................ (Moha76a]
Adams E.N........................................................... [Adam84]
Adler M.A ............................................... [(Kear85J, [Kear86]
Adrian W.R ........................ [Adri8O], [Adri82J, [BranB0l, [CherBOaJ

[CherBObJ
Agarwal V.K.........................................................[(Jach84J

40 Agile C.R........................................................... [Agil76l
Agresti W.W....................... [Agre84a], (Agre84b], [AgreB4cJ, [Agre86]

[Agre87], [Brop87], [Card86a], [CardB7aJ, [ChurB6]
Aho A.V ............................................................. [(Aho86J
Air Force Operational Test and Evaluation Center.........[AFOT82], [AFOT86]

[AFOT87], [AFOTB8a], [AFOT88bJ
Air Force Systems Command..........[AFSC86a], [AFSCB6b], [AFSC88a], [AFSC88b]
Al-Jarrah M.M.F .................................................... [(Al-J82]
Albert B............................................................[(Vosb84]
Alberts D.S.........................................................[(Albe76]
Albrecht A.J................................. [Albr79J, [Albr8lJ, [Albr83]
Alexander W.P.......................................................([Howa73]
Allen F.E....................................[(Alle7l], [Alle74], [Alle76J
Ambler A.L.............................................. [Ambl76a], [Ambl76b]
A-mann P.E ......................................................... (Knig85aJ
Amoroso E.G ............................................ ............ (Amor89]
Amory W............................................................. (Amor75]
Amster S.J ................................. ........................ [Amst76]
Anderson E.R....................................................... (Ande76b]
Anderson J.D........................................................[(Ande88]
Anderson R.B.......................................................[(Ande79a]
Anderson S.......................................................... [Sche85]
Anderson T ........................ (Ande76a], [Ande79b], (Ande8l], [Ande83]

(Ande85]
*Andrews D.M ........................................................ [Andr8l]

Angel M............................................................. [AngeB9]
Angluin D....................................[(Angi8O], [Angl83], (Budd8Od]
Angluin D.C ........................................................ [(Angi76]
Angus J.E ............................................... [Angu8O], [AnguB3]
Antle C ............................................................ t[Card85c]

*Apt K.R ........................... [(Apt8O], [Apt~l], [Apt83a], (AptB3b]
Aragon R.W ............... .......................................... (Maye89J
Ardis M.................... ............................. [Gann8O], [Haml79J
Ardoin C.D ............................ ...... (ArdoBBJ, [Kapp88], [Linn88]
Arlat J.................................................[(GrnaBOaJ, (Grna8Ob]
Arthur J.D .............................................. [Arth8BJ, [Henr85]

*Auerheimer B.......................... .................. [AuerB5], (Auer86]
Avery S .................. .......................................... (Aver84]
Avizienis A ....................... [(Aviz75], [Aviz77], [Aviz78I, [Aviz84]

145



August 9, 1989

(Aviz85], [Aviz87], (Chen78b], [Grna8Oa], (Grna8Ob], [Kell83J
Avrunin G.S....................... [Avru83], [Avru85], [Avru86J, [Dill85]

(Dil186], (Dill88c]
Ayache J.M.......................................................... [Ayac79]
Azemna P............................................................. [Ayac79J
Azima ............................................................. [Okad82]
Babst T.A ............................................... (Babs83], (SiefBB]
Baggi D.L ............................................... (Bagg78], [Bagg8O]
Balardi F ............................................... [BaiaB4J, [Baia85J
Bailey J................................................ fRomb88g], [Romb88h]
Bailey J.E.......................................................... (Bail83)
Bailey J.W................................... [BailBO], [Bail~i], [Basi82b]
Baker A.L .................................... (Bake79a], (Bake79b], [Bake8O]
Baker C.T........................................................... (Bake88]
Baker D.A........................................................... (Tayl87]
Baker F.T ......................... [Bake72a], [Bake72b], [Bake~i], [Selb87b]
Baker W.F...........................................................([Bake77]
Balcer M.J.......................................................... (OstrB8]
Baldwin D........................................................... [Bald79]
Balzer R.M ........................ [Balz69], (Balz8l], [Balz82J, [Cohe82]
Baratta-Perez G......................................... [Taus87a], [Taus87b]
Barbeau M ............................................... [Barb88], (Sari88b]
Barkataki S.........................................................[(Bark89]
Barnes M............................................................ [Bish86]
Barondi J.J ........................................................ (CIves83]
Barrett P.A ........................................................ (Ande85]
Barringer H.................................. (Barr82], [Barr84], (Barr85]
Barth J.M........................................................... (Bart78]
Bartlett K.A ....................................................... (Bart8O]
Bartussek W................ ........................................ (Bart77]
Barzdin J.M ........................................................ [Barz75J
Basili V.R..................... ... [Bail8O], [Basi75], [Basi77a], [Basi77b]

[Basi78a], [Basi78b], [Basi78c], (Basi79a], [Basi79b], (Basi79c]
[Basi8Oa], (Basi80b], [Basi8Oc], (Basi~la], (Basi8lb], [Basi8lc]
(Basi8ld], [Basi8le], [Basi~if], (Basi~ig], [Basi82a], (Basi82b]
[Basi82c], (Basi82d], (Basi83a], (Basi83b], [Basi83c], (Basi83d]
(Basi84a], [Basi84b], (BasiB4c], (Basi84d], [Basi85a], (Basi85b]
[Basi85c], [Basi85d], (Basi85e], (BasiB5fJ, (BasiB5g], tBasi85h]
(Basi86a], (Basi86b], (BasiB6cJ, (Basi86d], (Basi86e], [BasiB7a]
(Basi87b], tBasi87c], [Basi87d], [BasiBB], (Brop87J, (CardB2]
[Doer85], (Freb79], [Gann83], [Gann85], [GannB6], [Hutc83]
(Katz86] , (Katz87], (Romb85a] , [Romb87bJ , (Romb88b] , [Romb88g]

(RombB8h], [Selb87bJ, [Selb88b], [Selb88c], [Weis85c], [Wu87c]
Bastani F.B.................................. [Bast78], (Rama~l], [Rama82]
Bastarache M.J............... ...................................... [Teic74J
Bates P.C......................... (Bate8l], tBate82], [Bate83a], (Bate83b]

[LessBO]
Battaglia M ........................... ............................ (Batt871
Bauer F.L............................................... (Baue79b], (Baue89]
Bauer J.A ........ .......................... ....... t[Baue79a], (Baue79a]
Bayer R....................... ............ ........................ (Hals73b]

146



August 9, 1989

* BazZichi F.......................................................... (Bazz82]
Beane J ............................................................ (Basi8lf]
Beckman L........................................................... [Beck76]
Beeler J............................................................([Beel85]
Begeman M .......................................................... (Conk88]
Behrens C.A ........................................................ [Behx83]

* Beizer B............................................................[(Beiz83]
Belady L.A................................... [Bela76], (Bela77], (Bela8l]
Belford P.C ........................................................ [Belf79]
Belkhouche B ....................................................... [(Belk86]
Bell D.E............................................................ [Bell74]
Belz F.C ..................................... (Ande76b], (Tayl871, (Tayl88]

* Bendell A........................................................... [Bend86]
Bender M.E .............................................. [Bend89], [Lefk89J
Bendick M .......................................................... (Care77]
Benejean R ......................................................... [Bene85]
Bengston N.M...................................... ................. [Beng87]
Bennett D.L ........................................................ (Rich78]

*Benson J.P........................ [Andrel], (Bens8l], [Mill74a], [Page74]
Bentley J.L ........................................................ (Bent87]
Benyon-Tinker G .................................................... [Beny79]
Berard E.V.............................................. ........... (Bera83]
Berg H.K............................................................ (Berg821
Berg R.C............................................................ [Belf79]

*Berlinger E ........................................................ (BerlBO]
Berns G.M...........................................................[(Bern84]
Berry D.M .......................................................... (Berr87]
Berzins V........................................................... (Lisk79]
Besharatian R.H .................................................... (Besh85]
Besson M............................................................ (BessB7J

*Bevier W.R .............................................. [(Bevi87], [Bevi8B]
Bicevskis J.J ...................................................... [(Barz75]
Biche P.W ......................................................... (Rube75]
Biebow B............................................................ (Bieb85]
Bilsel M.S..........................................................[(Bils83]
Bird D.L .......................................................... (Bird83]

* Bishop P.C ........................................................ (Bish86]
Bjorner D.................................... [Bjor78J, fBjor82I, [Bjor87J
Black J.P.................................... (Blac8l], [Tayl78a], [Tay180a]
Blaine J.D.............................................. [Blai85a], (BlaiB5b]
Blair J .................. .......................................... (Blai7l]
Bledose W.W ................................................. ...... [Good75c]

*Bloom M ............................................................ (Besh85]
Bloomfield R.E ....................... ........................... ... (Bloo86]
Blumn E.K ........................................................... [(Ande76b]
Blum L.............................................................. [Blum75]
Blum M ............................ ................................. [Bluni751
Bochmann G.v...................... (Boch78], [BochBO], (Boch87a], [BochB7b]

* [Boch88] , [Dsso85], [Jard83], (Sari82] , (Sari84b] , [Sari871

(Sari88c] , [Zhao86]

Boebert W.E ........................................................ [Berg82]

* 147



August 9, 1989

Boehm B.W......................... [Boeh73], (Boeh75a], [Boeh75b], [Boeh78]
[Boeh~lJ, fBoeh84a], [Boeh84b], [Boeh86], (Boeh87], (Tayl87]

Bohrer R............................................................ [Bohr75]
Boies S.J........................................................... (Boie72]
Bologna S................................. ......................... (Tayl77b]
Boisky m.I.......................................................... [Shoo751
Bonnett B........................................................... [Bonn84]
Booth T.L.................................... [Boot8O], [GilkXX], (Shol75]
Borger M.W ......................................................... (Weid86]
Borodin A........................................................... (Boro72]
Borst M.A............................................... [Curt79aJ, EShep78]
Bouge L ...................................... [Boug85a], (Boug85b], [Boug86]
Bowen C................................................. [McCa87a], (McCa87b]
Bowen J.B......................... [Bowe78], [Bowe79], (Bowe8O], (Bowe84]
Bowen T.P.................................... (Bowe83], [Bowe851, [Press83]
Bowman A.B ......................................... ................ [(Love76]
Bowser J.H .............................................. [BowsB87], [BowsXX]
Boyer R.S......................... [Boye75], (Boye79], [Boye8O], [Boye8l]

[Boye83], (Boye84a], [BoyeB4b], EBoye88], [Neuin75l
Boysen J.P ................................. ........................ (Boys79]
Bozeman R.E......................................................... [Jone89]
Bradley G.H......................................................... [Brad75]
Brand D ................................................. [Bran78], EZafi8O]
Branstad M.A ...................... [Adri82], [Bran8O], [CherB0a], (Cher8Ob]
Brashear P.......................................................... [Will89j
Bravdica............................................................([Jack7l]
Brement G .......................................................... [Turn8lb)
Briand J.P ........................ .................................... (Bria86]
Brilliant S.S ........................................... [Bril84], [Bril87]
Brinch Hansen P ......................................... ([Brin73], (Brin78]
Brindle A.F......................................................... (Brin85]
Brinksma E..........................................................([Brin87J
Bristow G........................................................... (Bris79]
Britcher R.N ............................................ [(Brit82], (Brit8BJ
Britton K.H......................................................... [Clem84]
Brooks F.P.......................................................... [Broo75]
Brooks M.................................... ....................... (Broo8Oc]
Brooks M.F ......................................................... [Broo8Od]
Brooks R............................................................[(Less8O]
Brooks R.E................. ........................................ [Broo8Oa]
Brooks W.D ................................... (BrooBOb], [Broo8l], (Motl76]
Brophy C ................................................ (Brop87J, [Godf87]
Brown A.R .......................................................... [Brow73b]
Brown D.B...........................................................([BrowB9]
Brown J.R......................... [Boeh78], [Brow72a], (Brow72b], [Brow75]

[Brow76]
Brown P.J.................................. ........................ [BrowBOa]
Brown S.R .......................................................... [(Brow73a]
Browne J.C................................... (Brow78], (Brow80b], [Lync~l]
Broy M ................... ......................................... [Krie86]
Broy M ............................................. .... [Baue79b], [WirsB3]

148



August 9, 1989

*Bruegge B .......................................................... (Brue83]
Bruen M.W .......................................................... (Post87]
Brunelle J.E ....................................................... [Brun85]
Bruns G ............................................................ (Brun86]
Bryan D.L .......................................................... (Luck87]
Bryan W.L .......................................................... [BryaBO]

*Brykczynski B................................ (Bryk89], [Youn89a], (Youn89b]
Buchan P..................................... [Furt~l], [Szul8O], [Szul8l]
Buck F.0........................... ................................ [Buck8l]
Buckley F .......................................................... (Buck79]
Budd T.A .......................... [Acre79], [Budd77], (Budd78a], [Budd78b]

(Budd78c], (Budd8Oa]f [BuddB0b), (Budd8Oc], (Budd8Od], [Budd8l]
*[Budd83a], (Budd83b], (Budd85]

Budinger C.A............................................ (BowsXX], (Guin87]
Bulut N ............................................................ (Bulu74]
Bunce WE .......................................................... (Bunc8O]
Burger W.F.........................................................[(Ambl76b]
Burgermeister L.G .................................................. (Zeig89]

* Burns J............................................................. (Burn78]
Burstall R.M ....................................................... (Burs74]
Buschbach T ........................................................ ([Hout~i]
Buzen J.P..............................................................[(Denn78]
Byrnes C ........................................................... (Byrn891
Caglayan M.U.......................... ............................. [Cagl82J

*Cailliau R ......................................................... [Cail79]
Camp J.W ........................................................... [Cainp76]
Campbell I.G ....................................................... [Krie86]
Campbell R.H ............................................ [Camp74], [Camp79]
Canning J.T ....................... ([Cann85], [Kafu84], (Kafu85a], [Kafu88J
Cantone G .......................................................... [(CantB9J

*Card D.N .............. ........... fAgre84b], [Card8l], [Card82], (Card84]
[CardB5aJ, [Card85b], [Card85c], [Card85d]f [CardB6a], [Card86b]
(Card87a], (Card87b], (ChurB2], [Chur86], EKoerB4], (McGa84]

[Page821, (Page84], [Page85]
Carey R ............................................................ [Care77]
Caron G ................................................ (Turngla], (Turn8lb]

*Carpenter L.C. .................................................... [(Carp75]
Carpenter N........................................ ................ [Cohe77]
Carre B.A ............................................... [(Carr8O], (Carr82]
Carson S.D ......................................................... (Cars84]
Cartwright R ....................................................... [Cart~lJ
Carver R.H .............................................. ([Carv88], [Tai86]

*Caswell D.......................................................... (Grad87b]
Cavano J ........................................................... (Cava781
Celentano A......................................... .... [Cele8O], [Cele8l]
Ceri S.............................................................. (DiMa85]
Ceriani M .......................................................... (Ceri8l]
Cerny E ............................................................ [Sari87]

*Cha S.D.................................................. (Cha87], (Cha88]
Chan M..............................................................[(Chan84]
Chan P.Y ........................................................... [(Abde86J

149



August 9, 1989

Chandersekaran C.S ................................................. ([Glig87]
Chandrasekaran B................................................... [Whit78b]
Chandrasekharan M .................................................. (Chan85]
Chandy K.M ........................ ([Chan79], [ChanB8], [Misr8l], [Misr82]
Chang C........................................................... [Chan89]
Chang P............................................................. (Rich76]
Chang S ............................................................ [Basi85h]
Chang Y.-F.......................................................... [Chan89]
Chanon R.N..........................................................[(Chan73J
Chapin N............................................................ [Chap79]
Chapman D........................................................... [Chap82]
Charles Stark Draper Laboratory.................................... [CSDL8O]
Cheatham T.E ............................................ (Chea78], [Chea79]
Cheheyl M........................................................... [Chehl]
Chelson P.0O........................................................ [ThomBO]
Chen B.............................................................. [Chen83]
Chen E.T................................................ [Chen78a], [Chen~i]
Chen F.-C ........................................................... [Yau8O]
Chen J.-J...........................................................f(Chan89]
Chen L..................... ................ ..... ....... [Aviz77], [Chen78b]
Chen W.T.......................... [Chen75], EChen76], (Rama75b], [Rama76]
Cheng W.K........................................................... [Shat88]
Cherniavsky J.C ................... ([Adri82], (Bran8O], [Cher79], (CherBOa]

[Cher8Ob], [Cher86], [Cher87a], [Cher87b], [Cher88]
Chester D.L ....................... .... ............................ [Ches77]
Cheung R ........................................................... [Rama74b]
Cheung W.K........................................................... (Li87]
Chin G.H............................................................ [Rama8l]
Choquet N ......................... [Boug85a], [Boug86]. [Choq85]. (Choq86]
Chou C.-R ............................................... ........... [Chan89J
Chou X.............................................................. [Ohba89]
Chow T.S ................................................... ........ [Chow7B]
Christensen K ...................................................... [Chri8l]
Chrysler E .................................. ....................... (Chry78J
Church V.E.................... .... [Agre84c], [Card86aL. [Chur82], [ChurB6J
Chusho T............................................................ [Chus87]
Cicu A ................... .......................................... [Ceri~i]
Cimitile A ................. ........................................ [(Cant89]
Cinlar E............................................................ (Cinl75]
Clapp J.A..................................... ............... [Amor75]
Clark V.A...........................................................([Dunn74]
Clarke E.M .............................................. (Schu~i], (Sist8B]
Clarke L.A........................ (Clar76a], [Clar76b], (Clar78a], [Clar78b]

(Clar~la], (Clar~ib], (Clar~ic], (Clar82], (Clar83a], (ClarB3b]
[ClarB41, [Clar85a], [Clar85b], [Clar86a], [Clar86b], [Clar86c]

(Clar86d], (Clar88a], [Clar88b], [HassBO], (Long8B], [Rich78]
[Rich8la], [Rich82], [Rich85a], (Rich85b], (Tayl86b], (Tayl87]
[TayiB8i, [Wile84], (Wint78], [Wolf85a], (Wolf85c] , [WolfB6a]

[Wolf 86c]
Clarson D.R........................... .... ....... .... ... [Taus87a], [Taus87b]
Clary J.B...........................................................([Triv8O]

150



August 9, 1989

* Clements P.C........................................................ [Clem84]
Cochran W.G ............................................. (Coch5O], [Coch53]
Cocke J............................................................. [Alle76]
Coffman M.L......................................................... (Coff87]
Cohen D.............................................................C(Cohe82]
Cohen E.A........................................................... (Cohe78]

*0 Cohen E.I .......................................................... [Whit78b]
Cohen J............................................................. [Cohe77J
Cohen R.M .......................................................... (Good79b]
Coleman D ............................................... (Gerr85], (Whit78a]
Coles R............................................................. (Cole8s]
Collofello J.S........................................... [Yau78], (Yau79]

40 Comner D.............................................................E[Come79]
Computer Sciences Corporation...................................... (CSC78]
Conklin E.J................... .......................... ([Conk86], [Conk88]
Conn R.............................................................. [Conn87]
Conradi R........................................................... (Conr85]
Constantine L.L ......................................... [Stev741, fYour76J

*Conte S.D ............................................... (Cont~l], [ShenB3]
Conti R.A........................................................... [Cont85]
Cook C.R............................................................ [Harr85]
Cook J.F ................................................ [Cont86], [Cook8O]
Cook M.L ................ ........................................... ([Cook82]
Corkill D.D ............................................. (Less8O], (Less8l]

*Cornacchio J.V ..................................................... [VemuBO]
Cornell L ............................................... (Cook8l], [Corn76J
Cosloy E............................................................ [Holt76l
Coulter N.S ........................................................ [Coul83]
Cowan D.D........................................................... (Zafi8O]
Cox G.M............................................................. [Coch5O]

* Cox P.R ............................................................. (Cox8lJ
Craigen D. .................. [Crai86l, [Crai87a], [Crai87b], (Crai87c]

(Crai87d], [Cra188a], (Crai88bJ, [Smit88J
Crow J..................................................[(Crow85a], [Crow85bJ
Cruickshank R.D.................................................... (Crui8O]
Curnow R.P.......................................................... [Blac77]

*Currit P.A .............................................. [(Curr83], [Curr86]
Curry R.W........................................................... [Curr76)
Curtis B .......................... [Curt79a], [Curt7gb], [Curt8O], [Curt~l]

[Curt83], (Shep78], [Shep79], [Vosb84]
DACS.............................. [DACS79a], (DACS79b], (DACS85], fTurn~la]

[Turn8 ib]
* Dahbura A.T............................................ (Sabn85], [Uyar86]

Dahl G ................................ ............................. (Bish86]
Dahl O.J.....................................[(Dahl72], [Dahl78], [Dahl79a]
Dahil G................................................ ............ [(Dahl79bJ
Dale C..............................................................[(Dale86J
Daly E.B .............................. ............................. [Daly77]

*Dana J.A......................................................... ... (Rube75]
Darringer J.A ................ ....................... .............. (Darr78]
Dasarathy B......................................................... (Chan85]

* 151



August 9, 1989

Davis C. ........................................................... [Gaff88]
Davis C.L .......................................................... [Davi85]
Davis N.J........................................................... [Amst76]
Davis G.B .............................. ............................ [Lite76]
Davis J.S........................................................... (Davi88]
Davis M.D......................... [Davi~i], [Davi82a], (Davi83a], [Davi83b]
Davis P.J.................................... [Dav177], [Rowi~la], [Rowl8lb]
Davis R.E .......................................................... (Davi82b]
De Carlini U................................ ....................... [Cant89]
Do Francesco N .......................................... [Baia85], [DeFr85]
DeKock A............................................................ [Harr82]
DeMillo R.A ....................... [(Acre79], (Buddl78a], [Budd8Oa], (DoMi771

[DeMi78], [DeM179a), (DeM179b], [DeMi8i], [DeMi86a], [DeMi86b]
(DeMi87a], (DoMi87b], [DeMi87c], [DeMi87d], [DeMi88a], [DeMi88b]

DeRemer F .................................. ........................ (DeRe76]
DeViot L ........................................................... (Good84b]
DeWoif J.B........................ [Furt~l], [SzulBO], (Szul~lJ, [Szul83]
Deason W.H.......................................................... (Brow89]
Decker W.J ................................... [Deck82a], [Deck82b], [Gree8l]
Deimel L.E ......................................................... [Vouk85a]
Dekert J.L.F........................................................ [Deke8l]
Delaney R.P ............................................... ......... [(Dela88]
Delis A................................................. [Romb88g], [Romb88h]
Demers A............................................................ [Ngjuy86]
Domshki M........................................................... [Dems82J
Donning D............................................... [Crow85a], (Crow85b]
Donning P.J......................................................... (Denn78]
Deransart P......................................................... [DeraB5]
Deutsch L.P .............................................. .......... [(Deut73]
Di Maio A...........................................................([DiMa85]
DiVito B.L.......................................................... (DiVi82]
Diaz M ............... .............................................. [(Ayac79]
Dickman B.N......................................................... [Amst76]
Dijkstra E.W ...................... (Dahl72], (Dijk68], [Dijk76a], (Dijk76b]
Dillon L.K........................ (Avru86], [Dill8lJ, [DillB4J, [Dill85]

[Dill86], [Dill87], [Dill88aJ, [DillB8b], [Dill88c]
Dillon T.S .......................................................... (Lew8B]
Din C.Y............................................................. [Tai85a]
Dingee W.L.......................................................... (Bail8l]
Dircks H.F.......................................................... [Dirc8l]
DoD............................... [Army87], [D0D88], (DODD86a], [DODD86b]

[DODD87], [DODS86], (M1L85]
Doerflinger C.W......................................... (Basi83d], (Doer85]
Doi D.K............................................................. (Lee89b]
Donahoo J........................... ............................... [(Duva8O]
Dosch W.............................................................[(Wirs83]
Doubleday D.L .................................. ... ............ [Doub87J
Downs T ...................................... (Down85a], [Down85b], [Down86]
Drake D.L .......................................................... [Miil8lbJ
Draper N.R .................................. ....................... (Drap66]
Draper S ................................................. .......... (johnXX]

152



August 9, 1989

* Drey C.............................................................. [Bris79]
DrisSi 0............................................................ [Jard87]
Drongowski P ............................................ [Goul72J, [Goul74]
Dssouli R .................................... [Boch87a], [Dsso85], [Dsso86J
Duclos L.C ......................................................... (Ducl82]
Duisberg R.A ....................................................... [Lond85]

* Duke E.L............................................................ (Duke89]
Dumas R.L .......................................................... ([Duma83]
Duncan A.G .............................................. [Dunc7BJ, [Dunc8lJ
Dunham J.R............ ........... [Dunh8l], (Dunh83], [Dunh85J, [Dunh86J

[Stan84bJ
Dunn 0.J............................................................ [Dunn74]

*Dunn R.H ................................................ (Dunn82], (Dunn84]
Dunsmore H.E ...................... fCont8l], (Duns77], fDuns78a], [Duns78b]

[Duns8O], (Duns83], [Shen8O], (Shen83J, [WangB3], [Wood8la]
(Wood8lb], [Yu88a], [Yu88b]

Duran E.H...........................................................[(Form79]
Duran J.W. ....................... fDura78], [DuraBO], (Dura~la], [Dura8lb]

* Duvall L............................................................ [Duva8O]
Dyer M............................ [Curr86], [Dyer8O], (Dyer8la], [Dyer~lb]

[Dyer8lc], [Dyer82a], [Dyer82b], (Dyer82cJ, (Dyer83J, [Dyer85aJ
(DyerB5b], (Mill87a]

Easterling R.G ..................................................... [(East72]
Eckhardt D.E ............................................ [Brun85], [EckhB5]

40 Eckmann S ......................... [Eckm83a], [Eckm83b), [Eckm84], [Eckm85]
(Soli83]

Eckmann S.T........................................................ (Kemm85]
Edwards B .......................................................... (Bris79]
Edwards E.......................................................... (CardB5c]
Edwards S.H ............................................. (ArdoB8], [Linn8B]

*Eggert P............................... ....... ..................... [Loca8O]
Ehrenberger W.......................Ehre73], [Ehre76], (Ehre78], (Sagl86]
Ehrig H............................................................. [Ehri85]
Ehrlich K........................................................... (Soio84]
Ehrlich W.A ........................................................ [(Ehrl87]
Eichhorst H.P......................... .................. .......... [Howd78d]

*Ejiogu L.0 ......................................................... ([Ejio87]
Elmendorf W.R................................[(Elme69], [Elme7l], [Elme73J
Elshoff J.L.......................[(Elsh76a], [Elsh76b], (Elsh78a], (Elsh7BbI

(Elsh7Bc], [ElshB4]
Elspas B.......................... (Boye75l, (Elsp72a], [Elsp72b], [Elsp73]

(Elsp74], [ElspXX]
*Emden M.H .......................................................... [Emde8l]

Emerson E.A....................... [Clar8lb], [Clar86d], [Emer83], (Emer85]
Emerson T.J...................... ....................... [(Ehrl87J, [Emer84J
Endres A.................... ....................................... [Endr75]
Engels.............................................................. [Godo77]
Epp E.C.................................................. [Epp86], (ZeiJ.87]

*Erickson R ...................................................... ... (Thom8l]
Erickson R.L ....................................................... (Eric85]
Erickson W.J ....................................................... [Sack68]

153



August 9, 1989

Eslinger S.......................................................... [Card82]
Esp D.G............................................................. [Bish86]
Eswara S ........................................................... [Sari88b]
Evangelist C.J.................................... ................. [Bela8l]
Evangelist W.M.................... [Evan83a], [Evan83b], (Evan84a], [Evan84bl

(Evan84c], (Evan87l
Facemire J.L ....................................................... (Lind85]
Fagan M.E.................................... [Faga74], [Faga76], (Faga86]
Fainter R.G.................................. [Fain851, [Fain86], [Gors8O]
Fairfield P.........................................................[(HennXX]
Fairley R.E ............................................. (Fair75], (Fair79]
Fantechi A.......................................................... (Baia84J
Farr L..............................................................([Farr65]
Farr W.H ................................................ ([Farr83], [Farr88]
Favaro J.M..........................................................([Fava79]
Feather M.S......................................................... [Feat89]
Federal Information Processing Standards Publication.................FIPS77]
Federal Software Testing Center.................................... (FSTCB3]
Fehri M.C........................................................... (Bria86]
Feiertag R.J ....................................................... ([Feie8O]
Feiler P.H ..................................................... .... (Medi8l]
Feldman M.B.........................................................([Feld89]
Felix C.P............................................... [Wals77a], [Wals77b]
Fenwick S............................................... [McCaS7a], [McCa87b]
Fernandez J.C ...................................................... [Fern85]
Ferrentino, A.B ..................................................... [Ferr77J
Fetzer J.H.......................................................... [Fetz88J
Feuer A.R............................................... (Feue79a], fFeue79b]
Finger A.B..............................................[(Baue79a], (Baue79al
Finkel R.A................................... [Fink83], (GordB6], [Gord88]
Finnell C.A.............................................([Taus87a], [Taus87bJ
Fischer K.F......................................................... [Fisc77]
Fisher C............................................................[(Wile88]
Fisher D.A.......................................................... (Tayl87]
Fitsos G.P...................................[(Chri~i], (Fits79], [FitsSO]
Fitzsimmons A.B......................................... [Fitz78aJ, [Fitz78b]
Flon L.................... ........... Flon77], [Flon7Ba], [Flon78b], [Flon8l]
Floyd R.W........................................................... [Floy67]
Ford R.............................................................. [Gil1B8]
Forghani B.......................................................... [Forg87J
Formann E.H.........................................................[(Form77l
Forward K.E ......................................................... [(Lew88]
Fosdick L.D....................... (Fosd74], [Fosd76a], [Fosd76b], [Oste75a]

[Oste75bJ, [Oste76a], (Oste76b]
Foshee G.L ................................................. ....... [(Stuc75a]
Foster K.A........................[(Fost8O], [Fost83], (Fost84], (Fost85]
Fowlkes E.B .............. .............................. [Feue79a], (Feue79b]
Francez N .................................... (Apt8O], [Fran79], [Fran8O]
Frankl P.G ............. .......... (Fran85a], (Fran85b], [FranB6], [Fran8B]
Franta W.R ........................... ............ ................ (Berg82]
Freburger K ............................... ............. [Basi~la], (Freb79]

154



August 9, 1989

*Freedman S.B . . . . . . . . . . . . . . . . . . . . . . . . . . Mill87bJ
Freiman F.R ........................................................ (Frei79]
Freudenberger S.M .................................................. (Freu84]
Frewin G.D ......................................................... [Hame82]
Fribourg L ................................... [Bouga5a], (Boug86], [Choq85]
Froome P.K.......................................................... [Bloo86]

* Fryer S............................................................. [Frye8l]
Fujii M.S........................................................... (Fuji77]
Fujii R.U ............................................... (MusaB9], (WallB9]
Funami Y............................................................ (Funa75]
Fung C.K-C.......................................................... [Fung85]
Furtek F.C.......................................................... (Furt8l]

* GRC................................................................. (GRC79]
Gabow H.N .......................................................... (Gabo76]
Gaffney J.E ....................... (Albr83], (Brit82J, fCrui8OJ, (Gaff79]

(Gaff8O], [Gaff8la], (Gaff8lb], [Gaff88]
Galiano E.........................([Gali87a], (Gali87b], [Math87a], [Math87b]
Gallier J.H......................................................... [Gall8l]

*Gallimore R ........................................................ [Gerr85]
Gannon C............................................................ [Gann7 91
Gannon J.D........................ (Basi82b], (Duns77], [Duns8O], [Gann75]

[Gann76], [Gann77], [Gann8O], EGann8l], [Gann83], [Gann85]
[Gann86], [Hanl79] , [McMu8O] , (McMu83] , [Weis85a]

Ganzinger H ........................................................ [Krie86]
*Garcia-Molina H ......................................... [Garc83), [Garc84J

Garey M............................................................. (Gare78]
Garman J.R ......................................................... (Garm~l]
Gaudel M.C ................................... [Boug85a], (Boug86I, (GaudXX]
Gault J.W.........................[(Scot84a], [Scot84b], EScot87J, (TrivSOJ
Geber G.W.......................................................... (Boch87b]

* Geiger W............................................................ [Geig79]
Geller M............................................................[(Gell78]
Gelperin G. ....................................................... [Gelp88]
Gelpert D ............................. ............................. (Gelp79]
General Electric Co ..................................... [(GE77a], (GE77b]
Georgia Institute of Technology.................................... (STE86]

*Gerhart S.L ....................... (Brun86], [Gerh76a], [Gerh76b], (Gerh78]
[Gerh79], [GerhBOJ, (Gerh84l, (GerhB5], [GerhS8aJ, (Gerh88b]

(Good75aJ, [Good75bJ, [Land86]
German S.M........................ (Germ82a], [Germ82b], [Germ84], (Luck79b]
Germano F ............................................... (Garc83l, [Garc841
Gerrard C.P......................................................... [Gerr85]

*Gerth R.B............................... .................... ....... [Gert84J
Getz S.L............................................................ [Getz83]
Ghezzi C ................................................ [Cele8l], (Mand85]
Ghosh S ...................................... .......... [Luck86bJ, [Luck86c]
Giammo T ...................................... ..................... ([Giam86]
Gibson V.R..................................... .................... (GibsB9]

*Gideadi A.N. ...................................................... [Gide74]
uilb T .................................................. [(Gilb76], [Gilb79]
Gilkey T.J..........................................................[(GilkXX]

155



August 9, 1989

Gilles J . ............................ (Gill88]
Ginzberg M.G............................................... ........ [Ginz65J
Girard E............................................................ [Gira73]
Girgis M.R...................................[(Girg85], [Girg86a], (Girg86b]
Glasgow J.L ........................................................ (Skil89]
Glass R.L.................................... (Glas79], (Glas8O], (Glas8l]
Gligor V.D ......................................................... [Glig87]
Gmeiner L....................................t[Geig79], [Gmei79], 'LVoge8O]
Godfrey S........................................................... (Godf 87]
Godoy............................................................... [Godo77]
Goel A.............................................................. [Goel89]
Goel A.L.......................... [Goel7B], [Goel79], [Goel8Oa], [Goel8Ob]

[Goel8Oc], (Goel~i], [GoelB2], (Goel83], (Goel85], (Goel88J
EVald83]

Goff R.............................................................. [HenrXX]
Goguen J.A ........................ (Gogu78], [Gogu79a], (Gogu79b], [GoguBO]
Goldberg F.F........................................................ [Vese8l]
Goldberg J.......................................................... [Gold8O]
Goldman N........................................................... (Balz82]
Gollis M.L ......................................................... (Mend79]
Good D.I .......................... [Aabl76b], [Good7O], [Good75c], [Good75e]

[Good79b], (Good82a], [Good82b], [Good84a], [Good84b], (Good86aJ
[Good88], [Land86J

Goodenough J.B.....................[Good75a], [Good75b], [Good75d], [Good79a]
[Good86b]

Goodwin M.A ........................................................ [Krau73]
Gopal A.S........................................................... [Budd85]
Gordon A.J ................................... [Gord85b], (Gord86], (Gord88]
Gordon K................................................ (Gord85a], [Youn89aJ
Gordon R.D ........................ [Gord76], [Gord77], (Gord79a], [Gord7gb]
Gorlick M.M ........................................................ [(Gorl87J
Gorsline G.W ....................................................... [(GorsBOJ
Gorzela R.A................................. ....................... ([Perk87]
Gould J.D................... ........ [Boie72], (Goul72], [Goul74], [Goul75]
Gourlay J.S..................................([Gour~i], (GourB3], [Zweb89]
Grady R.B............................................... [Grad87a], [Grad87b]
Grant E.E. ......................................................... [(Sack6B]
Grant E.L ................................................. ......... (Gran72J
Grasso J.M .......................... ....... ....................... [(Zeig89J
Gratz R ..................... ............... ....................... [Baue79b]
Gray M.A.................... ............................ (Kear85], (KearB6]
Gray M.D............................................................ (Blac77]
Gray T.E ........................................................... (Boeh84a]
Green A.L...................... .............................. ...... (Gree~l]
Green M.W ........................... ................... tElsp72bJ, EElspXX]
Green T.F ............................................... [Brad75], [Gree76J
Greene H ...... .................................................... [(Lefk89]
Greenlaw T...................... ........................ (GreeB7], [Math87a]
Gremillion L.L............................. ........................ (Grem84]
Gries D........................... (Grie76], (Grie77] , (Grie79], [Grie~i]

(Levi~i] , (Nguy86], [Owic76]

156



August 9, 1989

* Griest T.E..........................................................[(Bend89]
Griffth P.F......................................................... (Grif72l
Grine V.S .......................................................... [(Knig85b]
Grnarov A............................................... [Grna8Oa], (Grna8Ob]
Groves L.J.......................................................... [Grov8O]
Guindi D.S ........................ [DeMi87d], (DeMi88a], (Guin87], [Guin89]

*Guttag J.V........................ [Gutt75], [Gutt77], (Gutt78a], [Gutt78b]
[GuttBO], [Gutt85]

Haasl D.F...........................................................[(Vese8l]
Haberler M.A ............................................ [(Luck87], [MeldB8]
Habermann A.N................................ [Camp74], (Habe75], (Weid86]
Hageistein J ....................................................... (Bieb85]

*Hakimi S.L .............................................. [Ntaf79], [Ntaf8lb]
Halewood K..........................................................[(Wood88]
Haley A.............................................................[(Hale82]
Hall D.............................. ............................... [(McGa85b]
Hall M.L............................................................ (Hall8O]
Hall W.E............................................................ (Hall86]

*Haller A.P .............................................. [(Hall73], (Hall74]
Halliwell D.N ...................................................... (Ande85]
Halpern J.D......................................................... [Halp87]
Halpern J.Y ........................................................ [Emer83J
Halstead M.H...................... [Bulu74], (Come79], (Cook8l], [Corn76]

[Funa75], [Gord76], (Hals72a], [Hals73aJ, (Hals73b], [Hals75a]
*[Hals75b], [Hals76], [Hals77a], [Hals77b], [Hals77c], [Hals77d]

(Hals78], (Zweb79]
Hamer P.G...........................................................[(Hame82]
Hamlet D..................................... (Ham186], (Haml87], [Haml88]
Hamlet P.A ......................................................... [(Haml78c]
Hamlet R.G........................ [Gann8O], (Gann8l], [Haml77a], [Haml77b]
* (Haml7Ba], (Haml78b], (Hanil79], [More~l]
Ham-rick J.R.........................................................[(Wien84]
Han Y.W ............................................................. [(Han76]
Hanata S............................................................ [Naka89]
Haney H.M........................................................... [Hane72]
Hanford K.V ........................................................ [Hanf7O]

* Hanks J.M........................................................... [Hank8O]
Hannan T.L .......................... ............................... (Belf79]
Hansen H.L.......................................................... [Hans84]
Hansen P.B ................................. ........................ [Hans73]
Hansen W.J ............................... .......................... [Hans7B]
Hantler 5........................................................... (Hant76]

*Haraldson A.................................................. ...... (Beck76]
Harandi M.T......................................................... (Hara83]
Harel E............................................................. (Hare82]
Harris K..................... ...................................... [Henr~la]
Harrison L.J ................................. [Dill88a], (Harr8a], (Harr88c]
Harrison W ........................ (Harr8la], (Harr~lb], [Harr82], (Harr85]

* (Harr88b]
Hart J.J ................... ........................................ (Hart79]
Harter P.K ................... ...................................... (HartB4]

157



August 9, 1989

Hartmanis J......................................................... (Hart7l]
Harver P............................................................ [Harv82J
Harvey P.R ......................................................... [(Leve83b]
Hassell J........................................................... [Hass8O]
Hatch M.J........................................................... (Hoiit78]
Hayward R.G......................................................... [VernB9]
He C.S ................................................................. (Boch88]
He X ................................................................ [Lee88]
Hecht H........................... (Hech76J, (Hech77b], [Hech77c], [Hech791

[Hech8O], [McCa87aJ, [McCa87b]
Hecht M.................................................([McCa87a], [McCa87bJ
Hecht M. .................................... (Hech72], [Hech75], fHech77a]
Hedley D .......................... (Henn76aJ, [Henn76b], (Henn79], (Henn84]

[Ridd8O], (Wood77], [Wood79a], [Wood8Ob], [Wu87b], EWu88]
Heidler W........................................................... (HeidB2J
Heller G.L .............................................. [(GaffB01, [HellB7]
Heller P ........................................................... [(Shne77aJ
Hellerman L......................................................... [Hell72]
HeIlmbold D.P...................... (GermB2a], [Helm83], (Helm84a], [HelmS4bJ

(Helin85], [LuckB7J
Helsabeck M.L ............. ........................................ fVoukS6b]
Henderson P.........................................................[(Hend75J
Hengeveld W......................................................... [Heng87)
Hennell M.A....................... [Henn76a], EHenn76b], [Henn78], [Henn79]

(Henn~l], (Henn84], [HennXX], [Ridd8O], (Wood77], [Wood79a]
(Wood8Ob], [Wu87b], [Wu88J

Henry R.M........................................................... (Grif72]
Henry S.M......................... (Henr79J, (Henr8la], (Henr8lb], [Henr84J

(Henr85], (Henr88a], (Henr88b], (HenrXX], (Kafu8l], (Wake88]
Herd J.R............................................................ [Herd79]
Herman P.M..........................................................[HTerm76]
Herndon M.A ........................................................ [McCa84J
Hershey E.A. III........................................ [Teic74], (Teic77I
Hess J.A............................................................ (HessB8]
Hess R................. ............................................ (BuddBOc]
Hesse W ............................................................ [Baue79b]
Hetzel W.C......................................................... (Gelp88I
Hetzel W.C................................... [Hetz73], [Hetz76], (Hetz84]
Hewitt C ................................................ ([Hewi76], [Lieb8O]
Hewlett-Packard Company............................................. [HCP82]
Hibbard P.G ............................................. (Brue83], (Hibb82]
Hill B.H............................... ............. ........ .... (Youn85]
Hill C.R............................................................ (Hill83]
Ho P ............................................................. [(Ho79]
Ho S.-B.F..........................f(Ho781, (Long771, (Ra, Aa], [Rama75aJ

[Rr '6], [Rama8OJ
Hoare C.A.R....................... (Dahl72], [Fran79], (Hoai69], [Hoar7la]

(Hoar7lb], [Hoar72], (Hoar74), (Hoar75], EHoar78], [Hoaral]
(Hoar851, (Hoar871, (Kenn8O], (Zhou8l]

Hoben S............................................. .............. [(Vosb84,1
Hocking D.E......................................................... [DeMi81]

158



August 9, 1989

*Hodges B.C . . . . . . . . . . . . . . . . . . . . . . . . .I. .. (Hodg76]
Hoermann H.A ................................................. ......... [Hoer74)

Hoffman H.-M................................... (Hoff77l, (Schn77a], [Schn79a]
Hoffman R.H ....................... [Brow72aJ, (Hoff73], [Hoff75], [Hoff76]
Holloway G.H........................................................... (Chea79]

Hoithouse M.A..............................................[(Holt76], EHolt78]
*Holzmann G ............................... ............................. [(Holz82J

Honeywell Inc .................................................... ..... (CHONE8O]
Hopcroft J.E........................................................... [Hart7l]
Horning J.J........................ [Gann75J, [Gutt78b], [Gutt8O], [Gutt85)

(Horn? 4]
Horowitz E ............................................................ (Gutt78a]

* Houssais B............................................................. [Hous77]
Houtz C ................................................................ [Hout8l]
Howard G.T .................. ............................. [Brad75], (Gree76]
Howard J.H............................................................. [Howa731
Howatt J.W.................................................([Howa85], [Shaw89I
Howden W.E ........................ [Howd74a], [Howd74b], (Howd74c], [Howd75a]

*[Howd75b], (Howd76a], [Howd76bJ, (Howd76c], [Howd76d], [Howd76e]
(Howd77a], [Howd77b], [Howd77c], (Howd7Ba], [Howd78b], [Howd78c]

(Howd7Bd], [Howd78e], (Howd7Bf], [Howd79], (Howd8Oa], (HowdB0bJ
(Howd8Oc], (Howd8Od], (Howd8la], [Howd8lb], (Howd8lc], (Howd8ld]
(Howd82a], (Howd82b], [HowdB3J, [HowdB5], [Howd86], (HowdB7]

[HowdBB], [Howd89a], [Howd89b], [Mili~la]
*Howes N.R.................................... ....... ................ (HoweB4]

Hsieh C-C............................................................ [Hsie82]
Hsieh C.S .............................................................. [Hsie89]
Huang J.C ...................................... [(Huan75], [Huan7B], [Huan79]
Huet G................................................. ................ [HuetBO]
Huh Y ................................................ ..... [LuckB6bJ, [LuckB6cl

*Hullot J.M................................ ............ ................ [Huet8O]
Humphrey W.S...........................................................[(Hump88I

Humphreys P ........................................... ................ (Bish86]
Hunt W.A. Jr ......................................... .... ([Hunt85], EHunt87]
Hutchens D.H .................................. [BasiB0b), [Basi86aJ, [Hutc83)
Hutchinsoni j.S......................................................... [Dunc~l]

* Hwang S.-S.V.......................................................... [Hwan~l]

IEEE............................... [IEEEB3a], [IEEE83b], [IEEE83c], [IEEE84)
[IEEE87] , [IEEE8B]

ISO............................................. [ISO87a] , [ISO87b] , [IS087c]

Iannino A ........................................ ......... [Iann84], fMusa87]
Ibarra O.H................................................... ......... Ibar82J

* Igarashi S ............... ......................................... [(Igar73]
Ignalls D.H ......................................................... (Igna7l]
Infotech International Ltd................................ [INFO76], [INF079]
Inglis J........................................................... .... [Ing186]
Ireland E.A ................................. .......................... [Davi85]
Irwin J .............................................................. [UrenB71

41 Isoda S ...... I........................................................[(Isod87]

Itakura M ............................................................ [Itak82]
Ito A ................................................................. (Waka891

159



August 9, 1989

Ives B.............................................................. (IvesB3J
Jachner J........................................................... [JachB4J
Jackson............................................................. [Jack7l]
Jackson B........................................................... [Vern89]
Jackson K.L ........................................................ [SanA83]
Jahanian F.......................................................... [Jaha86]
Jalote P............................................................ (Jalo89]
James T............................................................. [Jame77]
Jard C .................................................. (JardB3], (Jard87]
Jarratt. R.M.A ...................................................... ([JarrB4]
Jeffery D.R ........................................................ [Jeff85]
Jelinski J................................... (Jeli72], [Jeli73], [Mora72]
Jenkins J.R ............................................. (Jenk86], [Lind88a]
Jensen E.P.......................................................... (Camp76]
Jensen R.W..............................................[(Jens83a], [Jens83b]
Jiang W............................................................. [Glig87]
Johnson C........................................................... [Brun86I
Johnson D ................................. ......................... [Gare78]
Johnson D.B................................. ............ (Brow78J, (John77]
Johnson J.D ........................................................ (John83]
Johnson J.P ........................................................ [John75]
Johnson M.S....................... [John7B], [John79], (John82a], [JohnB2bJ
Johnson P.E ........................................................ [5Sedl83J
Johnson W.L................... .......................... [(John841, [JohnX]
Johnston D.E......................... ........................... ... [John~lJ
Johri A.............................................................[(Glig87J
Joint Logistics Commanders.......................................... [JLC84J
Jones A.M .......................................................... [Jone89]
Jones C.B.................................... [Bjor78], (BjorB2], (Jone8O]
Jones T.C......................... (Jone76], (Jone78], (Jone79], [Jone~i]
Jordan Q.L ......................................................... [Chur86]
Joyce E ..................................................... ...... [JoycB7a]
Joyce J............................ ................................ [Joyc87b]
Joyner W.H.......................................................... (Bran78]
Juozitis P.......................................................... [Ange89]
Kafura D.G ........................ [Henr8la], (Henr8lb], (Henr84], [Henr88b]

[Hite88J, [Kafu8lJ , [Kafu84J , (Kafu85a] , [Kafu85b] , [Kafu88]
Kahn G ..................................... ......... .............. [Kahn77]
Kakuda Y .................................................. ......... [(Waka89]
Kailigiannis G.................................. ................... ([Getz83]
Kalninsh A.A ....................................................... [Barz75]
Kamayachi Y............... ......................................... [Taka89]
Kamin S................................ ... .......................... [Kamni8O]
Kant K..................................... ........ ............... [Kant8O1
Kappel M.R .............. .................... [(ArdoB8], [Kapp88], [LinnBB]
Karp R.A.......................... ................................. [Luck79b]
Kaspar H............................................................ [Boeh781
Kato T.............................................................. [Kato86]
Katz E.E .......................... [BasiS3a], (Basi84c], [Basi84d], [Basi85h]

(Basi86c], [Gann83], [Gann85], [Gann86], [Katz86), [KatzB7]
Katz R . . . . . . . . . . 1 1. . . I.. . . . . . . . . . . . .. [Blac77]

160



August 9, 1989

• Katz S.M ............................................................ [Katz73]
Kaufmann M ... .......................................... [Kauf87a], [Kauf87b]
Kearney J.K .... ......................................... [Kear85], [Kear86]
Keeton-Williams J ................................................. (Good79b]
Keiler P.A ......................................................... (Keil87]
Keller R.M .... ..................................................... (Kell76]

• Keller S.E ...................... (Kell85a], (Kell85b], [Payt82], [Perk86]
Kelly C.D ... ........................................... [Tayl86a], [Youn88b]
Kelly J .. ........................................................ [Bark 89]
Kelly J.P.J .. .............................. [Aviz84], [Kell82], [Kell83]
Kemmerer R.A .................... [Auer85], [Auer86], [Blai85a], [Dill88a]

(Eckm83b], [Eckm84], [Eckm85], [Harr88c], (Kemm80], (Kemm8l]
• (Kemm85a], [Kemm85b], [Kemm86], [Kemm87], [Soli83]

Kennaway J.R .... ................................................... [Kenn80]
Kennedy K.W ..... ................................................... [Kenn75]
Kenney G.W. ...................................................... ... John83]
Kernighan B.W .. ................. [Bent87], [Kern74a], [Kern74b], [Kern8l]
Kerr R .. ......................................................... [Ande76a]

• Kesselman C.F ...................................................... [Gorl87]
Khoshgoftaar T.M .... ............................................... (Muns89]
Kieburtz R.B .... ................................................... (Kieb83]
Kim K.H ... ............................................. (Rama74b], [Rama75b]
King J.C .... ..................... [Darr78], [Hant76], (King69], [King70]

[King75a], (King75b], (King76]
* King K.N .. ................................. [DeMiB7d), [DeMi88a), [Offu87]

Kirchoff K ......................................................... (Snee781
Kishimoto Z ........................................................ (ChanB5]
Kitchenham B.A ..... ................................................ (Kitc8l]
Klein M .H .. ...................................................... [Weid8g]
Kluczny R ..... ..................................................... (Harr82]

* Knight J.C ... .................... (Ande83], (Cha87], [Dunh8l], [Knig84]
[Knig85a], [Knig85b], [Knig86a], (Knig86b]

Knijff D.J.J. van der .. ..................... (Knij78], [Lass79], [Lass8l]
Knuth D.E . ... ........................................... [Knut7l], [Knut73]
Koerner K ..... ...................................................... (Koer84]
Kohler W . ... ............................................ [Garc83], [Garc84]

* Kolstad R.B .... ................................................. ... [Camp79]
Koppang R.G.. ... ................................................... [Kopp76]
Korel B . ....................... (Kore85J, [Kore86a], [Kore86b], [Kore87]

(KoreB], (Lask83]
Korelsky T . ...... .................................... .............. [Kore84]
Korsak A . . ...................................................... [ElspXX ]

* Kosaraju R ..... .................................................... [Kosa72]
Koss W .E .. ....................................................... [Koss88]
Kosy D.W .... ....................................................... [Kosy73]
Koukoulidis V .... ................................................. [Sari88b]
Kracik P.J ..... ..................................................... [Krac78]
Krause K.W ..... .................................................... (Krau73]

* Krauser E.W .. ................... [Krau86], [Krau88], (Math86], [Math88a]
Krieg-Brueckner B ............... (Baue79b], [Krie80], [Krie83], [Krie86]

[Luck84b], [vonH85]

161



August 9, 1989

Kroger F .................. ......................................... [Krog87]
Kromodimoeljo S .............................. [Crai88b], [Pase87a], [Pase87b]
KronH.............................................................. [DeRe76]
Kroon J............................................................. [Heng87]
Kruesi E ..................................... [Basi82b], (Dunh83], [Shepal]
Kruger G.A ......................................................... ([Krug88]
Kruszewski G ....................................................... (Krus78J
Kuhn W.W............................................................([Kuhn82J
Kuiper R............................................................ [Barr84]
Kulkarni V.G ....................................................... ([Nico87]
Kuo H .............................................................. [Whit78a]
Kuoni J.P .............................................................. [Amst761
Kwan S.P. .......................................................... [Parn88]
Kwon 1.S ........................................................... [Lind88b]
Ladkin P................................................ (Crow85a], (Crow85b]
Laemmel A ............................................... (Laem78l, [Shoo77b]
Lahti J.................................... ............. [Bish86], [Dahl79b]
Lamn S.S ............................................................. [(Lain84]
Lamb D.A............................................................ [Lamb83]
Lamb s.s............................................................[(Lainb78]
Lamport L.........................[(Lamp77], [Lamp78], [Lamp79a], (Lamp79b]

[Lamp8O], (Lamp82], [Lamp83], [LainpB4], [Owic82]
Landrault C ........................................................ [Land77]
Landry S.P.......................................................... [Land79]
Landwehr C.E ....................................................... [Land86]
Laprie J.-C ............................................. (Land77], [LaprB4]
Larsen H.L ......................................................... [Luck8l]
Laski J.W ......................... [(Kore85], [KoreB8], (Lask79], (Lask82]

[LaskB3], [LaskB6J, [Lask87], [Lask88a], [Lask88b]
Lasseter G ......................................................... (Hall73]
Lassez J.-L ............................................. [(Lass79], (Lass8lI
Latella D ............................................... (DeFr85], [Late84]
Latour L............................................................[(Lato89]
Laub J..................................... ........................ [(Howd75b]
Lauesen S........................................................... (Laue79]
Laurent J .................... ...................................... [AdainBO]
Lavener R.G ........................................................ [Lave88]
Lawlis P.K .................................. ....................... [(Lind87]
Lawrence M.J ............................................ (Jeff85], [Lawr8l]
Lawrynuik D. ...-........................................ ......... [Lawr87]
Lawson D.J..........................................................[(Laws83]
LeBlanc R.J ........................................................ (Davi88]
LeDoux C.H................... ...................................... [LeDo85]
Leach R.J...........................................................[(Leac87J
Lease D.M. ........................................................ [Perk86]
Leavenworth R.S .................................................... [(Gran72]
Leck V.G ........................................................... [Lanib78]
Ledgard H .......................................................... [Gide74]
Lee A.J............................................................. [Lee89b]
Lee J.A.N........................................................ (Lee88]
Lee L.D............................................................. [Eckh85]

162



August 9, 1989

* Lee P.-N............................................................ [Lee89a]
Lee P.A............................................................. [Ande8l]
Lefkowitz L ........................................................ [(Less8OJ
Lefkowitz S ........................................................ [Lefk89]
Lehman M.M .............................................. [Bela76], (Lehm8O]
Lehmann D.J .................................. ..................... [Fran79]

* Lei C.-L............................................................ [Emer85]
Leininger B.S ...................................................... [Ibar82]
Lesser V.R .............................................. [(Less8O], [Less8l]
Leung H.K........................................................... (Leun88]
Leung T.-K............................................................. (Sidh891
Levendel Y.......................... ........... ................... [Leve86a]

*Leveson N.G ....................... [Cha871, [Cha88], (Knig86a], [Knig86b]
[Land86], [Leve83a], [Leve83b], [Leve83c], [Leve83d], [LeveB6b]

[LeveB7], [Leve89a], (Shim88], (Thom83]
Levin G.M ............................................... [(Levi8O], [Levi8l]
Levine D.P.......................................................... [Lind87]
Levitt K. ........................ [Boye75], (Elsp72a], (Elsp72b], (Elsp73]
*[Levi7B], [Neum75], [Robi79], (Silv79]
Levy M.R............................................................ [Levy84]
Lew K.S................................ ............................. (Lew88]
Li H.F............................................................... [LiB7]
Lieberman H ........................................................ (Lieb8O]
Lievel K.A ......................................................... ([Youn85]

* .Ligett D............................................................ (Dems821
Light W............................................................. [Ligh76]
Ligon W.E ............................................... [Ligo87], [Math87a]
Lin H ............................................................... [Lin85]
Lind R.K ............................................. .............. (Lind89]
Linden T.A ......................................................... [Lind76]

*Lindquist T.E ..................... [Fain86], [LindB5], (Lind87], [LindB8a]
[LindB8b], [Lind88c]

Lindsay P.A........................................................[(Lind88dJ
Linger R.C.................. ................ [Dyer8O], [Ling79], [Mill87a]
Linn B ................................................. ............ [Denis821
Linn C.J..................................... (Ardo88], (KappB88, [Linn88]

*Linn J.L. ............................... [Ardo8B], [Kapp88], [Linn88]
Lipow M...........................[(Boeh78]f [Brow75], (Brow76], (Lipo73]

[Lipo77], (Lipo79], [Thay78I
Lipton R.J........................ [Acre79], (Budd78a], [Budd78b], (Budd78c]

[Budd80a], (DeMi77), [DeMi78], (DeMi79a], (DeMi79b], (Lipt7s]
Liskov B.H .............................................. [(Lisk75] , fLisk79]

*Lister A.M .............................................. [john8l], [List82]
Litecky C.R ........................................................ E[Lite76]
Littlewood B ...................... [Abde86], [Iann84], (Litt73], (Litt75]

[Litt76], [Litt78], (Litt79] , [LittB0a], (Litt8Ob] , (Litt8Oc]
[Litt~la], (Litt8lb]

Liu Y. ...... ................................................. f[Vosb84)
* Lo P................................................................. (Lo83]

Locasso R .......................................................... [Loca8O]
Loggia-Ramsey C ........................ ........................... [Basi85gJ

* 163



August 9, 1989

Logrippo L.......................................................... (Bria86]
Lohse J.B...........................................................([Lohs84]
Lomow G ............................................................ (Joyc87b]
London R.L........................ (Good7O], [Good75c], [Igar73], (Lond7O]

[Lond7l], (Lond75], (Lond85], (Wulf76]
Long A.B............................................................ [Long77]
Long D.L............................................................ [Long88]
Love L.T .......................... [Curt79a], [Fitz78a], (Love761, [Love77a]

[Love77b], (Shep77l, (Shep78], [Shep79)
Lucas S ............................................................ (Jens83b]
Luckenbaugh G.L..................... ............................... [Glig87]
Luckhaa D.C ....................... [Germ82a], (Helm83], [Helm84a], (Helm85]

[Igar73], [Krie8O], [Luck77], [Luck79a], [Luck79b], (Luck8Oa]
[LuckBOb], (Luck8Oc], [Luck8l], [Luck84a], (Luck84b], (Luck85]
[Luck86a], [Luck86b], [Luck86c], (Luck87], [Meld88], EvonH85]

Lukey F.J........................................................... fLuke8O]
Lynch W.C........................................................... (Lyncal]
MacQueen D.......................................................... [Kahn77]
Magel K ...................................... [Harrala], [Harr8lbJ, [Harr82]
Maglisoodloo S....................................................... [Brow89]
Maheshward S.N ..................................................... (Gabo76]
Mahr B.............................................................. [Ehri85]
Maibaum. T.S.E.............................................. ........ tEmde8l]
Maiocchi M .............................................. [Cele~l], [Ceri~l]
Maione A .................................. ......................... [Koer84J
Maitland R .................................. ....................... (Mait8O]
Majoros M........................................................... [Majo83]
Malec H............................................................. (Vosb84]
Maluszynski J....................................................... (Dera85]
Mancarella P........................................................ [Manc83I
Mandriolo D......................................................... (Mand85]
Maness R.S.......................................................... [Shaw89]
Manna Z........................... (Katz73], [Mann7O], (Mann74], [Mann7B]
Mardinly S.......................................................... [Payt82]
Mark L ............................ ([Romb87c], [Romb88a], [Romb88b], [Romb88c]

[Romb8 9 b
Marotta D.A......................................................... [Gorl87]
Marrcotty M ............................................... ... ...... [Elsh78c]
Marre B .......................... .................................. [(GaudXX]
Martens J .................................................. ........ [Duva8O]
Martin D.F.......................................................... [Brin85]
Martin D.J ........................... .............................. (Mart83]
Martin R.J.............................................. (DeMiB7a], [DeMi88b]
Martyn J............................................................ (Mart7O]
Masinter L................................. .... ..................... (Teit8l]
Mathur A.P........................ [Krau86], (Krau88], (Math86], [Math87a]

[Math87b], (Math8Ba], [MathB8b], (RegoXX]
Matsumoto M.T........................................... (McCa8Oa], [McCaBOb]
Matteoli E ........................ ................................. [(Baia85]
Mauboussin A ........................................... ............ [Choq85]
Mauger C........................................................... [Maug85]

164



August 9, 1989

0Mayer R.E................ .......................................... [Shne77a]
Mayes L............................................................. [Maye89]
Hayfield W.T ............................................ [Mayf 85], [Mayf86]
Mayo K ............................................................. [Henr88b]
McAllister D.F.................... [Scot84a], [Scot84b], (Scot87], [Vouk85a]

(Vouk85b], [Vouk85c], [Vouk86a], (Vouk86b]
*McCabe T.J........................ [McCa76], (McCa82a], [McCa82b], (McCa82c]

McCall J.A........................ [Cava78], [McCa77a], [McCa77b], [McCa78]
[McCa79], [McCa8Oa], [McCa8Ob], [McCa84], [McCa87a], [McCa87b]

[Walt78]
McClure C.L.................................. [McCl76], [McCl7Ba], [McCl78b]
McCluskey G......................................................... (Dems82]

*McCracken W.M.....................[(DeMi87al, [DeMi87d], [DeMi88a], (Guin89]
McDaniel G.......................................................... (McDa77]
McGarry F.E....................... (Agre84b], [Agre84c], [Babs83], fBasi77a]

[Card82], [Card84], [Card85a], [Card85d], [Card87b], [Chur82]
[Cont86], [Cook8O], [Gree8l], [McGa82], (McGa84], [McGa85aJ

(McGa85b], [Page82], [Page84], (Page85], [Vale89J
*McGettrick A.D .......................................... [(Krie86], (McGe82J

McGibbon T.L........................................................ [McGi77]
McGregor T .......................................................... [(Yau78]
Mclntree J.W. Jr ................................................... [McIn83]
Mclver W ............................................................ [Jone89]
McKay D ............................................................ [(Shne77a]

0McKelvey N..............................................[(McCa87a], [McCa87b]
McLean E.R.......................................................... (Hare82J
McLean J ................................................ [(Land86], (MacL82]
McMullin P.R ...................... (GannBO], [Gann8l], [Haml79], [McMu8O]

[McMu82] , [McMu83] , [Weis85a]
McTap J.L........................................................... [McTaXX]
McWethy S .......................................................... [(McWe84]
Mearns I..................................... [Barr82], [Mear~i], [Mear83]
Medina R............................................................ (Medi~i]
Meeker R.E ............................ ............ ..... [(Hall73], [Ramna73]
Meeson R.N. ............................................ [DeMi88b], [Youn89a]
Meisels I .......................................................... [Crai88b]

0Meldal S ...................................... .... [Luck87], (MeldB8]
Melliar-Smith P.m ............................ [(Crow85a], [Crow85b], [Mell82]
Mellor P............................................................[(Bend86]
Melton R.A ......................................................... [Mill75c]
Mendis K.S..........................................................[(Mend79]
Menon P.R........................................................[(Leve86a]

0 Merey A............................................................. [Snee85]
Merrit M.J.......................................................... (DeMi8l]
Meyer A.R .......................................................... Meye67]
Miara R.J........................................................... [Miar83]
Michon J.P.......................................................... [Bene85]
Migneault G.E ...................................................... [(Mign82]
Miii A ........................................ ..................... (Mili84]
Millen J.K..............................................[(Mill8lb], [MillB7b]
Miller A.M ............................ ........ ................... [(MiliBOc]

* 165



August 9, 1989

Miller B.P ......................................................... [MillB4]
Miller D.M......................................... ................ [Shaw89]
Miller D.P ......................................................... (Hite88]
Miller D.R .............................................. [MillB5], [Mill86]
Miller E.F........................ (Mill72c], (Mill74a], (Mill74b], (Mill74c]

[Mill74d], [Mill75b], [Mill75c], (Mill75e], (Mill75f], [Mill77a]
(Mill77bJ, [Mill79a], [Mill79b], [Mill79cJ, (Mill8OaJ, (Mill8la]

(Paig72], [Uren87]
Miller R ........................................................... [Dems82]
Miller R.E...................................................... ... (Mill8Od]
Milliman P ................................... [Curt79a], [Curt79b], (Shep79]
Mills H.D ......................... [Curr86], [Dyer8O], [Dyer8lb], (Dyeralc]

[Dyer82b], (Ferr77], [Ling79], (Mill7l], (Mill72a], [Mill72b]
[Mi1172d], [Mill75a], (Mill75d], (Mill8Ob], [Mill83], (Mill87a]

Milne P.W.......................................................... (Luck79b]
Minsky N.H ......................................................... (Mins83]
Misra J ................................. fChan79], (Chan88], [Misr~l], [Misr82]
Misra P.M .......................................................... (Misr83]
Mital R............................................................. [Koer84]
Mittermeir R.T ..................................................... [(Mitt82J
Miyamoto I.......................................................... [MiyaXX]
Miyazaki Y .............................................. [(Miya85], [MiyaB7]
Mizumo Y............................................................ [MizuB3]
Mohanty S.N .................................. E[Moha76a], (Moha76bJ, (Moha79]
Moher T ................................................. (Berg82], (Mohe82]
Mok A.K............................................................. (Jaha86]
Mok Y.R............................................................. [Raal]
Moller B............................................................ (Baue89]
Mollod L.D ......................................................... [(Zeig89]
Monche U............................................................ (Krie86]
Moore J. ......................... (Boye79], (Boye8O], [Boyeal], [Boye83]

(Boye84a], (Boye84b], [Boye88], (Moor88]
Mora R ............................................................. [Medi8l]
Moran M.L ............................................... (Feld89I, (Mora85]
Moranda P.B ....................... [(Jeli72], (Jeli73], (Mora72], [Mora75]

[Mora78a], [Mora78b], [Mora78c], [Mora8O]
Morell L.J ........................ [(More~i], [More84], EMoreB7), [MoreB8i
Morgan D.E................................ ... [Blac8l], [Tayl78a], [TaylB0al
Morgan E.T................................... [Morg84], [Morg86], (Morg87]
Mori K ............................................................. (Miya85I
Moriconi M.................................................. ....... [MoniB3]
Morris J................................................ [McCa87a], [McCa87b]
Morris J.H .............................................. (Morr7l], [morr77]
Motley R.W..............................................[(BrooBOb], [Motl76]
Moulding M.R ....................................................... (Ande85]
Mukunda R .......................................................... (Less8O]
Munoz C.U......................................... ...... (Bird83], (Muno88i
Munson J.C ......................................................... [Muns89]
Murakami N.......................................... ............... [MiyaB7J
Murata T............................................................ [Mura89]
Musa J.D .......................... [Haml78c], [Iann84], [Musa75], (Musa76]

166



August 9, 1989

*(Musa77], [Musa79a], (Musa79b], [Musa8Oa], [Musa8Ob], (Musa84]
[Musa87], [Musa89]

Musselman J.A ...................................................... [(Miar83]
Musser D.R.............................................. [Gutt78a], [Muss79]
Myers B.A .......................................................... [Myer83]
Myers G.J......................... [Myer76], [Myer77], (Myer78a], [Myer78b]

*[Myer79], [Stev74]
Myers J.P. Jr ...................................................... [Prat87]
Myhre J.M .......................................................... [Myhr68]
NBS................................................................. [FIPS77J
NSWC................................................................ (Farr83J
Nagel P.M ............................................... (Nage82], [Nage84]

* Najm E..............................................................[(Najm87]
Nakagawa Y ......................................................... (Naka89]
Nance R.E ............................................... [Arth88], [HenrB5J
National Bureau of Standards .. [Mait8O], [NBS74], [NBSB2a], [NBS82bJ

[RoseB5b]
Naur P.............................................................. [Naur69]

*Navarro J.A...................................... .................. (Miar83]
Neff R.................................................. [LuckB6a], (Sank85]
Neilson A.......................................................... [CraiB8bJ
Nejmeh B.A ............................................... t[Yu84], [Yu88a]
Nelson E.A ......................................................... [Nels66]
Nelson E.C .............................................. (Nels78], [Thay78]

*Neumann P.G ........................................................ [Neum75]
Ng P.H............................................................... fNg781
Nguyen T.D ......................................................... (Amor89]
Nguyen V ........................................................... [Nguy86]
Nicola V.F....................................... .................. [Nico87J
Nikolaou C.N ....................................................... [Schu81]

*Nixon M.R .......................................................... (Wing89]
Noonan R.E..................... .................................... (Noon75]
Norris M.T ......................................................... (Pate89]
Ntafos S.C ........................ [(Dura~la], [Ntaf79], tNtaf8la], [Ntaf8lb)

(Ntaf82] , [NtafB4], [Ntaf85l
O'Neill D........................................................... (Dyer8O]

* Obaid A............................................................. (Bria86]
Offutt A.J.................... .............. [DeMi87c], [DeMi88a], (OffuB7J
Ogden N........................ .............. ...................... [Wint78]
Ohba m........... ... ......................... [Ohba84], [Ohba89], [Yama83]
Ohkawa T............................................................ [Suno82J
Okada M............................................................. [OkadB2]

* Okroy K............................................................. (Ehre76J
Okumoto K......................... [Goel78l, (Goel79], [GoelB0al, [Goelil)

(Iann84] , [Musa87]
Oldehoeft R.R.......................... ................. [Olde77], [Olde83]
Olender K.M ........................................................ (OlenB6]
Olson M.H ....................................... ................... [Ives83)

*Ono Y ................................. ............................. [(Isod87]
Oppen D.C....................................................... ...[(Luck79b]
Orr R.A .................................... ....................... [Pate89]

167



August 9, 1989

Osaki S . ............................. Yama83]
Oskarsson 0.......................... [Beck76]
Osterweil L.J..................... (Fosd76a], [Fosd76b], (Gabo76], [01en86]

[Ostel5a], (Oste75b], (Oste76a], [Ostel6b], (Oste77], (Oste8O]
(Oste8lal, (Oste~ib], [Oste83], [Oste84], [Oste86a], [Oste86b]
(Oste87], [Tayl78b], [Tayl8ObI, [Tayl84], [Tayl86b], [Tayl87]

[Tayl88]
Ostrand T.J....................... (Ostr78], (Qstr79], (OstrBO], (Ostr84]

[Ostr86], [Ostr88], (Weyu8Oc]
Ottenstein K.J ..................................................... (Otte76J
Ottenstein L........................................................ [Otte~i]
Ottenstein L.M .......................................... [Otte78], (Otte79J
Ouimet D............................................................ [Boch8BJ
Owe 0................................................... (Luck84b], [vonHBS]
Owicki S.S........................ [Nguy86], (Owic75], (Owic76], [Owic82]
Owre S..............................................................[(Halp87]
Oxman S.W...........................................................[(Oxaa78]
Page G.T .......................... [Card85d], (Card87b], [McGa84], [Page82]

[Page84], [Page85]
Page J .................................................. [(Card82], [Card84]
Page M.P............................................................ [Page74]
Paige M............................................................. [Paig~l]
Paige M.R ......................... (Mill74a], (Paig72], [Paig75], [Paig77a]

(Paig77bJ, (Paig7BaJ, (Paig78b]
Pammett K........................................................ [Maug85]
Panililo-Yap N.M ............................. [Basi84d], [Basi85e], [Basi85h]
Panzl D.J......................... (Panz76], [Panz78a], [Panz7BbJ, (Panz78c]

[Panz8la], [Panz8lb]
Pariseau R.J ............................................ [(Gree76], (Pari76]
Park R.D............................................................ (Frei79]
Parker D.S........................................ ...... [(Gorl87], (LeDoBS]
Parker R.A ............................ ............................. [Cleni841
Parnas D.L........................ [Bart77], (Clem84], (Parn72a], (Parn72b]

[Parn72c], [Parn74], [Parn77], (Parn78l, (Parn79], (Parn85]
(Parn88]

Parr F.N .......................... ................................. [ParrBO]
Partsch H .................................... (Baue79b], [Baue89], [Wirs83]
Pase B....................................... (Crai88b], (PaseB7a], (Pase87b]
Passafiume J.F..................................................... (DeMi87a]
Pate S............................................................ .. [Pate89)
Patnaik D .......................................................... [Basi86e]
Paulsen L.R ...................................... .................. (Sheri85]
Pavlin J............................................................ [Less8O]
Payne C.......................................... .............. .... [(TiscB3]
Payton T............................................................[(Payt82]
Pearl J............................................................. (Pear84]
Pearson S.W......................................................... (Bail83]
Pease M. ........................................................... [Lamp82J
Penedo M.H.........................................................[(Boeh84b]
Pepper P. ................................... [Baue79b], [Baue89], [Wirs83]
Perera I.A .............................................. [Pere85], [Whit86]

168



August 9, 1989

*Perkins J.A ....................... [Ande88], fKellB5a], [Kell85b], (Payt82]
[Perk86], [Perk87J

Perlis A.J.............................................. [DeMi79a], fPerl8lJ
Perricone B.T...................................................... (Bas182d]
Perry S ..................................................... [Perr87]
Perry W.E.................................... [Perr83], (Perr86], [Perr8B]

* Pesch H............................................................. [PescB5]
Peters L.J.......................................................[(Laznb78]
Peterson J .............................................. [Pete77], [Pete8l]
Peterson R.J ....................................................... (Pete76]
Petschenik N.H ..................................................... [Pets85]
Phelps C.V ......................................................... [Razo85]

*Phillips T.Y............................................ [Basialg], [Basi83b]
Piatkowski T.F ..................................................... (Piat8OJ
Picasso G.0O........................................................ [Pica8lJ
Pierce J.L ......................................................... [Dtnh85J
Pikul R.A .......................................................... (Piku,76]
Pimont S............................................................ (Pimo75]

*Pippenger N....................................... ................. (Pipp78]
Piwowarski P ....................................................... (Piwo82]
Plauger P.J .................................. (Kern74a], [Kern74b], [Kern8l]
Ploedereder E ...................................................... [Ploe79]
Plogert K........................................................... (Ehre78]
Pnueli A............................................................ [Mann7O]

*Pnuenuli A .......................................................... [Pnue77]
Podgurski A.............................................[(Clar85a], (Clar86aJ
Polak W ........................... (Luck79b], [Luck8Oa], [Luck8Ob], (LuckBOcJ

[Pola8lJ
Pooch P.C........................................................... (Pooc74]
Poole P.C........................................................... (Pool73J

* Popkin G.S.......................................................... [Popk78J
Porter A.A ......................................................... [Selb89J
Post J.V ................................................ [BoweB3], [Press83]
Postak J.N ......................................................... [Herd79]
Poston R.M ......................................................... [Post87]
Poutanen 0o ................................................. (Pout87]

*Prather R.C ........................................................ (Prat8O]
Prather R.E ............................................. [(Prat83J, [Prat87]
Presson P.E............................ ................. (Bowe83J, (Press83]
Pnincipato R.N ..................................................... [(Prin78]
Probert R.L ....................... (ProbBO], (Prob82a], [Prob82b], [Prob82c]

(ProbB3], (ProbB4], [Ural83], [Ural84]
* Proctor N........................................................... (Halp87]

Protzel P.W ........................................................ [Prot88]
Prycker M de.......................................................[(Pryc82]
Purdom P............................................................ [Purd72]
Purdue University..................................................[(SERC87]
Putnam L.H .............. ......... [Putn77], [Putn78], EPutn79J, (Putn82]

*Pyster A.B ................................. ............... ........ (Thay8O]
Queyras B........................................................... [Bess87]
Quinnan R.R.................................................. ...... [Dyer8O]

169



August 9, 1989

Quirk W.J........................................................... [Quir85]
RD............................. [Amor75], [Angu83J, [Bagg8O], [Bake77]

[Balz8l], [Blac77], [Bowe83], (Bowe85J, [Broo8Ob], [Clar86b]
[Goel8Oa], (Goel821, (Goel831, (Goel88], (Heid82], (Herd79]
(Laem78], [McCa77a], (McCa8Oa], [McCa8Ob], [McCa87a], (McCa87b]
(Popk78], (Press83], (RADC76a], (RADC76b], (RADC86], [Scha79]

[Shoo79], [Sief88J, [Szul83]
Rabin M.0........................................................... (Rabi77]
Radatz J ...................................... ..................... (McWe84]
Ramamoorthy C.V ................... [Chen75J, [Long77J, [Rama73], [Rama74a]

(Rama74bI, (Rama75a], (Rama75bj, [Rama76], (Rama8O], (Rama8l]
[Rama82]

Ramsey C.L..............................................([Basi84d], (Basi85h]
Ramsey J ........................................................... [(Basi84a]
Randall W. ............................................. [McCa87a], [McCa87b]
Randell B...............................................E[Ande79bJ, [Rand75]
Rapps S.............................................................E[Rapp8O]
Rauch G..........................................................[(Ehre761
Rault J.-C................................... [Gira73], EPimo75], [Raul73J
Rayner D ............................................ ............... (BartBOJ
Razouk R.R................................... [Morg86], [Morg87J, [Razo85]
Reddy G.R......................... [Kafu84], (Kafu85b], [Redd84aJ, [Redd84b]
Redwine S.T . Jr .................................................... [Redw83]
Reed K.................................................. [Romb88b], [Wu87c]
Reed S ......................................... .................... (Less8O]
Reeves H.L..........................................................E[Long77]
Reghizzi S.C ....................................................... [ DiMa85J
Rego V .................................................. [(Krau88], [RegoXX]
Reich L.E........................................................... (Glig87]
Reif J.H ........................................................... (Reif79c]
Reifer D.J........................ [Reif75J, [Reif78], [Reif79aI, [Reif79b]
Reiter R.W. Jr.................... (Basi77aI, (Basi78b], (Basi79b], [Basi79c]

[Basi8Oa], (Basi8lc], [Reit79]
Reynolds R.G................................. (Reyn86], [Reyn87], (Reyn89]
Rich C ............................................................. (Rich8le]
Richards P.K .................................[(McCa77a], tMcCa77bl, (Rich76]
Richardson D.J....................[(Clar8la], [Clar8lcl, (Clar82], [Clar83a]

[Clar83b], [Clar84], (Clar85a], [Clar85b], EClar86a], [Clar86b]
[Clar88a], (Hass8OJ, fRich78], [Rich8la], (Rich8lb], (Rich81c]
[Rich8ld], (Rich82j, CRich85a], [Rich85b], (Rich86a], (Rich86b]

[RichB7a], [RichB8]
Richier J.L ............................................. (FernB5l, [RichB7b]
Riddell I.J....................... [Henn8l], [Henn84], [Ridd8O], (Wu87b]

EWu 88]
Riddle W.E........................ (Avru86], [Bris79], (Ridd78], (Ridd79]

IWile83]
Ritchies D.M................................... ................... E[Meye67]
Roach M.G........................................................... [Roac8O]
Roberts D........................................................... [Reyn86]
Roberts N.H ........ .......................................... .... [Vese~l]
Robinson L ...................... (Neum75J, [Robi77l, [Robi79], [Roub77]

170



August 9, 1989

* E Silv7 9)
Roby C.G............................................................ (Roby85)
Rodeheffer T.L .............................................. ... .... [(Hibb82]
Roe R.P ............................................................. [Roe87]
Roever W.P. de............................... [Apt8OJ, [Fran79], [Gert84]
Rogers W.J.......................................................... (Grov8O]

* Roggio R.F..........................................................E[Rogg8OJ
Rohieder M.G ....................................................... [Babs83)
Rolandelli C ....................................................... [Rola86]
Romain Y............................................................ [Troy86]
Rombach H.D.......................([Basi86b], (Basi87aJ, [Basi87b], (Basi88]

(Katz86I, [Romb84J, [Romb85a], [Romb85b], (Romb87a], [Romb87b]
* Romb87c], [Romb88a], (Romb88b], (Romb88c], [Romb88d], (Romb88eJ

(Romb88f], (Romb88gI, (Romb88hJ, (Romb89a], [Romb89b]
Rome Air Development Center .... (McGi77], [Motl76], (Slav75], (Thay76]
Roquet J.C.......................................................... [Roqu86]
Rosen B............................................................. (Rose75]
Rosenblum D.S................... .. [Luck86a], ERose84], (Rose85a], [Sank85J

* (Sank86J
Rosenthal L.S......................................................[(Rose85b]
Rosner A.J.......................................................... [Szul83J
Rosson C.V. .................................................... ... [Ross88]
Roubine 0 ............................................... ([Robi77], [Roub77]
Rowan S.............................................................[(Payt82]

*Rowland J.H ....................... [Roe873, (Rowl8la], [Rowl8lb), [Rowl88]
Rubey R.J........................................................ ... [(Rube75]
Rubin F............................................................. (Cail79]
Rubin J ................. ........................................... (Rubi82]
Rudin H.............................................................E[Zafi8O]
Rugaber S .............................. ............................ [(GuinB9]

*Rumsey J.R ......................................................... (Rums77]
Rupolo V.F..........................................................[(Wien84]
Rushby J ..................................... (Crow85a], [Crow85b], (Rush84]
Russell W.E ........................................................ (Herd79]
Russinoff D.M......................... ............................. (Russ831
Rustin R................................................ [Rust7l)

* Ruston H............................................................ [Shoo79]
Ryan J.P............................................................ [Hodg76]
SAMSO............................................................... [SAMS77]
SEL...............................[(Agre84c], [AgreB6], (Agre87], [Babs83]

tBasi77a], [Card82], [Card84]f [Card85a], (CardB5c], (Card86b]
fChur82], (Cook8O], (Cook~l], (Deck82a], (Deck82b], (Godf87]

*[Gree8l], [Hell87], [Lo83], [McGa84], (McGa85a], (Mill8Oc)
(1ASA81], (Page82], [Page85], (PerrB7], EPica8l], ESEL82]

STARS Program......................................................[(STAR85]
SYSCON Corporation.................................................[5SYSC83]
Saaltink M ................................... [Crai88b], (Pase87a], (Smit88]
Sabnani K.K ........................... .......... .................. [(Sabn85]

* Sackman H........................................................... [Sack68]
Saglietti F............................................ ............ [Sagl86J
Sahay P.N .................... .......... ........................... [Whit851

171



August 9, 1989

Sahner R.A.......................................................... (Sahn87]
Salasin J ......................... [Ardo88], [Besh85], [Bryk89], (Kapp88]

[Linn88], [Youn89a]
Sale A.H.J .......................................................... [Wich79J
Salt N.............................................................. (Salt82J
Salvador J.P .......................................... ............ (Taus87aJ
Samet H............................................................. (Same76J
Sampson W.A................................Brow73b]
San Antonio R.C .................................................... [SanA83J
Sandewall E ........................................................ (Beck76]
Sanella D........................................................... [Sane83]
Sankar S ................................................ [SankB5], [Sank86]
Sarikaya B ........................ ([Barb88], (Forg87], (SariB2], [Sari84a]

(Sari84b], (Sari87], (Sari88a], (Sari88b], [Sari88cI
Sarkar D ..................... ...................................... [(Sark89]
Sarkar S.C. de..................................................... [Sark89]
Satterthwaite E.H....................................... [Satt72l, [Satt75]
Sauder R.L ......................................................... [(Saud62]
Saunders S.C............................................... ........ [(Myhr68]
Saxema A.R ......................................................... [Neum75]
Saxena A.R ......................................................... (Saxe77J
Sayler J ................................................ [Ridd7B], [Wile83J
Sayward F.G ....................... [Acre79J, [Bald79], EBudd77], (Budd78a]

[Budd8Oa], [Budd8Oc], [DeMi78], [DeMi79b], (Lipt78], (Perl~l]
Schach S.R.................... ................. [Getz831, [Wahl86J, [WahlBBJ
Schaffer R.E ............................................ [(AnguaO], [Scha79]
Schaller H ......................................................... (Pesc85]
Schaufler R ....................................................... E(Tisc83]
Scheid J ................................................ (LocaBO], [Sche85]
Scherlis W.L....................................................... (Luck79b]
Schick G.J.................... .......................... [Schi73], [Schi7B]
Schiffenbauer R.D .................................................. [Schi~l]
Schimmelpfenneg C.L ................................................ (Farr88]
Schmidt R.L............... .............................. [(Bowe83], (Press83]
Schneider F.B................................ ...................... (Lamp84]
Schneider G.M................. ..................................... (Mohe82]
Schneider V ........................................................ [Schn78]
Schneidewind N.F...................(Brad751, (Gree761, fSchn75], [Schn76]

[Schn77a], [Schn77b], (Schn77cJ, [Schn79a), [Schn79b], [Sing86]
Schnupp P .......................................................... [Pesc85]
Scholz F.W ......................................................... [Nage84]
Schouwen A.J. van.................................................. (Parn88]
Schroeder A ........................................................ (Schr84]
Schuller H....................................... .................. [Ehre73]
Schuman S.A ........................................................ (Schu8l]
Schutts D................. ............................. ............ (Schu77]
Schwartz J.T ......................................... ............. [Schw7Oa]
Schwartz R.L ................................. [Crow85a], [Crow85b], [Mell82]
Scott R.K......................... (ScotB3a], [ScotB3bl, [Scot84a], [Scot84b]

[ScotB7], [Vouk85b]
Sedlmeyer R.L................................ (Kear85), [Kear86), [Sed183)

172



August 9, 1989

*Seewaldt, T......................................................... [Boeh84a]
Segal A.............................................................[(Ridd78]
Selby R.W. Jr..................... (Basi83bJ, (Basi84b], (Basi85a], (Basi85b]

[BasiB5fJ, [Basi86a], (Basi86b], (Card85aJ, ERomb85b], (Selb83]
[Selb84], [Selb85J, (Selb86], [Selb87a], [Selb87b], [Selb87c]

(Selb87dl, ESelb8Ba], [Selb88b], [Se2lbB8c], [Selb89], [Tay187]
* [Tayl88]

Senn J.A ........................................................... [(Gibs89]
Senn R..................................................[(McCa87a], [McCa87b]
Serre J.-M......................................................... [Boch87b)
Sethi R ............................................................. [Aho86]
Shaikh M.U ......................................................... [HennXX]

* Shankar A.U......................................................... [Lam84]
Shankar K.S..................... ................................... (Shan82J
Shankar N. ........................................................ (ShanB7J
Shanthikunar J.G .................................. ..... [(Shan8O], (Shan8l]
aapiro D.S ........................................................ [Shapal]

Shar M ................................ ............................. [Peri8l]
*Shatz S.M ............................................... [Mura89], (Shat88]

Shaw %.C ............................................................... (Shaw78I
Shaw M ....................................... [Brow8Ob], [Shaw8O], [Wulf76]
Shaw W.H ........................................................... [Shaw89]
Sheil B.A................................ .......................... (Shei8l]
Shen V.Y..........................[(Cont8l], [ShenBO], (Shen83], [Shen85]

* Theb84], (Wood8la], tWood~lb], [Wood8lc], (Yu88a], [Yu8Bb]
Shenker B .......................................................... [Mura89J
Sheppard J............................................................. [Lass~l]
Sheppard S.B...................... (Basi82b], [Curt79a], [Curt79b], [Shep77]

[Shep7B], [Shep79], [Shep~l]
Shih C ............................................................. [Basi84d]

*Shimeall T.J...................... [Cha87], [Cha88], [Leve83a], [Rola86]
[ShimB88

Shimomura T...................... .................................. [Isod87]
Shneiderman B ..................... [Miar83], [Shne75], (Shne77a], [Shne77b]

[Shne77c] , [Shne8O]
Sholi H.A .......................................................... [(Shol75]

*Shooman M.L ....................... [Bagg78], [Bagg8O], (Laem78], [Popk78]
[Shoo72], [Shoo73], [Shoo74], [Shoo75], [Shoo76], [Shoo77a]

[Shoo77b], [Shoo77c], [Shoo79], (Shoo83], [Shoo86]
Shorre V............................................................[(Loca8O]
Shostak R................................... [Crow85a], (CrowB5b], [Lamp82]
Shriver B.D. ....................................... ............... [(Land79]

* Sidhu D.P...........................................................[(Sidh89]
Siebert A.E ......................... .............................. [Good82b]
Siefert P.T .............................. ......... ................ (Sief88]
Sigal R ............................................................ [Ostr86]
Signoret J.P.............. ......................................... [Bene85]
Sikaczowski R.0..................... ............................... [SikaB8]

*Silberschatz A ..................................................... [Kieb83]
Silverburg B.A .............................. ........... (Robi79J, [Silv79)
Simmons D.B................................. ........ (Zoln77], [Zoln8l]

* 173



August 9, 1989

Singh R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Sing86J
Singpurwalla N.D........................................ [Form77], (Form79]
Sistla A.P.............................................. (Clar86d], (Sist88]
Sites S.L........................................................... (Site74]
Siyan K.S........................................................... [Siya8OJ
Skillicorn D.B ..................................................... [Ski189]
Skrivan J.A ............................................. ENage82], [Nage84I
Skrukrud A.M ....................................................... [(Stan77]
Skuce D.R...........................................................[(Prob83]
Slavinski R.T ...................................................... (S1av75]
Slind K..................................... ....................... [Joyc87b]
Slivinski T......................................................... (S1iv84]
Smith C.H.................................... [AnglB3], [CherB61, (Cher87bJ
Smith C.P......................... EChri8l], [Smit79], [Smit80a], (Smit8ObJ
Smith E.J .......................................................... (Deck82b]
Smith G.L........................................................... [Lamb78]
Smith H............................................................ .[Drap66]
Smith L.M ............................................... ............. [Good82b]
Smith M.K. ......................................... ... E[Good84b], [Smit8B]
Smith O.D .............................................................. (Farr881
Smith R.W ................................................. ......... (Krau73)
Smith T ................................................................ [Misr82J
Sneed H.M......................... (Majo83I, (Snee78], [Snee84], ESnee85J

fSnee86]
So H.H.............................................................. (Long77]
Sodano N.M .............................................. (5Szu183], [Szu184J
Safer A................................ ............... (Mill85], [Mill86J
Software Engineering Research Center............................... (SERC87]
Solderitsch J.J .................................................... (Sold89]
Solis D.M ............................................... [Soli83], ESoli85]
Sollo G............................................................. (Brin87]
Solomon M.H........................................ ................. (Fink83]
Soloway E......................... (JohnB4], [JohnXXI, [Solo83], [5olo84]
Soneriu M.D ............................................. [Sone8O], [Sone8l]
Soong N.L...........................................................E[Soon77]
Soppe M............................ .... ............................ [Sopp86]
Sorkowitz A.R ...................................................... [Sork79]
Spadafora I....................................................... .. [Bazz82]
Spafford E.H ..................... ...................... (DeMi86b], [DeMi87b]
Spirk A.P........................................................... [Pesc85]
Spitzen J.M......................................................... [Wegb76J
Srinia V.P.......................................................... [SrinB5]
St. Jean L.D........................................................([StJeB5]
Stanat D.F..................................... .................... (Stan84b]
Stanculescu A........................................... [Luck86b], [Luck86c]
Standish T.A......................[(Stari83], (Stan84a], [Tayl82a], [Tayl85]
Stanfield J.R ...................................................... ([Stan77]
Stankovic J.A....................... ................... ........... (Stan8O]
Statman R.......................... ................................ [Cher88)
Stavely A........................................................... [Ridd78J
Steenberger C ........................................... (Brin87], (SteeB6]

174



August 9, 1989

* Stefanini S......................................................... (Baia85J

Stepczyk F.M ....................................................... [(Step74]
Stetter F........................................................... [Stet86]
Stevens K.T......................................................... (Arth88]
Stevens W.P......................................................... (Stev74I
Steveson D.R........................................................ [Luck8l]

* Stewart K.R......................................................... (Herd79]
Stickney M.E ....................................................... [Stic78]
Stigall P.D......................................................... [Stig74]
Stoizy J.L........................[(LeveB3aJ, [Leve83c], [LeveB7], [Stol84]
Stotts D ........................................................... [(Romb88bJ
Stoy J..............................................................[(Stoy77]

*Straker E.A....................................... ................. [Long77]
Strategic Defense Initiative Organization ... (SD1087], [SDIO88a], [SDIO8Bb]
Stucki L.G........................ [Howd74a], (Howd76b], (Stuc72J, [Stuc73J

[Stuc74], [Stuc75a], [Stuc75b], (Stuc77J
Stuckle E.D ...................................... ................. (Boeh84b]
Sturm W.A .......................................................... [Hech77c)

* Suk D.S.............................................................[(Sone8O]
Sukert A.N........................ (Angu8O], [Suke77a], (Suke77b], (Suke79J
Sullivan J.E ............................................ [Bell74], (Su1175J
Summerill L.F ...................................................... [Dela88]
Sunohara T .................................................... ..... [Suno82]
Sunshine C.A................................. [BochBO], [Suns77], [Suns821

* Sutherland D........................................................ (Kore841
Suzuki K.S .............................................. [Kato86], (Rama~lJ
Suzuki N .......................... (Flon78a], [Flon78b], tFlon8l], [Luck79aJ
Svanaes D .................................................. ........ [Conr85]
Svegel N.P..........................................................([Stuc74]
Svobodova L......................................................... (Svob76l

*Swartout W ......................................... ................ (Cohe82]
Swearingen D ........................................... ............ [Duva8O]
Symons C.R..........................................................(CSymo88]
Szulewski P.A ..................... [SzulBO], [Szul8l], (Szul83], (Szul84J

(Whit 80)
TRW................................................. ............... [Nels73]

*Tai K.C...........................[(Carv88], [Tai79], [Tai8O], (Tai85al
[Tai85b] , [Tai85cJ, (Tai86], tVoukB5a] , [Vouk85c] , [Vouk86a]

[Vouk 86b]
Takahashi M ........................................................ (Taka89]
Takano A............................................................ (Suno82)
Takayanagi A .................................... ................... [Itak82]

* Tamboli A........................................................... [Lee89a]
Tanaka A ................... ........................................ [Tana~i]
Tardo J.J ............................ .................. [Gogu79a], [Gogu79b)
Tarr P ............................................................. ['l-8
Tasar 0 ............... ............................................. [Stig74i
Tate G .................................... ......................... [Vern89]

*Tauson-Conte H.J ............................. [(Taus87aJ, [Taus87b], (TausBB]
Tausworthe R.C ......................................... [Taus~i], (Taus82]
Taylor D.J ........................Blac~l], (Tayl77a], (TayI78a], (TaylB0a)

lp 175



August 9, 1989

Taylor J.R ......................................................... [Tayl77b]
Taylor R............................................................ [HamlB8J
Taylor R.N........................ [Brin85], [Stan84aJ, (Tayl78bJ, [T.ayl8ObJ

[Tay1.80c], [Tayl8i], [Tayl82b], (Tayl82c], (Tayl83a], (Tayl83bJ
[Tayl83c], (Tayl84], [Tayl85], (Tayl86a], [Tayl86bJ, [TaylB7]

[Tayl88l, [Youn86a], tYounB8bJ, (Youn89c]
Taylor T ........................................................... [Tayl82a]
Taylor W.A.............................................. (Deck82a], [Deck82b]
Teichroew D ............................................. [(Teic74], [Teic77]
Teitelman W ............................................. [Teital], (Teit84J
Teng F.C ........................................................... [Whit78aJ
Terrien D...........................................................[(Maye89J
Thalhamer J.A ...................................................... [Sold89J
Thatcher J.W ....................................................... [(Gogu78]
Thayer R.H ............................................ ............. [(ThayBO]
Thayer T.A ........................ [(Lipo77l, [Thay75], [Thay76J, [Thay78]
Thebaut S.M..................................[(Shen85], (Theb83J, (Theb84]
Thibodeau R...................... ....................... (Thib7B], tThib8lJ
Thoman T.A.........................................................E[Stan84b]
Thomas J................................................ [Leve83aI, (Thom83]
Thompson D.......................................................... [Thom8lj
Thompson M.C......................([Rich86a], [Rich86b], [Rich87a], [Rich88]
Thompson W.B.............................. ... [(Kear85], [Kear86], [SedlB3]
Thompson W.E.......................................................[(Thom,8OJ
Tichy W.F ......................................... ... ... [Tich79], [Tich86]
Tisato F............................................................[(Mand85]
Tischler R ...................................................... ... [Tisc83]
Townley JA ......................................................... [Chea79]
Trattner S ............................................ [Hech77c], [Reif79b]
Trauboth H.......................................................... [Geig79]
Traverse P.J ....................................................... rRoqu86]
Triolet R........................................................... [Trio86J
Tripp L.L ....................................................... ... [Carp75]
Trivedi K.S.................................. (NicoB7J, (Sahn87J, [Triv8O]
Trost J............................................................. [Maye89]
Troup D.B .......................................................... [Youn88b]
Troy D.A............................................................[(Troy~l]
Troy R.............................................................. [Troy86]
Truszkowski W.F.................... ................................ [Basi77a]
Tsai J.T ........................ ............ (Bowe83], [Bowe85], (Press83)
Tsalalikhin L................. ..................................... [Tsal86]
Tucker A.E ......................................................... [(Tuck65]
Turano Y ..................... ...................................... (Kato86]
Turinin F ............................................... ........... [Manc83J
Turner A.J.......................................................... (Basi75)
Turner C ....................... ........................ [(Turn8la], (Turn8lb]
Turner J.....................................[(Hall73], [Rama73], (Turn8O]
US Army Computer Systems Command................................... (ArmyB4]
USAF Avionics Laboratory...........................................[(SYSCB3]
Uehara K ....................... ... ............ ..................... [Suno82]
Ulery T.................................. .................. ....... (Romb89a]

176



August 9, 1989

*Ullman J.D ........................ ([Aho86], [Hech72], [Hech75], [Ullm'73]
Ullman R............................................................ (Dunn82]
Underhill L.H ...................................................... (Unde63]
Ungar B ............................................................ (joyc87b]
University of Texas.................................................[CEP182]
Ural H ............................ (Prob82b], [Prob83], (UralB3], [Ural84]

* Urban J.E........................................................... [Belk86]
Urban R.J........................................................... [Urba73J
Uren E.............................................................. (Uren87]
Utsunomiya E ....................................................... (Waka89]
Uyar M.U .................................................... ....... [Uyar86]
Vaglini G ............................................... [Baia85], [DeFr85]

* Vairavan K.......................................................... [Lind89]
Valdes P.M ......................................................... [Vald83]
Valett J.D.............................................. [McGa85b], [Vale89J
Valiant L.G.........................................................[(ValiB4]
Vaneschi M.......................................................... [Baia84J
Vemuri V............................................................[(Vemu8OJ

*Verner J.M ......................................................... (Vern89]
Verrall J.L ........................................................ (Litt73]
Vesely W.E.......................................................... (Vese8l]
Vessey L............................................................ (Vess83]
Vickery B.C......................................................... (Mart7Ol
Vienneau R.............................................. [McCa87a], (McCaB7b]

* Viack R.K........................................................... [Blac77]
Voges U...................................... (Geig79], (Gmei79J, [VogeBO]
Voiron J............................................................ [Fern85J
Vosburgh J.......................................................... [Vosb84J
Vase M.D............................................................[(Vose88]
Vouk M.A .......................... [(Vouk85a], [Vouk85b], [VoukB5c], (Vouk86a]

* [VoukB6b]
Wagner E.G..........................................................t[Gogu78]
Wahl N.J ................................................... [Wahl86J, [Wahl88]
Wakahara Y..........................................................[(Waka89]
Wake S.................................................. [Henr88a], [Wake88]
Waksman A............................................... ........... [(Elsp72aJ

*Waldinger R.J.....................[(Elsp72a], [Elsp72b], [Elsp73], (Mann78J
Walker M............................................................ [Walk8l]
Wallace D.R......................... ............................... [WaIl89]
Wallnau K.C ......................... .................................. (Sold89]
Walsh D.A ............................................................. (Wals77c]

Walsh P.J...........................................................[(Wals85]
* Walsh T.J........................................................... [Wals79]

Walston C.E............................................. (Wals77al, (Wals77b]
Walters G.F ....................... (McCa77a], [McCa77b], [Walt781, (Walt79]
Wampler O.K.........................................................[(Wamp85]
Wand M................................ .............. ............... (Wand79]
Wang A.S.......................... ...................... [Wang83], (Wang84]

*Warner D.C......................................................... (Warn72]
Warren S............................... ... .... ................... (Warr82J
Washington D.A ..................................................... (Chea78]

177



August 9, 1989

Waters R.C.............................................. [Rich8le], [Wate79]
Weber J.C........................................................... [Webe83]
Weber R............................................................. [Vess83]
Wegbreit ........................ (Morr77], [Wegb74], [Wegb75], [Wegb76]

[Wegb771
Wegner P............................................................ [Wegn79]
Weiderman N.H ...................................................... ([WeidB6]
Weinberg G.M ....................................................... [Wein7l]
Weinberger E........................................................ [Wein8O]
Weiser M.D .............................................. [(Weis84], [Weis85a]
Weisgerber B........................................................ [Krie86]
Weiss D.M ......................... [Basi77a], [Basi~ib], (Basi8le], [Basi82a]

[Basi82c], [Frye8l], [Weis78], [Weis8l], [Weis82], (Weis85c]
Weiss S.N ......................... (Fran85a], [Weis85bJ, [Weis86], [WeisB7]

[Weis88a], [Weis88b], (Weis88c]
Weissman L.M ....................................................... [Weis74]
Welke S.R........................................................... (Mayf85]
Welsh H.0........................................................... [Wels83]
West C.H..............................................[(Rubi82], [Zafi8O]
Wexeiblat A ....................... ................................. [Wexe87]
Weyuker E.J....................... [Davi8l], (Davi83a], [Davi83b], (Fran85a]

[FranB5b], [Fran86], [Fran88], (Ostr78], [Ostr79], [Ostr8O]
(Ostr84], [Ostr86], [Rapp8O], [Weis85b], [Weis86], [Weis8Bb]
(Weyu79J, (WeyuBOa], (Weyu8Ob], [Weyu8Oc], [Weyu8l], [Weyu82]

(Weyu83], [Weyu84a], [Weyu84b], [Weyu88], [WeyuB9]
White J.R........................................................... [GilkXX]
White L.J......................... [Leun88], EPere85], [Whit78a], [Whit78b]

EWhit8l], (Whit85], [Whit86], (Whit88a], [Whit88b], (Zeil8lb]
Whitworth M.H................................ (Szul8O], (Szul8l], (Whit8O]
Wichman B.A......................................................... [Wich79]
Wiecek C.A..........................................................[(Boot8O]
Wiener-Ehrlich W.K ................................................. [(Wien84]
Wiggs J.E .................................... [Scot84a], [Scot84b], [WiggB4]
Wigle G.B........................................................... (Bowe85]
Wild C .................................................. [Wild87], (WildB8]
Wile D.............................................................. [BalzB21
Wileden J.C....................... [AvruB3], [Avru85], [Avru86], [Bate8l]

[Bate82], (Bate83a], [Bate83b], (ClarB6c], [Dill85], [Dill86]
[Dill88c], (Less8O], (Ridd78), (Tayl86b], [Tayl87], (Tayl88]
[Wile83], (Wile84], [Wile88), [Wolf85a], [Wolf85c], [Wolf86a]

[Wolf86c]
Wileden W........................................................... [Wile8O]
Wilhelm R...........................................................[(KrieB6]
Williams G .................................. ....................... [(Will79]
Williams R ..................................... .................... (Will89]
Williamson N....................................................... [Gogu79b]
Wilson W.F.......................................................... [Halp87]
Winchester J.W........................................... [Yin78], [Yin79]
Wing J.M............................................ .... [Gutt85], (WingB9]
Winner R.I ................................................ ......... (Wahl86]
Winters D ...... ................................................... (Wint78]

178



August 9, 1989

*Winterstein G ...................................................... (Krie86]
Wiorkowski J.J...............................[(Dura78], [Dura8O], [Dura~ib]
Wirsirig M ....................... ........................ (Sane83], [Wirs83]
Wisehart W.R....................................................... (Mill74a]
Wiszniewski B ........................................... [Whit88a], (Wisz87]
Witt B.I ............................................................ [Ling79]

*Wojcik R.T ......................................................... [Piku76]
Wolf A.L.......................... (Clar86c], [Tayi87], (TayiB8i, [Wile88]

[Wolf85a], [Wolf85b], [Wolf85c], (Wolf86a], (Wolf86b], [Wolf86c]
Wolverton R.W ..................... [Putn77], [Schi73], [Schi78], [Vosb84J

(Wolv74]
Wong P.............................................................. (ElspXX]

* Wood R.C............................................................([ThayBO]
Wood V.L........................................................... [Lind88b]
Woodfield S.N..................... [Wood79b], (Wood8Oa], [Wood8la], [Wood8lb]

(Wood8 ic]
Woods J.L ............................................... [(Wood7B], [Wood8OcJ
Woodward M.R ...................... [Girg85], [Girg86a], [Henn76a], [Henn76b]

*[Henn79], (Henn~l], [RiddBO], (Wood77J, (Wood79a], [Wood80b]
[Wood 88]

Wossner H ....................... .................................. [(Baue79b]
Wu D ......................................... ([Wu87a], (Wu87b], (WuBBI
Wu L.................................................... [Basi86d], (Wu87c!
Wulf W.A............................................................[(Wulf76]
Wyckoff D............................................................ [Lo83I
Yam S...............................................................[(Chan84]
Yamada S............................................................ [Yazna83]
Yang L.............................................................. [Chan89]
Yap C.K ............................................................ (MiliB0d]
Yates P................................................. (McCa87a], fMcCa87bJ
Yau S.S ...................................... [(Yau78], [Yau79], [Yau8O]
Yaung A............................................................. [Brun86]
Yeh R.T........................... (Chen83], [Ches77], [Yeh77], (Yeh79]
Yelowitz L.............................................. [Gerh76a], [Gerh76b]
Yerneni A.......................................................... [Henr88b]
Yin B.H ...................................... ([Yin78], [Yin79], fYin8O]
Yonezawa A ......................................................... [Hewi76]
Young B ............................................................ [Youn86bI
Young G............................................. ...... .......... [Ng78]
Young M........................... [TaylB6b], [Tayl871, !Youn86a], [Youn88a]

(YounBM], (Youn89c]
Young S........................ ...................... .............. (Tayl88]

6Young W.D .................................... (Kauf87a], (Kauf87b], [Youn86c]
Youngblut C.................................. [Bryk89], (Youn89a], (Youn89b]
Youngs E.A .............................................. (Youn7l], [Youn74]
Yount L.J.................................................. ........ [(Youn85]
Yourdon E.......................... ........ .................... ... (Your76]
Yu T.J............................([SI.en85], (Yu84], [Yu85], (Yu88a]

fYu 88b]
Zafiropulo P ........................................... ....... (ZafiBO]
Zagorski H.J ...................................................... (Farr651

* 179



August 9, 1989

Zamfir M........................................................... [Gogu79bJ
Zeigler J........................................................... [Zeig89]
Zeil S.J .......................... [Clar85a], (Clar86a], (Clar86b], [Clar88a]

(Clar88b], (Epp86], [Zeil8la], (Zeilalb], [Zeil83aJ, [Zeil83b]
[ZeilB4], [ZeilB6], [Zeil87], [Zeil8Ba], (Zeil88b], [Zeil88cJ

[Zeil89J
Zelkowitz M.V..................... [Basi77a], (Basi77bJ, (Basi78a], [Basi7BcJ

(Basi79a], (Easi82b], [Chen~i], (Zelk77J, (Zelk78J, [Zelk79]
[Zelk82]

Zhao J.-R .................................... (Boch87a], [Boch88], (Zhao86J
Zhou C.C............................................................ [Zhou~l]
Zicari R............................................................ (Mand85]
Zilles S.N .............................................. [Lisk75], (Zi1174]
Zolnowski J.M.C.............................. (Zoln76], [Zoln77], (Zolnal]
Zwanzig K........................................................... (Zwan84]
Zweben S.H........................([Bake79b], (Bake8OJ, [HaleB2], [Ha1186]

[Lohs84], (Troy~li, [Zweb79], (Zweb89]
van Horn E.G ....................................................... (vanH68]
van Tassel D ....................................................... (vanT74]
von Henke F.W..................... [Crow85a], [Crow85b], [Luck79b], [Luck~l]

[Luck84a], [Luck84b], [vonH85]

180



0

August 9, 1989

* 4. ABSTRACTS

[AFOTS6] Abbreviated Introduction: This pamphlet is a guide for the Air Force Operational Test and
Evaluation Center (AFOTEC) Software Evaluation Manager (SEM) and Deputy for Software Evaluation
(DSE). It describes the numerous activities associated with planning, conducting, analyzing, and reporting
software operational test and evaluation (OT&E) assessments.

[AFOT87" Abbreviated Introduction: The purpose of this document is to provide the software evaluator the
information needed to conduct the Air Force Operational Test and Evaluation Center's (AFOTEC's) software
maintainability evaluation process. In this document software maintainability is limited in scope to software
design and documentation assessments.

0 [AFOT88a] Abbreviated Introduction: This document describes the method and procedures used by the Air
Force Operational Test and Evaluation Center (AFOTEC) for evaluating the software support resources (SSR)
for mission critical computer resources (MCCR) supportability.

[AFOT88b] Abbreviated Introduction: The purpose of this pamphlet is to provide the software evaluation
manager and the deputy for software evaluation information needed to evaluate mission critical computer
software life cycle processes as they influence software supportability. In this pamphlet are the means to track the
processes affecting mission critical computer software supportability, beginning as early as necessary to provide
insight into the quality of the evolving software products, software support resources, and ,perational support
life cycle procedures themselves.

[AFSC86a] Abbreviated Introduction: This pamphlet describes management indicators that will provide visibil-
ity into the acquisition of mission-critical computer resources. It is intended to help program managers by
presenting software management indicators that reflect the status of software development in an acquisition pro-
gram. It also provides information that reflects experience on previous acquisition projects. Indicators are just
that: indicators. They do not, nor are they intended to, replace sound management practices and communica-
tions. Indicators, properly applied, thoroughly understood, and meticulously followed-up, will lead the contrac-
tor and program office to those areas requiring management attention.

[AFSC86b] Abbreviated Introduction: This pamphlet describes indicators that will provide insight into the qual-
ity of mission-critical computer resources. It is intended to help program managers by presenting indicators that
reflect the quality of the software products developed in an acquisition program. It also provides information that
reflects experience gained on previous acquisition programs. Indicators are just that: indicators. They do not,
nor are intended to, replace sound quality practices. These indicators, properly applied and meticulously fol-
lowed-up, will lead the contractor and program office to those areas requiring additional quality attention.

[AFSC88a] Overview: The purpose of this pamphlet is to help Program Directors (PD) develop an IV&V pro-
gram that meets their system's specific requirements. The pamphlet describes a six step procedure for determin-
ing the need for a software IV&V effort, establishing its scope, identifying tasks and subtasks associated with
each IV&V requirement, selecting a qualified contractor, and estimating software IV&V costs. In addition, this
pamphlet integrates the software engineering tasks of DOD-STD-2167A with the software IV&V tasks to ensure
value is added to te software development process and product. The methods used in this pamphlet are based
on a MIL-STD-882 (System Safety Program Requirements) approach as well as a composite of similar initiatives
from Space Division (SD), Aeronautical Systems Division (ASD), and Electronic Systems Division (ESD).

0 [AFSCSSbJ Abbreviated Overview: This pamphlet describes software risk abatement processes composed of
risk identification, analysis, and handling techniques that can significantly contribute to improving the acquisi-
tion of mission-critical computer resources. It is intended to help program directors by integrating software risk

0 181



August 9, 1989

abatement with system-level risk handling techniques. Risk abatement techniques can help the contractor and
program office to improve the performance and support of the software in weapon systems.

[Abde86] Abstract: Different software reliability models can produce very different answers when called upon to
predict future reliability in a reliability growth context. Users need to know which, if any, of the competing pred-
ictions are trustworthy. Some techniques are presented which form the basis of a partial solution to this problem.
Rather than attempting to decide which model is generally best, the approach adopted here allows a user to
decide upon the most appropriate model for each application.

[AcreSO] Abbreviated Introduction: Program testing has been practiced as long as has programming itself, in
spite of the general confession that testing can never prove in any absolute sense that a program is correct. Two
facts are responsible for the popularity of testing. The first is that testing has a tendency to uncover program
errors, and that the more systematic the testing, the stronger this tendency. The second is that a program that is
not completely correct is not necessarily unreliable in a given operating environment, and that even a program
that is not completely reliable will usually not be completely worthless to its users. Those responsible for
software system development are charged with deciding how much they are willing to pay for a given increase in
reliability. The challenge for research is therefore to produce a testing method that is (1) more effective at uncov-
ering errors and (2) less expensive to apply. Mutation analysis has been put forward as such a method. Working
mutation systems have demonstrated that mutation analysis can be performed at an attractive cost on realistic
programs. In this work, the effectiveness of the method is studied by experiments with:
1. System requirements definition
2. System functional specifications
3. Software requirements definition
4. Software functional specifications
5. Software implementation

The mutation analysis methodology examined in this work has as its goal validation of the last stage,
software implementation. As such it overlaps some proposed validation methods, and complements others. The
following sections outline some of these techniques.

[AdamSO] Abstract: An effort to automated the debugging of real programs is presented. We discuss possible
choices in conceiving a debugging system. In order to detect all the semantic errors, it must have knowledge of
what the program is intended to achieve. Strategies and results are very dependent on the way of giving this
knowledge. In the LAURA system that we have designed, the program's task is given by means of a "program
model." Automatic debugging is then viewed as a Lomparison of programs. The main characteristics of LAURA
are the representation of programs by graphs, which gets rid of many syntactical variations, the use of program
transformations, realized on the graphs, and its heuristic strategy to identify step by step elements of the graphs.
It has been tested with about a hundred programs written by students to solve eight different problems in various
fields. It is able to recognize correct programs even if their structures are very different from the structure of the
program model. It is also able to express exact diagnostics of errors, or at least to localize them. It could be an
effective tool for student programmers.

[Adri82] Abstract: Software quality is achieved through the application of development techniques and the use
of verification procedures throughout the development process. Careful consideration of specific quality attri-
butes and validation requirements leads to the selection of a balanced collection of review, analysis, and testing
techniques for use throughout the life cycle. This paper surveys current validation, verification, and testing
approaches and discusses their strengths, weaknesses, and life cycle usage. In conjunction with these, the paper
describes automated tools used to implement validation, verification, and testing. In the discussion of new
research thrusts, emphasis is given to the continued need to develop a stronger theoretical basis for testing and
the need to employ conbinations of tools and techniques that may vary over each application.

[Albe76] Abstract: This paper presents an examination into the economics of software quality assurance. An

182



August 9, 1989

* analysis of the software life cycle is performed to determine where in the cycle the application of quality
assurance techniques would be most beneficial. The number and types of errors occurring at various phases of
the software life-cycle are estimated. A variety of approaches in increasing software quality (including Structured
Programming, Top Down Design, Programmer Management Techniques and Automated Tools) are reviewed
and their potential impact on quality and costs are examined.

* [AlbrS3] Abstract: One of the most important problems faced by software developers and users is the prediction
of the size of a programming system and its development effort. As an alternative to "size," one might deal with
a measure of the "function" that the software is to perform. Albrecht has developed a methodology to estimate
the amount of the "function" the software is to perform, in terms of the data it is to use (absorb) and to generate
(produce). The "function" is quantified as "function points," essentially, a weighted sum of the number of
"inputs," "outputs," "master files," and "inquiries" provided to, or generated by, the software. This paper

* demonstrates the equivalence between Albrecht's external input/output data flow representative of a program
(the "function points" metric) and Halstead's "software science" or "software linguistics" model of a program
as well as the "soft content" variation of Halstead's model suggested by Gaffney.

Further, the degrees of correlation between "function points" and the eventual "SLOC" (source lines of
code) of the program, and between "function points" and the work-effort required to develop the code, is
demonstrated. The "function point" measure is thought to be more useful than "SLOC" as a prediction of work

• effort because "function points" are relatively easily estimated from a statement of basic requirements for a pro-
gram early in the development cycle.

The strong degree of equivalency between "function points" and "SLOC" shown in the paper suggests a
two-step work-effort validation procedure, first using "function points" to estimate "SLOC," and then using
"SLOC" to estimate the work-effort. This approach would provide validation of application development work
plans and work-effort estimates early in the development cycle. The approach would also more effectively use the

* existing base of knowledge on producing "SLOC" until a similar base is developed for "function points."
The paper assumes that the reader is familiar with the fundamental theory of "software science" measure-

ments and the practice of validating estimates of work-effort to design and implement software applications (pro-
grams). If not, a review of [cited references] is suggested.

[Ale74] Abstract: The data relationships which exist between the procedures in a program are of interest in pro-
• gram analysis and optimization. In this paper an analysis algorithm is given which determines the interprocedural

data flow relationships which exist in a collection of procedures. The context of the analysis is a static (compile
time) analysis of procedures within a high level language. It assumes that the collection obeys certain constraints,
the most serious of which is that the procedures cannot be recursive. While many practical considerations are
not addressed in this paper, the basic practical constraint that each procedure in the collection be analyzed only
once is satisfied. Existing results in intraprocedural data flow analysis form the basis for the algorithm.

[Alle76] Abstract: The global data relationships in a program can be exposed and codified by the static analysis
methods described in this paper. A procedure is given which determines all the definitions which can possibly
"reach" each node of the control flow graph of the program and all the definitions that are "live" on each edge of
the graph. The procedure uses an "interval" ordered edge listing data structure and handles reducible and irredu-
cible graphs indistinguishably.

[Ambl76a] Abstract: An introduction to the Gypsy programming and specification language is given. Gypsy is a
high-level programming language with facilities for general programming and also for systems programming that
is oriented toward communications processing. This includes facilities for concurrent processes and process syn-
chronization. Gypsy also contains facilities for detecting and processing errors that are due to the actual running
of the program in an imperfect environment. The specification facilities give a precise way of expressing the

* desired properties of the Gypsy programs. All of the features of Gypsy are fully verifiable, either by formal proof
or by validation at run time. An overview of the language design and a detailed example program are given.

• 183



August 9, 1989

[Amor75] Abstract: This report presents preliminary results of a study in the area of error classification. A gen-
eral method of error classification is described which is designed to serve as a guideline for experiment-specific
applications. A survey of error classification and analysis work, both in the general literature and at MITRE, as
well as a study of error experiment design considerations, are reflected in the discussion and conclusions.

[Amst76] Abstract- The purpose of the experiment was to see if it was possible to provide a useful tool to aid in
the improvement and automatic measurement of the quality of computer programs. Such a tool was wanted
because of the large number (over 1000) of programs involved, and because of a desire to obtain quantitative
measures of quality. There were five subjective quality definitions c3nsidered. The first two dealt with the extent
to which reduction in object code could be made via simple transformations or a complete restructuring of the
program. The next two consisted of the extent to which reductions in the number of source statements could be
made via simple transformations or a complete restructuring of the program. The last was the ranked clarity of
the program source. The principal method used was the manual grading of a sample, extraction of quantifiable
independent variables, and the use of regression analysis to derive prediction formulas. Results included some
tentative quality prediction formulas, correlations among the independent and dependent variables (e.g.,
GOTO's and clarity), observations about programming, and a host of newly-generated questions. There are
indications that for two large program populations, we have derived a useful tool for automatically differentiating
between good and bad programs.

[Ande76a] Abstract- The need for reliable complex systems motivates the development of techniques by which
acceptable service can be maintained, even in the presence of residual errors. Recovery blocks allow a software
designer to include tests on the acceptability of the various phases of a system's operation, and to specify alterna-
tive actions should the acceptance tests fail. This approach relies on certain architectural features, ideally imple-
mented in hardware, by which control and data structures can be retrieved after errors.

A brief account is presented of the recovery block scheme, together with a description of a new imple-
mentation of the underlying cache mechanism. The salient features of a proposed computer architecture are
described, which incorporates this implementation and also provides a high level detection for errors such as the
corruption of code and data. A prototype system has been constructed to test the viability of these techniques by
executing programs containing recovery blocks on an emulator for the proposed architecture. Experiences in
running this system are recounted with respect to the execution of program based on erroneous algorithms and
also with respect to errors introduced by deliberate attempts to corrupt the system.

[Ande76b] Summary: SEMANOL is a practical programming system for writing readable formal specifications
of the syntax and semantics of programming languages. SEMANOL is based on a theory of semantics which
embraces algorithmic (operational) and extensional (input/output) semantics. Specifications for large contem-
porary languages have been constructed in the formal language, SEMANOL (73), which is a readable high-level
notation. A SEMANOL (73) specification can be executed (by an existing interpreter program); when given a
program from the specified language, and its input, the execution of the SEMANOL (73) provides important
practical advantages. This paper includes discussions of the theory of semantics underlying SEMANOL, the svn-
tax and semantics of the SEMANOL (73) language, the use of the SEMANOL (73) language in the SEMANOL
method for describing programming languages, and the contrast between the Vienna definition method (VDL)
and SEMANOL.

[Ande79a] Table of Contents: Mathematical Induction. Proving the correctness of flowchart programs, basic
principles of proving flowchart programs correct, the inductive assertion method, and 1trma:i.ing inductive
assertion proofs. Proving the correctness of programs written in a standard programming language, examples for
Fortran and PL/I. Proving the correctness of recursive programs by using structural induction. Current research
related to proving program correctness. References.

fAnde83] Abstract: Real-time systems often have very high reliability requirements and are therefore prime can-
didates for the inclusion of fault tolerance techniques. In order to provide tolerance to software faults, some

184



August 9, 1989

• form of state restoration is usually advocated as a means of recovery. State restoration can be expensive and the
cost is exacerbated for systems which utilize concurrent processes. The concurrency present in most real-time
systems and the further difficulties introduced by timing constraints suggest that providing tolerance for software
faults may be inordinately expensive or complex. We believe that this need not be the case, and propose a
straightforward pragmatic approach to software fault tolerance which is believed to be applicable to many real-
time systems. The approach takes advantage of the structure of real-time systems to simplify error recovery, and

* a classification scheme for errors is introduced. Responses to each type of error are proposed which allow ser-
vice to be maintained.

[Ande85] Abstract: In order to assess the effectiveness of software fault-tolerance techniques for enhancing the
reliability of practical systems, a major experimental project has been conducted at the University of Newcastle
upon Tyne. Techniques were developed for, and applied to, a realistic implementation of a real-time system (a

* naval command and control system). Reliability data were collected by operating this system in a simulated tacti-
cal environment for a variety of action scenarios. This paper provides an overview of the project and presents the
results of three phases of experimentation. An analysis of these results shows that use of the software fault toler-
ance approach yielded a substantial improvement in the reliability of the command and control system.

[Ande88] Abstract: Analysis of the WIS Ada source code involved applying an automated, hierarchical, Ada-
• specific software metrics framework to approximately 200,000 lines of Air Force-supplied Ada source. The pur-

pose of the analysis was to aid the Air Force in identification of the characteristics of the code that detract
unnecessarily from reliability, maintainability, and portability. The software was analyzed during the initial phase
of code development to insure that sufficient time would be allotted for the elimination of undesired characteris-
tics.

DRC's Ada metrics framework measures three software factors, six software criteria, and 150 software
• metric elements, where each metric element relates a software quality principle to the use of specific features of

the Ada language.
The analysis of the Air Force-supplied Ada source involved:

1. automated calculation of metric scores for the supplied source,
2. human analysis of the metric scores to determine those characteristics that augment or attenuate quality and to

formulate recommendations on how to enhance quality,
* 3. modification of two modules of the supplied source to illustrate the impact of [the authors] recommendations,

and
4. reporting of the findings to the Air Force.

[Andr8l] Abstract: This paper describes an automated testing methodology and an experiment performed to
determine its effectiveness. The method is to insert in the program to be tested a number of "executable asser-

* tions," statements about the program that trigger error signals whenever they are evaluated to be false (violated).
A testcase is then developed for the program using actual values of the input variables. When the program is run,
a plot is generated of the number assertions violated versus the input variable values used. The resulting function
is called the "error function." Heuristic search algorithms can then be used to maximize this function and
thereby automatically locate input values which cause the most errors to occur. The experiment included
developing assertions for the program to be tested, choosing and inserting representative errors into the pro-

* gram, and implementing search and data collection algorithms for testing. The results indicate that combining
executable assertions with heuristic search algorithms is an effective method for automating the testing of com-
puter programs.

[Ang183] Abstract: There has been a great deal of theoretical and experimental work in computer science on
inductive inference systems, that is systems that try to infer general rules from examples. However, a complete

* and applicable theory of such systems is still a distant goal. This survey highlights and explains the main ideas
that have been developed in the study of inductive inference, with special emphasis on the relations between the
general theory and the specific algorithms and implementation.

185



August 9, 1989

[Angu80] Abstract: The purpose of this study was the validation of existing software (S/W) reliability models.
This validation was accomplished by investigating the properties of model parameter estimates, by investigating
the validity of model internal assumptions, and by analyzing the goodness-to-fit of the models. These investiga-
tions were all made in terms of actual S/W error data for sixteen (16) electronic system computer programs
which represented a wide variety of system types.

The types of S/W reliability models studied were basically two: Poisson and Binomial models. The
methods of parameter estimation investigated were also two: the maximum likelihood method and the least
squares method.

[Angu83] Abstract: The objective of this study was to demonstrate the use and applicability to Air Force
software acquisition managers of six quantitative software reliability models to a major command, control, com-
munications, and intelligence (C31) system. The scope of the effort involved the collection of software error data
from an ongoing C31 project, fitting the six models to the data thus collected, analysis of the predictions provided
by the models, and the development of conclusions, recommendations, and guidelines for software acquisition
managers pertaining to the use and applicability of the six software reliability models.

[Appegg] Abstract: Mutation analysis is a method for software testing in which many slightly differing versions
of a program are executed on the same test data; the end result is a measure of the data's quality. Over the last ten
years, several mutation-based systems have demonstrated the usefulness of mutation analysis for software test-
ing. This paper shows how mutation analysis can be a useful tool for testing large scale Ada software systems. We
first sketch the general theory of mutation analysis, then show how to apply it to Ada. We then discuss some of
the significant new problems that Ada poses for mutation analysis. Finally, we describe a prototype mul-
tilanguage mutation system that allows the testing of both Fortran 77 and Ada programs.

[AptS0] Abstract An axiomatic proof system is presented for proving partial correctness and absence of
'eadlock (and failure) of communicating sequential processes. The key (meta) rule introduces cooperation
.etween proofs, a new concept needed to deal with proofs about synchronization by message passing. CSP's

new convention for distributed termination of loops is dealt with. Applications of the method involve correct-
ness proofs for two algorithms, one for distributed partitioning of sets, the other for distributed computation of
the greatest common divisor of n numbers.

[Aptil] Abstract: A survey of various results concerning Hoare's approach to proving partial and total correct-
ness of programs is presented. Emphasis is placed on the soundness and completeness issues. Various proof sys-
tems for while programs, recursive procedures, local variable declarations, and procedures with parameters,
together with the corresponding soundness, completeness, and incompleteness results, are discussed.

[Apt83a] Abstract: In a previous paper a proof system dealing with partial correctness of communicating
sequential processes was introduced. Soundness and relative completeness of this system are proved here. It is
also indicated in what way the semantics and the proof system can be extended to deal with the total correctness
of the programs.

[Ardo8] Abstract: IDA Paper P-2036 presents a simple architecture specification in the SDI Architecture
Dataflow Modeling Technique (SADMT). The example code is given in the SADMT Generator (SAG!N)
Language. This simple architecture includes (1) an informal description of the architecture, (2) the main pro-
gram that creates the components of the simulation, (3) the specification of the BM/C3 logical processes of the
architecture, (4) the specification of the Technology Modules (TMs) of the architecture, and (5) the specification
of the BM/C3 and the TMs of the threat.

[Army84] Preface: This Software Quality Engineering Handbook was developed by the USA Army Computer
Systems Command, Quality Assurance Directorate. It describes techniques for establishing quality goals for a
software project, applying those goals during software development, and evaluating fulfillment of those goals.

186



August 9, 1989

* [Army87] Overview: The Software Test and Evaluation Manual is a three volume reference set that provides
checklists and guidance to Department of Defense components in the area of software test and evaluation for
major systems through improved acquisition management and risk reduction procedures. This manual addresses
the structuring, planning, conduct, and evaluation of software tests throughout the acquisition process. Volume
II is intended for use by the Service Headquarters, Development Commands, Program Offices and Contractors,
Development Test Agencies, and Operational Test Agencies.

[Arth88] Abbreviated Introduction: Software maintenance is a complex and costly activity. Such activities signi-
ficantly outweigh developmental costs and are estimated to consume more than half of the total life cycle cost of
a system. Factors contributing to this substantial burden include:
" the demand for and shortage of maintenance personnel who possess the necessary skills demanded by

maintenance activities,
* * the lack of complementary methods of techniques for performing maintenance activities, and

" the scarcity of tools for supporting activities intrinsic to the maintenance of complex software system.
In an effort to control the complexity and costs associated with maintenance activities, a group of software

engineers at the Naval Surface Warfare Center (NSWC) in Dhalgren, Virginia has developed the Automated
Design Description System (ADDS) that supports maintenance activities through the use of reverse engineering
techniques. This report examines ADDS relative to current technologies, and discusses the strengths and

* weaknesses of the system as a tool for supporting software maintenance.
The Automated Design Description System employs reverse engineering concepts to produce specialized

documents tailored for the maintenance activity. Many studies tout the need for and benefits of documentation
during software maintenance. Other authors have enunciated the principle of concurrent documentation that
reflects current system design and development status. Although recognized as a necessity, the maintenance of a
consistently high level of documentation throughout the software life cycle is rarely achieved. Consequently,

* software engineers have sought methods and tools to compensate for human inadequacies in documentation.
Slowly, reverse engineering concepts have emerged, as have tools such as ADDS.

[Auer86] Abstract: RT-ASLAN is a formal language for specifying real-time systems. It is an extension of the
ASLAN specification language for sequential systems. Some of the features of the ASLAN language, such as
constructs for writing procedural semantics in a nonprocedural logical language, are highlighted. The

* RT-ASLAN language supports specification of parallel real-time processes through arbitrary levels of abstrac-
tion; processes do not have to be specified to the same level of detail. Communicating processes use an interface
process as an abstract data type representing shared information. From RT-ASLAN specifications, perfor-
mance correctness conjectures are generated. These conjectures are logic statements whose proof guarantees
the specification meets critical time bounds. A detailed example as well as a discussion of the advantages and
disadvantages of formal specification and verification are included.

[Aviz75] Abstract: Two complementary methods which are employed in order to assure reliable computing are
fault-intolerance and fault-tolerance. Fault-intolerance depends on the elimination of the causes of unreliability
prior to the start of the computing process while fault-tolerance employs protective redundancy during the com-
puting process in order to detect and to correct unreliable functioning. A balanced allocation of reliability
resources between the two methods appears to offer the best practical solution. The paper reviews current fault-

* tolerance practices in system architecture and discusses their relevance to software systems.

[Aviz77] Abstract: N-version programming results in N independently generated, but functionally equivalent
programs which are intended to provide fault-tolerance for software faults during program execution. A pilot
experiment in N-version programming is described and an evolving methodology for this form of programming is
outlined.

[Avtz84] Abbreviated Introduction: Fault tolerance is the survival attribute of computer architectures; when a
system is able to recover automatically from fault-caused errors, and eliminate faults without suffering an

187



August 9, 1989

externally perceivable failure, the system is said to be fault tolerant. Originally, fault-tolerant architectures were
developed to tolerate physical faults that occur because of random failure phenomena in the hardware of a sys-
tem. More recently, the tolerance of design faults, especially in software, has been added to the objectives of
fault tolerance.

Design diversity is the approach in which the hardware and software elements that are to be used for multi-
ple computations are not copies, but are independently designed to meet a system's requirements. Different
designers and design tools are employed in each effort, and commonalities are systematically avoided. The obvi-
ous advantage of design diversity is that reliable computing does not require the complete absence of design
faults, but only that those faults not produce similar errors in a majority of the designs. This and other advan-
tages, as well as some limitations of design diversity, are discussed in this article.

[AvlzS5] Abstract: Evolution of the N-version software approach to the tolerance of design faults is reviewed.
Principal requirements for the implementation of N-version software are summarized and the DEDIX distri-
buted supervisor and testbed for the execution of N-version software is described. Goals of current research are
presented and some potential benefits of the N-version approach are identified.

[Avizg7] Overview: The Advanced Automation System, or AAS, will provide automation services to both
en-route and terminal air traffic controllers throughout the United States. Although controllers are able to main-
tain separation between aircraft during periods of interruption of the automatic services, the transition to backup
modes of operation is potentially hazardous. The increased controller workload resulting from interruption of
the services provided to controllers limits the traffic handling capability of the Air Traffic Control system, which
can result in major delays during periods of heavy traffic. As the level of automation services provided to con-
trollers increases, interruption of computer services to the controllers will become even more critical. Accord-
ingly, extremely high reliability and availability of the services provided by the AAS will be required on a continu-
ous basis, 24 hours a day, seven days a week.

In this article, we will discuss only the main element of the AAS, which is the area control computer
coupler, or ACCC. The approach used to define the ACCC requirements illustrates the approach used for the
other computer complexes as well.

[Avru85] Abstract: In this paper we outline an approach to describing and analyzing designs for distributed
software systems. A descriptive notation is introduced, and analysis techniques applicable to designs expressed
in that notation are presented. The usefulness of the approach is illustrated by applying it to a realistic distributed
software-system design problem involving mutual exclusion in a computer network.

[Avru86] Abstract: We describe an approach to the design of concurrent software systems based on the con-
strained expression formalism. This formalism provides a rigorous conceptual method for the semantics of con-
current compilations, thereby supporting analysis of important system properties as part of the design process.
At the same time, [the authors] approach allows designers to use standard specification and design languages,
rather than forcing them to deal with the formal model explicitly or directly. As a result, [the authors] approach
attains the benefits of formal rigor without the associated pain of unnatural concepts or notations for its users.

The conceptual model of concurrency underlying the constrained expression formalism treats the collec-
tion of possible behaviors of a concurrent system as a set of sequences of events. The constrained expression for-
malism provides a useful closed-form description of these sequences. We have developed algorithms for translat-
ing designs expressed in a wide variety of notations into these constrained expressions. We have also developed a
number of powerful analysis tools that can be applied to these descriptions.

In this paper, we describe the constrained expression formalism and these analysis techniques. We
describe the way this approach would be used in design, giving an example illustrating its use in conjunction with
an Ada-like design language, and discuss present and future prospects for its automation and use.

[BaggS0] Abstract: In the past, most software tests were constructed by heuristics and by drawing upon experi-
ence with similar software. Recently, enough preliminary work has been done to propose an analytical

188



August 9, 1989

* construction of test cases.
This report begins by defining five broad classes of software tests: Type 0, Type 1, Type 2, Type 3 and

Type 4. In a Type 0 test, all instructions are exercised at least once. In a Type 1 and 2 test, all flowchart paths are
exercised at least once. Type 1 is performed by forced traversal and Type 2 by natural execution. Types 3 and 4
are unfeasible and only a strategy lying between Type 1 and 2 can effectively be implemented.

Since enumeration of all the paths in a given program is required for Type 1 and 2 tests, this report estab-
* lishes the lower and upper bounds on the number of paths as a function of the number of deciders, describes a

manual decomposition procedure to cut a graph into smaller subgraphs, and proposes an algorithm to machine-
identify all paths. A complete Type 1.5 driver system for forced path traversal, implemented in PL/1, is then
thoroughly described, together with suggestions on how to extend these techniques to other languages.

A typical program is analyzed manually, tested with data and run through the system. Some evaluation of
the usefulness of the system is eventually given in the light of the accumulated experience.

[Baia84] Abstract: The structure of a complier for the ECSP language is described. ECSP is a concurrent
language extending Hoare's CSP: it supports dynamic communication channels and nested processes. The com-
pilation of ECPS programs is obtained by the composition of several tools of minimal functionalities.

A set of static checks on interactions between concurrent processes is described, The checks verify the
mutual consistency of the interfaces of processes: an interface is given by a set of input/output channels con-

* necting a process to its partners. It is shown that the amount of the coverage of checks depend on the entities
referred to in interprocess communication constructs and that both increase with the adoption of explicit nam-
ing.

The checks on process interfaces are carried on in several tool of the complier front-end to achieve
machine independence. To support separate complication, each tool can be applied to a subset of the processes
of the program.

0i
[Baia85] Abstract: This work discusses some issues in the debugging of concurrent programs. A set of desirable
characteristics of a debugger for concurrent languages is deduced from an examination of the differences
between the debugging of concurrent programs and that of sequential ones. A debugger for a concurrent
language, derived from CSP, is then presented. It is based upon a semantic model of the supported language.
The debugger enables [us] to compare a description of the program behavior to the actual behavior as well as to

* evaluate assertions on the process state. The description of the behavior is given by a formalism whose semantics
is also specified. The formalism can specify program behaviors at various abstraction levels. Lastly, some guide-
lines for the implementation of the debugger are shown and a detailed example of program description is
analyzed.

[Bail80] Abstract: One of the basic goals of software engineering is the establishment of useful models and equa-
* tions to predict the cost of any given programming project. Many models have been proposed over the last

several years, but, because of differences in the data collected, types of projects and environmental factors
among'software development sites, these models are not transportable and are only valid within the organization
where they were developed. This result seems reasonable when one considers that a model developed at a certain
environment will only be able to capture the impact of the factors which have a variable effect within that
environment. Those factors which are constant at that environment, and therefore do not cause variations in the

* productivity among projects produced there, may have a different or variable effects at another environment.
This paper presents a model-generation process which permits the development of a resource estimation

model for any particular organization. The model is based on data collected by that organization which captures
its particular environmental factors and the differences among its particular projects. The process provides the
capability of producing a model tailored to the organization which can be expected to be more effective than any
model originally developed for another environment. It is demonstrated here using data collected from the

* Software Engineering Laboratory at the NASA/Goddard Space Flight Center.

[Ballhl] Abstract: This paper describes an application of Maurice Halstead's software theory to a real time

* 189



August 9, 1989

switching system. The Halstead metrics and the software tool developed for computing them are discussed.
Analysis of the metric data indicates that the level of the switching language was not constant across algorithms
and that software error data was not a linear function of volume.

[Bake72a] Introduction: Experience in development and maintenance of large computer-based systems for
government and industry has led the IBM Federal Systems Division to the formulation of a new approach to pro-
duction programming. This approach, which couples a new kind of programming organization (a Chief Program-
mer Team) with formal tools for using structured programming in system development, was recently applied on a
contract with The New York Times for an online information system. Compared to experience on similar con-
tracts in the past, the approach resulted in increased programmer productivity coupled with improved quality.
An earlier paper describes the approach in detail and gives productivity measures in a form which should allow
comparability to other systems. Following a brief description of the system and a review of the approach, this
paper discusses the quality of the system as observed during a thorough acceptance test and in the initial period
of operation following its delivery.

[Bake72b] Seeking to demonstrate increased programmer productivity, a functional organization of specialists
led by a chief programmer has combined and applied known techniques into a unified methodology.

Combined are a program production library, general-to-detail implementation, and structured program-
ming. The overall methodology has been applied to an information storage and retrieval system.

Experimental results suggest significantly increased productivity and decreased system integration difficul-
ties.

[Bake79b] Abstract: An investigation is made into the extent to which relationships from software science are
useful in analyzing programming methodology principles that are concerned with modularity. Using previously
published data from over 500 programs, it is shown that the software science effort measure provides quantitative
answers to questions concerning the conditions under which modularization is beneficial. Among the issues dis-
cussed are the reduction of similar code sequences by temporary variable and subprogram definition, and the use
of global variables. Using data flow analysis, environmental considerations which affect the applicability of alter-
native modularity techniques are also discussed.

The results obtained using software science are compared with certain generally accepted methodologies
involving modularity, and show strong agreement. Finally, the results suggest some areas of potential improve-
ment in the technique used to obtain the software science measurements.

[BakeSO] Abstract: In attempting to describe the quality of computer software, one of the more frequently men-
tioned measurable attributes is complexity of the flow of control. During the past several years, there have been
many attempts to quantify this aspect of computer programs, approaching the problem from such diverse points
of view as graph theory and software science. Most notable measures in these areas are McCabe's cyclomatic
complexity and Halstead's software effort. More recently, Woodward et al., have proposed a complexity measure
based on the number of crossings, or "knots," of arcs in a linearization of the flowgraph.

Focusing on these three quantities, we establish their major properties as measures of control flow com-
plexity. Particular attention is directed at the behavior of the measures in structured programming environments,
including the effect of various structuring transformations on the measures.

As a result of this investigation, weaknesses of each of the measures taken individually are exposed. How-
ever, the software effort and cyclomatic complexity measures appear to have disjoint areas of weakness. This
suggests that more comprehensive measures of control flow complexity can be motivated by consideration of
combinations of these basic measures.

[BakeSS] Abstract: The reliability of a program, when many copies are run in a multisite environment with the
support of a software service organization, depends upon the inherent reliability of the program and certain
characteristics of the service organization. In this paper we identify a small number of parameters that determine
the relevant characteritics of the service organization, and analyze their effects upon the reliability of the

190



0

August 9, 1989

* program as it is experienced at an average site. This is done with two software reliability models, a first discovery
model and a total (defect) discovery model.

[BaU69] With the advent of the higher-level algebraic languages, the computer industry expected to be relieved
of the detailed programming required at the assembly-language level. This expectation has largely been realized.
Many systems are now being built in higher-level languages (most notably MULTICS).

However, our ability to debug programs has not advanced much with our increased use of the higher-level
languages.

We have, in general, merely copied the on-line assembly-language debugging aids, rather than design
totally new facilities for higher-level languages. We have neither created new graphical formats in which to
present the debugging information, not provided a reasonable means by which users can specify the processing
required on any available debugging data.

EXDAMS (EXtendable Debugging And Monitoring System) is an attempt to break this impasse by pro-
viding a single environment in which the users can easily add new on-line debugging aids to the system
one-at-a-time without further modifying the source-level compilers, EXDAMS, or their programs to be
debugged.

[Barr82] Abstract: An axiomatic proof system is developed for use in proving partial correctness and absence of
* deadlock in Ada tasks. Axioms for the Ada tasking primitives in isolation are presented, and then rules pro-

posed that describe the logical interaction of tasks through the rendezvous mechanism. These axioms and rules
are then used to present partial correctness proofs of parallel-processing examples written in Ada. The system is
extended to deal with questions of blocking and detection of deadlock and, finally, the problem of task termina-
tion and exception handling are discussed.

* [Barr84] Abstract: A compositional temporal logic proof system for the specification and verification of con-
current programs is presented. Versions of the system are developed for shared variables and communication
based programming languages that include procedures.

[Barr85] Abstract: The book summarizes and review nine verification techniques for parallel programs, four of
which are based on shared variables (viz., the methods proposed by Flon and Suzuki, Jones, Lamport, Owicki

* and Gries) while the other five are based on message passing (Apt, Fancez and de Roever, Barringer and Mearns,
Levin and Gries, Misra and Chandy, Zhou and Hoare).

The following scheme has been assumed for the presentation of each method:
1. a list of major references to the work;
2. an overview of the method;
3. a summary of ,he examples the method was applied to in the major references;

• 4. a detailed exposition of the application of the approach to some different examples;
5. general comments on the method;
6. a summary of the proof system.
Mainly the set partition problem and the bubble-lattice sort program are used as test problems in the worked
examples.

For newcomers, the book may perhaps be of some value as a first overview and guide to the literature. For
0 experts, a much more detailed assessment and comparison of the methods reviewed would certainly have been

desirable. (the conclusions section which compares the problems and benefits of the methods reviewed is only
one and a half pages long!).

[Bart78] Abstract: A new interprocedural data flow analysis algorithm is presented and analyzed. The algorithm
associates with each procedure in a program information about which variables may be modified, which may be

0 used, and which are possibly preserved by a call on the procedure, and all of its subcalls. The algorithm is suffi-
ciently powerful to be used on recursive programs and to deal with the sharing of variables which arises through
reference parameters. The algorithm is unique in that it can compute all of this information in a single pass, not

* 191



August 9, 1989

requiring a prepass to compute calling relationships or sharing patterns. The algorithm is asymptotically optimal
in time complexity. It has been implemented and is practical even on programs which are quite large.

[BasI75] Abstract: This paper recommends the "iterative enhancement" technique as a practical means of using
a top-down, stepwise refinement approach to software development. This technique begins with a simple initial
implementation of a properly chosen (skeletal) subproject which is followed by the gradual enhancement of suc-
cessive implementations in order to build the full implementation. The development and quantitative analysis of
a production compiler for the language SIMPL-T is used to demonstrate that the application of iterative
enhancement to software development is practical and efficient, encourages the generation of an easily modifi-
able product, and facilitates reliability.

[Basl7Ta] Abstract- The collection and analysis of data from programming projects is necessary for the
appropriate evaluation of software engineering methodologies. Towards this end, the Software Engineering
Laboratory was organized betweev the University of Maryland and NASA Goddard Space Flight Center. This
paper describes the structure of the Laboratory and provides some data on project evaluation from some of the
early projects that have been monitored. The analysis relates to resource forecasting using a model of the project
life cycle based upon the Rayleigh equation and to error rates applying ideas developed by Belady and Lehman.

[Basi79a] Abstract: There is a need for a distinguishing set of useful automatable measures of the software
development process and product. Measures are considered useful if they are sensitive to externally observable
differences in development environments and their relative values correspond to some intuition regarding these
characteristic differences. Such measures could provide an objective quantitative foundation for constructing
quality assurance standards and for calibrating mathematical models of software reliability and resource estima-
tion. This paper presents a set of automatable measures that were implemented, evaluated in a controlled experi-
ment, and found to satisfy these usefulness criteria. The measures include computer job steps, program
exchanges, program size, and cyclomatic complexity.

[Bas179b] Abstract: The effects of human factors on "high-level" software properties-too intangible to quantify
directly-can be inferred from the collective behavior of related "low-level" aspects.

[BasiS0b] Abstract: A family of structural complexity metrics which contains a number of current metrics is
developed. The family may be used to give a framework for experimental analysis of metrics. By implementing
the family or suitable subfamily as an automatic metric tool, may metrics become readily available and may even
be merged to form new metrics in response to information obtained during exploratory analysis.

[Basillal Abstract: This paper presents an attempt to examine a set of basic relationships among various
software development variables, such as size, effort, project duration, staff size, and productivity. These vari-
ables are plotted against each other for 15 Software Engineering Laboratory projects that were developed for
NASA/Goddard Space Flight Center by Computer Sciences Corp. Certain relationships are derived in the form
of equations, and these equations are compared with a set derived by Walston and Felix for IBM Federal Systems
Division project data. Although the equations do not have the same coefficients, they are seen to have similar
exponents. In fact, the Software Engineering Laboratory equations tend to be within one standard error of esti-
mate of the IBM equations.

[BasiSlbI Abstract: We describe in this paper an effective data collection method for evaluating software
development methodologies, from definition of the objectives of the data collection to analysis of the results. We
show how the data analysis can answer questions with respect to how successfully the goals of the development
methodology are met. The A-7 requirements document is used as an example. We provide the results of data ana-
lyses conducted partway through the A-7 flight software development cycle, and discuss the utility of information
obtained by such partial analyses. Results from the study show that data collection is feasible and useful when
performed as part of configuration control, that data distributions based on partial data provide useful feedback

192



August 9, 1989

* to the developers, and that the A-7 Requirements Document is easily maintained and changed.

[Basl81c] Abstract: A software engineering research study has been undertaken to empirically analyze and com-
pare various software development approaches; its fundamental features and initial findings are presented in this
paper. An experiment was designed and conducted to confirm certain suppositions concerning the beneficial
effects of a particular disciplined methodology for software development. The disciplined methodology consisted

* of programming teams employing certain techniques and organizations commonly defined under the umbrella
term structured programming. Other programming teams and individual programmers both served as control
groups for comparison. The experimentally tested hypotheses involved a number of quantitative, objective,
unobtrusive, and automatable measures of programming aspects dealing with the software development process
and the developed software product. The experiment's results revealed several programming aspects for which
statistically significant differences existed between the disciplined methodology and the control groups. The

* results were interpreted as confirmation of the original suppositions and evidence in favor of the disciplined
methodology. This paper describes the specific features of the experiment; outlines the investigative approach
used to plan, execute, and analyze it; reports its immediate results; and interprets them according to intuitions
regarding the disciplined methodology.

[Basi81f] Abstract- This paper analyzes the resource utilization curve developed by Parr. The curve is compared
* with several other curves, including the Rayleigh curve, a parabola, and a trapezoid, with respect to how well

they fit manpower utilization. The evaluation is performed for several projects developed in the Software
Engineering Laboratory of the 6-12 man-year variety. The conclusion drawn is that the Parr curve can be made to
fit the data better than the other curves. However, because of the noise in the data, it is difficult to confirm the
shape of the manpower distribution from the data alone and therefore difficult to validate any particular model.
Also, since the parameters used in the curve are not easily calculable or estimable from known data, the curve is

* not effective for resource estimation.

[Basi~lg] Abbreviated Introduction: Among the most popular metrics have been the software science metrics
of Halstead, and the cyclomatic complexity metric of McCabe. One question is whether these metrics actually
measure such things as effort and complexity. One measure of effort may be the time required to produce a pro-
duct. One measure of complexity might be the number of errors made during the development of a product. A

* second question is how these metrics compare with standard size measures, such as the number of source lines
or the number of executable statements, i.e., do they do a better job of predicting the effort or the number of
errors? Lastly, how do these metrics related to each other?

One simple way of checking the relationship between errors or effort and the various metrics is to examine
the plots of variables against one another and correlations between the various variables. This provides us with a
first look at attempting to shed some light on the questions posed and the relationships that may hold.

[Basi82a] Abstract: An effective data collection methodology for evaluating software development methodolo-
gies was applied to four different software development projects. Goals of the data collection included character-
izing changes and errors, characterizing projects and programmers, identifying effective error detection and
correction techniques, and investigating ripple effects.

The data collected consisted of changes (including error corrections) made to the software after code was
* written and baselined, but before tcsting began. Data collection and validation were concurrent with software

development. Changes reported were verified by interviews with programmers. Analysis of the data showed pat-
terns that were used in satisfying the goals of the data collection. Some of the results are summarized in the fol-
lowing: 1. Error corrections aside, the most frequent type of change was an unplanned design modification. 2.
The most common type of error was one made in the design or implementation of a single component of the sys-
tem. Incorrect requirements and misunderstandings of functional specifications, interfaces, support software

* and hardware, and languages and compilers were generally not significant sources of errors. 3. Despite a signifi-
cant number of requirements changes imposed on some projects, there was no corresponding increase in fre-
quency of requirements misunderstandings. 4. More than 75% of all changes took a day or less to make. 5.

193



August 9, 1989

Changes tended to be nonlocalized with respect to individual components but localized with respect to the sub-
systems. 6. Relatively few changes resulted in errors. Relatively few errors required more than one attempt at
correction. 7. Most errors were detected by executing the program. The cause of most errors was found by read-
ing code. Support facilities and techniques such as traces, dumps, cross-reference and attribute listings, and pro-
gram proving were rarely used.

[Basi82b] Overview: In this newsletter, we briefly describe [the authors] approach to data collection followed by
a description of the software development project that we are monitoring. We then address several central issues
related to the use of Ada in the design phase of this project.

[Bas182c] Abstract: An effective data collection method for evaluating software development methodologies
and for studying the software development process is described. The method uses goal-directed data collection
to evaluate methodologies with respect to the claims made for them. Such claims are used as a basis for defining
the goals of the data collection, establishing a list of questions of interest to be answered by data analysis, defin-
ing a set of data categorization schemes, and designing a data collection form.

The data to be collected are based on the changes made to the software during development, and are
obtained when the changes are made. To ensure accuracy of the data, validation is performed concurrently with
software development and data collection. Validation is based on interviews with those people supplying the
data. Results from using the methodology show that data validation is a necessary part of change data collection.
Without it, as much as 50 percent of the data may be erroneous.

Feasibility of the data collection methodology was demonstrated by applying it to five different projects in
two different environments. The application showed that the methodology was both feasible and useful.

[Basi82d] Introduction: The identification of the various factors that have an effect on software development is
of prime concern to software engineers. The specific focus of this paper is to analyze the relationships between
the frequency and distribution of errors during software development, the maintenance of the developed
software, and a variety of environmental factors. These factors include the complexity of the software, the
developer's experience with the application, and the reuse of existing design and code. Such relationships can
provide an insight into the characteristics of computer software and the effects that an environment can have on
the software product. Such relationships can also improve the reliability and quality with respect to computer
software. In an effort to acquire knowledge of these basic relationships, change data for a medium-scale software
project were analyzed. (Change data include any documentation that reports an alteration made to the software
for a particular reason.)

The overall objectives of this paper are threefold: first, to report the results of the analyses; second, to
review the results in the context of those reported by other researchers; third, to draw some conclusions based
on the first two objectives. The analyses presented in this paper encompass various types of distributions based
on the collected change data. The most important are the error distributions observed within the software pro-
ject.

[BasI83a] Abstract: The emergence of Ada provides the opportunity and necessity for measurement, analysis,
and experimentation in software development. Over the past several months, we have been studying a software
projc% t developed in Ada. One of the goals of the study is to identify metrics which are useful for evaluating and
predicting the complexity, quality, and cost of Ada programs. This paper defines a set of metrics for use with
software development in Ada. The metrics are gathered into six categories: effort, changes, dimension, language
use, data use, and execution. They are described further using formula generators, distributions, and formulas.
Examples of each metric, as well as specific uses, are also included. Finally, [the authors] continuing research in
this area is described.

[BasI83b] Abstract: The desire to predict the effort in developing or explain the quality of software has led to the
proposal of several metrics in the literature. As a step toward validating these metrics, the Software Engineering
Laboratory has analyzed the Software Science metrics, cyclomatic complexity, and various standard program

194



August 9, 1989

* measures for their relation to 1) effort (including design through acceptance testing), 2) development errors
(both discrete and weighted according to the amount of time to locate and fix), and 3) one other. The data investi-
gated are collected from a production Fortran environment and examined across several projects at once, within
individual projects and by individual programmers across projects, with three efforts reporting accuracy checks
demonstrating the need to validate the database. When the data come from individual programmers or certain
validated projects, the metrics' correlations with actual effort seem to be the strongest. For modules developed

* entirely by individual programmers, the validity ratios induce a statistically significant ordering of several of the
metrics' correlations. When comparing the strongest correlations, neither Software Science's E metric,
cyclomatic complexity nor source lines of code appears to relate convincingly better with effort than the others.

[BaslS3c] Abstract: A family of syntactic complexity metrics is defined that generates several metrics commonly
occurring in the literature. The paper uses the family to answer some questions about the relationship of these

• metrics to error-proneness and to each other. Two derived metrics are applied: "slope" which measures the rela-
tive skills of programmers at handling a given level of complexity and "r square" which is indirectly related to the
consistency of performance of the programmer or team. The study suggests that individual differences have a
large effect on the significance of results where many individuals are used. When an individual is isolated, better
results are obtained. The metrics can also be used to differentiate between projects on which a methodology was
used and those on which it was not.

[Basi$4a] Abstract: A large, commercially available Fortran program was modified to produce structural cover-
age metrics. The modified program was executed on a set of functionally generated acceptance tests and a large
sample of operational usage cases. The resulting structural coverage metrics are combined with fault and error
data to evaluate structural coverage in the SEL environment.

We can show that in this environment the functionally generated test cases seem to be a good approxima-
* tion of the operational use. The relative proportions of the exercise statement subclasses (executable, assign-

ment, CALL, DO, IF, READ, WRITE) change as the structural coverage of the program increases. We pro-
pose a method for evaluating if two sets of input data exercise a program in a similar manner.

We also provide evidence that implies that in this environment, faults revealed in a procedure are indepen-
dent of the number of times the procedure is executed and that it may be reasonable to use procedure coverage in
software models that use statement coverage. Finally, the evidence suggests that it may be possible to use struc-
tural coverage to aid the management of the acceptance test process.

[Basi84d] Abstract- A considerable amount of money and resources has been spent on the development of the
new programming language Ada. The University of Maryland and General Electric have studied the develop-
ment of a software project written in Ada. This paper presents the analysis of the effort, change, and error data.
The total effort spent on training and methodology was 20% of the total effort spent on the project; this was more
than the effort spent on any other phase. The greatest error rates appeared to be associated with the most Ada-
specific features; tasking, generics and compilation units. Experience with high-level languages seemed to be
associated with a better ability to grasp Ada concepts. Finally, the results strongly indicate the need for support
tools for an Ada programming environment.

[fasig5a] Abstract: Since both cost/quality goals and production environments differ, this study presents an
approach for customizing a characteristic set of software metrics to an environment. The approach is aDplied in
the Software Engineering Laboratory (SEL), a NASA Goddard production environment, to 49 candidate pro-
cess and product metrics of 652 modules from six (51,000-112,000 line) projects. For this particular environment,
the method yielded the characteristic metric set (source lines, fault correction effort per executable statement,
design effort, code effort, number of I/O parameters, number of versions). The uses examined for a characteris-
tic metric set include forecasting the effort for development, modification, and fault correction of modules based
on historical data.

(Basig5b] Abstract: This study compares the strategies of code reading, functional testing, and structured

• 195



August 9, 1989

testing in three aspects of software testing: fault detection effectiveness, fault detection cost, and classes of faults
detected. Thirty two professional programmers and 42 advanced students applied the three techniques to four
unit-sized programs in a fractional factorial experimental design. The major results of this study are the follow-
ing.
1. With the professional programmers, code reading detected more software faults and had a higher fault detec-
tion rate than did functional or structural testing, while functional testing detected more faults than did struc-
tural testing, but functional and structural testing were not different in fault detection rate.

2. In one advanced student subject group, code reading and functional testing were not different in faults found,
but were both superior to structural testing, while in the other advanced student subject group there was no
difference among the techniques.

3. With the advanced student subjects, the three techniques were not different in fault detection rate.
4. Number of faults observed, fault detection rate, and total effort in detection depended on the type of software
tested.

5. Code reading detected more interface faults than did the other methods.
6. Functional testing detected more control faults than did the other methods.
7. When asked to estimate the percentage of faults detected, code readers gave the most accurate estimates while
functional testers gave the least accurate estimates.

[Basi85c] Abstract: This paper presented a paradigm for evaluating software development methods and tools.
The basic idea is to generate a set of goals which are refined into quantifiable questions which specify metrics to
be collected on the software development and maintenance process and product. These metrics can be used to
characterize, evaluate, predict and motivate. They can be used in an active as well as passive way by learning
from analyzing the data and improving the methods and tools based upon what is learned from that analysis.
Several examples were given representing each of the different approaches to evaluation.

[BaslSSe] Abstract: Estimating the amount of effort required for a software development project is one of the
major aspects of resource estimation for that project. In this study, the relationship between effort and other
variables for 23 Software Engineering Laboratory projects that were developed for NASA/Goddard Space
Flight Center was examined. These variables fell into categories: those which can be determined in the early
stages of project development and may therefore be useful in a baseline equation for predicting effort in future
projects, and those which can be used mainly to characterize or evaluate effort requirements and thus enhance
[the authors] understanding of the software development process in this environment. Some results of the ana-
lyses are presented in this paper.

[BasiS5h] Abbreviated Introduction: This article examines the use of Ada in a software project developed by
the General Electric Company. The project was monitored by the University of Maryland and GE to identify
areas of success and difficulty in learning and using Ada as both a design and a coding language. Since produc-
tion-qualitv Ada translators were not readily available, the study focused on training and early software develop-
ment. We focus on the use and effect of Ada on this project, which was conducted primarily in 1982. Our study
also presents the major factors to consider before using Ada in software development, particularly when training
in Ada is necessary. Although many of [the authors] conclusions may seem obvious now, they were unexpected
when this project began.

[The authors] study attempts to meet several goals. The first focuses on characterization of the effort, the
changes, and the errors of the project. The second considers how Ada was used on the project. The third con-
cerns evaluation of the data collection and validation process, while the fourth concentrates on the development
of measures for the Ada Programming Support Environment.

[Basi86a] Abstract: Experimentation in software engineering supports the advancement of the field through an
iterative learning process. In this paper we present a framework for analyzing most of the experimental work
performed in software engineering over the past several years. We describe a variety of experiments in the frame-
work and discuss their contribution to the software engineering discipline. Some useful recommendations for the

196



August 9, 1989

* application of the experimental process in software engineering are included.

[Basig7a] Abstract- More and more project environments will make the transition from traditional implementa-
tion languages to Ada. In this context, many open questions need to be answered, e.g., whether or not Ada
language features and concepts are used appropriately, and how Ada projects should be managed and supported
by methods and tools. It is therefore necessary to measure and evaluate the quality and productivity of process

* and product aspects of Ada projects. This can be done by either conducting case studies of ongoing Ada projects
or experiments in controlled environments. In both cases concrete measurement and evaluation goals need to be
established in a systematic way, measures need to be derived that can help in achieving these goals, and the
necessary data need to be collected, validated and interpreted. We have established a methodology that allows us
to perform these activities in a systematic way. However, the methodology must be supported by automated tools
in order to allow on-line feedback of evaluation results into ongoing projects. In the long-run, these tools for

• on-line feedback should become part of each APSE supporting the decision making process of management,
development, quality assurance personnel, and others. Such information would be based on data from the
current project as well as previous projects in the same and other environments. In this paper we present and dis-
cuss the TAME (Tailoring an Ada Measurement Environment) project which aims at the development of a pro-
totype measurement and evaluation environment that supports all the previously mentioned activities including
the process of setting up measurement and evaluation goals and deriving supportive measures. We discuss the

• TAME requirements and architectural design, the status of the first prototype, and the expected impact of this
project on Ada projects and APSEs. The prototype currently under development does not interface with an
APSE; however, it is designed for being integrated into an APSE in the future.

[Basig7b] Abstract: This paper presents a methodology for improving the software process by tailoring it to the
specific project goals and environment. This improvement process is aimed at the global software process model

• as well as methods and tools supporting that model. The basic idea is to use defect profiles to help characterize
the environment and evaluate the project goals and the effectiveness of methods and tools in a quantitative way.
The improvement process is implemented iteratively by setting project improvement goals, characterizing those
goals and the environment, in part, via defect profiles in a quantitative way, choosing methods and tools fitting
those characteristics, evaluating the actual behavior of the chosen set of methods and tools, and refining the pro-
ject goals based on the evaluation results. All these activities require analysis of large amounts of data and, there-

• fore, support by an automated tool. Such a tool - TAME (Tailoring A Measurement Environment) - is currently
being developed.

[BasiSS] Abstract: Experience from a dozen years of analyzing software engineering processes and products is
summarized as a set of software engineering and measurement principles that argue for software engineering pro-
cess models that integrate sound planning and analysis into the construction process.

S' In the TAME (Tailoring A Measurement Environment) project at the University of Maryland we have
developed such an improvement-oriented software engineering process model that uses the goal/ques-
tions/metric paradigm to integrate the constructive and analytic aspects of software deVelopment. The model
provides a mechanism for formalizing the characterization and planning tasks, controlling and improving pro-
jects based on quantitative analysis, learning in a deeper and more systematic way about the software process
and product, and feeding the appropriate experience back into the current and future projects.

* The TAME system is an instantiation of the TAME software engineering process model as an ISEE
(Integrated Software Engineering Environment). The first in a series of TAME system prototypes has been
developed. An assessment of experience with this first limited prototype is presented including a reassessment of
its initial architecture. The long-term goal of this building effort is to develop a better understanding of appropri-
ate ISEE architectures that optimally support the improvement-oriented TAME software engineering process
model.

[Bate83a] Abbreviated Introduction: In this paper we consider the Behavioral Abstraction (BA) approach to
high-level debugging of distributed systems. In Section 2, we discuss behavioral abstraction and the Event

197



August 9, 1989

Definition Language that is the basis for a debugging tool implementing this approach. Section 3 addresses one of
the fundamental issues arising in actually providing debugging aid through the BA approach, that of recognizing
the occurrence of abstracted behaviors. We conclude the paper with an assessment of [the authors] present status
and outstanding problems.

[Baue79b] Overview: Formal program construction by transformations is a method of software development in
which a program is derived from a formal problem specification by manageable, controlled transformation steps
which guarantee that the final product meets the initial specification. This methodology has been investigated in
the Munich project CIP (computer-aided, intuition-guided programming). The research includes the design of a
wide-spectrum language specifically tailored to the needs of transformational programming, the construction of a
transformation system to support the methodology, and the study of transformation rules and other methodologi-
cal issues. Particular emphasis has been laid on developing a sound theoretical basis for the overall approach.

[Baue89] Abstract: Formal program construction by transformations is a method of software development in
which a program is derived from a formal problem specification by manageable, controlled transformation steps
which guarantee that the final product meets the initial specification. This methodology, has been investigated in
the Munich project CIP (computer-aided, intuition-guided programming). The research includes the design of a
wide-spectrum language specifically tailored to the needs of transformational programming, the construction of a
transformation system to support the methodology, and the study of transformation rules and other methodologi-
cal issues. Particular emphasis has been laid on developing a sound theoretical basis for the overall approach.

[Bazz82] Abstract: A new method for testing compilers is presented. The compiler is exercised by compilable
programs, automatically generated by a test generator. The generator is driven by a tabular description of the
source language. This description is in a formalism which nicely extends context-free grammars in a context-
dependent direction, but still retains the structure and reliability of BNF. The generator produces a set of pro-
grams which cover all grammatical constructions of the source language, unless user supplied directives instruct
otherwise. The programs generated can also be used to evaluate the performance of difference compilers of the
same source language.

A significant example from Pascal is presented, and experience with the generator is reported.

[Beck76] Abstract: Programs which perform partial evaluation, beta-expansion, and certain optimizations on
programs, are studied with respect to implementation and application. Two implementations are described, one
"interpretive" partial evaluation, which operated directly on the program to be partially evaluated, and a "com-
piling" system, where the program to be partially evaluated is used to generate a specialized program, which in its
turn is executed to do the partial evaluation. Three applications with different requirements on these programs
are described. Proofs are given for the equivalence of the use of the interpretive system and the compiling system
in two of the three cases. The general use of the partial evaluator as a tool for the programmer in conjunction
with certain programming techniques is discussed.

[Behr83] Abstract: The function point method of measuring application development productivity developed by
Albrecht is reviewed and a productivity improvement measure introduced. The measurement methodology is
then applied to 24 development projects. Size, environment, and language effects on productivity are examined.
The concept of a productivity index which removes size effects is defined and an analysis of the statistical signifi-
cance of results is presented.

[Beiz83] Table of Contents: Introduction. The taxonomy of bugs. Flowcharts and path testing. Path testing and
transaction flows. Graphs, paths and complexity. Paths, path products, and regular expressions. Data validation
and syntax testing. Data-base-driven testing design. Decision tables and boolean algebra. Boolean algebra the
easy way. States, state graphs, and transition testing. Graph matrices and applications.

[Bela76] Abbreviated Introduction: As a need for a discipline of software engineering has been recognized, the

198



August 9, 1989

• design, implementation, and maintenance of computer software has come into the forefront. The formulation of
concepts of programming methodology, exemplified by Dijkstra's structured programming, strikes at the roots of
the problem. The realization is that a program, much as a mathematical theorem, should and can be provable.
Recognition that a program can be proved correct as it is developed and maintained, and before its results are
used, may ultimately change the nature of the programming task and the face of the programming world. Clearly
these developments are of fundamental importance. They appear to point to long-term solutions to problems

* that will be encountered in creating the great amount of program text that the world appears to require. But even
though progress in mastering the science of program creation, maintenance, and expansion has also been made,
there is still a long way to go.

[Belagl] Abstract: Program modules and data structures are interconnected by calls and references in software
systems. Partitioning these entities into clusters reduces complexity. For very large systems manual clustering is

* impractical. A method to perform automatic clustering is described and a metric to quantify the complexity of
the resulting partition is developed.

[Belk86] Abstract: The development of correct specifications is a critical task in the software development pro-
cess. This paper describes an alternative approach for the development of specifications. The approach relies on
a specification language for abstract data types and a synthesis system. The system is capable of translating an

* abstract data type specification into an executable program. This process defines an alternative methodology that
provides the necessary tools for the early testing of the specifications and for the development of prototypes and
implementation models.

[BeneSS] Abstract: Modern complex system reliability has to take into account more and more programmed
system reliability. This raises two kinds of problems:

* - Software reliability: i.e., software quality assurance, specifications, development methods, languages, pro-
gramming, test policies,...

- Hardware reliability at three levels: input, processors, output.
A method among others enabling to modelize software and hardware behaviour from the reliability point of view
is the stochastic Markov process method.

First, the principles of the method will be given and advantages will be pointed out in comparison with
• other more classical methods for reliability analysis.

In the second part of the paper, software tools to solve this kind of problems will be described and in the
final part of the presentation an example of successful use of these computer codes will be given.

[Beng87] Abstract: Operational analysis, an area of study first defined in the computer science field, has been
used in the analysis of systems performance. System performance measures for a specific set of output data are

O obtained using operational analysis formulas derived from assumptions which are verifiable by the observed
data. This paper gives relationships which may be used to quantify the errors in these assumptions. Additionally,
basic propositions are given which help in understanding operational analysis assumptions. These propositions
are used in developing correction terms which can be used to adjust performance measures so that their values
are exact for a set of data no matter how much the assumptions used in deriving the performance measure rela-
tions are violated.o

[Bens81] Abstract: An experiment was performed in which executable assertions were used in conjunction with
search techniques in order to test a computer program automatically. The program chosen for the experiment
computes a position on an orbit from the description of the orbit and the desired point.

Errors were interested in the program randomly using an error generation method based on published
data defining common error types. Assertions were written for program and it was tested using two different

• techniques. The first divided up the range of the input variables and selected test cases from within the
subranges. In this way a "grid" of test values was constructed over the program's input space.

The second used a search algorithm from optimization theory. This entailed using the assertions to define

199



August 9, 1989

an error function and then maximizing its value. The program was then tested by varying all of them. The results
indicate that this search testing technique was as effective as the grid testing technique in locating errors and was
more efficient. In addition, the search testing technique located critical input values which helped in writing
correct assertions.

[Bera83] Introduction: This column is the first in a series of articles dealing with the utilization of Ada in
software engineering. All examples will use Ada, even though virtually all of the techniques discussed could
apply to any programming language. This will be particularly advantageous when we wish to compare Ada to
other programming languages.

[Berg82] Table of Contents: Introduction to fundamental techniques. Formal models of computation. Verifica-
tion methods and techniques. Approaches to proofs of partial correctness. Approaches to proofs of total
correctness. Correctness of parallel programs. Application of verification approaches. Approaches to specifica-
tion. State of the art and summary. References.

[BerlSO] Introduction: There have been numerous measures proposed to measure program complexity. Some
are completely heuristic, comparing certain measurable program features against a set of predefined standards.
Some are topological, based on the number of regions on the control or data graph of the program or a combina-
tion of the avove, and of course, there is Halstead's Software Physics.

All of these measures have their deficiencies and, no doubt, so will ours. We have, however, set ourselves
the goal of eliminating some of them and to provide a measure which has mathematical and intuitive correctness
and which will have a good correlation with observed facts.

[Bern84] Introduction: The job of software maintenance-correcting errors and changing program operation as
requirements change-generally devolves upon personnel not involved in the original software development cycle
who must learn how a program works before they can competently change it. Among the variables involved in
this learning process are the accuracy, currency, and completeness of program documentation; programmer skill
and experience; environmental factors such as urgency, the programming language, and especially, the attributes
of the program itself.

Program maintainability and program understandability are parallel concepts: the more difficult a program
is to understand, the more difficult it is to maintain. And the more difficult it is to maintain, the higher its main-
tainability risk. Since it is to the source program that maintenance staff must ultimately come, it would be useful
to be able to quantify the relative magnitude of the task through an analysis solely of the attributes of the pro-
gram.

Attempts have been made to quantify program difficulty by manipulative simple counts of selected pro-
gram attributes, e.g., lines of code, bifurcation points (cyclomatic number), and operations and operands (Hal-
stead length). Although these manipulations may be informative, none has been persuasively shown to be a reli-
able measure of program difficulty.

This paper presents an approach based on the tenet that program difficulty represents the sum of the diffi-
culties of its constituent elements, and that these elements can be quantified by the use of carefully selected
weights and factors.

[BerrS7] Abstract: In carrying out SDC's Formal Development Method, one writes a specification of a system
under design in the Ina Jo specification language and proves that the specification meets the requirements of the
system. This paper develops an abstract machine model of what is specified by a level specification in an Ina Jo
specification. It describes the state as defined by the front matter, computations as defined by initial states and
transforms, and invariants, criteria, and constraints as properties of computations. The paper then describes a
number of formal design methods and the kinds of abstractions that they require. For each of these kinds of
abstractions, there is a characteristic relationship between refinements that should be proved as one is carrying
out the method.

200



August 9, 1989

[Besh85] Abstract: Hardware manufacturers usually provide a "data sheet" listing parameters that describe the
hardware's functionality and limitations on its use. This paper explores the feasibility of developing a similar
document to describe software quality. It defines parameters that are useful for reporting quality in three major
areas: reliability, maintainability, and robustness.

[Bess87J Overview: The key purpose of the Test Environment Generator (GET) is to provide the automatic gen-
eration of drivers and possible virtual bodies associated with a software component. Drivers and virtual bodies
will constitute together with the component itself, a complete compilable, linkable and executable program. This
program (called Test Environment) is interactive; when executed, it allows the user to perform most of the
operations that are usually executed through a test program. For example, the user can create variables, assign
objects, call subprograms, indicating the values of in or in-out parameters, and examine, after the call, the result
values.v e In addition to important time saving, the automatic generation of a testing environment facilitates the per-
formance of the tests by a separate testing team. It also adds to the efficiency and comfort of such a team by pro-
viding a standard and powerful user interface to be used for all the components to be tested.

[Bish86] Abstract: The Project On Diverse Software (PODS) was a collaborative software reliability research
project whose main objectives were:

" To evaluate the merits of using diverse (or n-version) software.
" To evaluate the computer-based specification language "X."
" To compare the effects of representative high-level and low-level languages on productivity and reliability.

In addition, there was a secondary objective to monitor the software development process to produce
three diverse programs to the same requirements. The requirement was for a reactor over-power protection
(trip) system. Diversity was ensured by having three independent teams to produce the software, using different
specification methods (formal and informal) and different implementation languages (assembly language and
Fortran). This also allowed the comparison of specification methods and programming languages to be made.
After careful independent development and testing, the three programs were tested against each other in a spe-
cial test harness to locate residual faults. All phases of the project were carefully documented for subsequent
analysis.

The major conclusions for this particular project were that:
" Diverse software with majority voting failed less frequently than any individual program, but some common

faults did exist at the end of normal software development.
* Testing diverse programs "back-to-back" proved to be a powerful method of detecting residual faults.
* The residual faults were all related to the specification of requirements, and hence, the requirement specifica-

tion was the only known cause of common mode failure.

[Bjor87] Abstract: We propose a total framework for the software development stages of specification (defini-
tion), design and coding. This framework is based on three cornerstones: (a) the concept of software develop-
ment graphs which specify all'the stages and steps of development; (b) the use of formal methods, in [the
authors] case VDM, the Vienna Software Development Method, in all stages and steps of development; and (c)
the clearly separate roles of theoretical computer scientists, programmers, software engineers, and development

* managers in all aspects of software development. Thus not only programming is formalised (i.e., the entire pro-
gramming itself is also considered a formal object about which to reason).

[Blac8l] Abstract: The addition of redundancy to data structures can be used to improve the ability of a software
system to detect and correct errors, and to continue to operate according to its specifications. A case study is
presented which indicates how such redundancy can be deployed and exploited at reasonable cost to improve
software fault tolerance. Experimental results are reported for the small data base system considered.

[Bla17l] Abstract: The Purdue Extendable Debugging system (PEBUG) is a general purpose debugging system
which operates under the Purdue version of the Mace operating system on the CDC 6500. PEBUG is designed to

* 201



August 9, 1989

provide flexible debugging in either an interactive or non-interactive mode. The basic construction of PEBUG
primitives, debugging commands, and the interface used for extension, are described.

[BlalS5a] Abstract: This paper presents the results of a study of the software complexity characteristics of a
large real-time signal processing system for which there is a 6-yr maintenance history. The objective of the study
was to compare values generated by software metrics to the maintenance history in order to determine which
software complexity metrics would be most useful for estimating maintenance effort. The metrics that were
analyzed were program size measures, software science measures, and control flow measures. During the course
of the study two new software metrics were defined. The new metrics, maximum knot depth and knots per jump
ratio, are both extensions of the knot count metric. When comparing the metrics to the maintenance data the
control flow measures showed the strongest positive correlation.

[BlooI6] Abstract- The increasing use of computers to protect or control potentially hazardous processes leads
to a need for effective methods to assess the software they execute. This correspondence presents a case study in
which the Vienna development method (VDM), a formal specification and development methodology, was used
during the analysis phase of the assessment of a prototype nuclear reactor protection system. The VDM specifi-
cation was also translated into the logic language Prolog to animate the specification and to provide a diverse
implementation for use in back-to-back testing. The authors claim that this technique provides a visible and
effective method of analysis which is superior to the informal alternatives.

[Blum75] Abstract: Intelligence tests occasionally require the extrapolation of an effective sequence (e.g. 1661,
2552, 3663, ...) that is produced by some easily discernible algorithm. In this paper, we investigate the theoretical
capabilities and limitations of a computer to infer such sequences. We design Turing machines that in principle
are extremely powerful for this purpose and place upper bounds on the capabilities of machines that would do
better.

[Boch87b] Abstract: The use of formal specifications in software development allows the use of certain
automated tools during the specification and software development process. Formal description techniques have
been developed for the specification of communication protocols and services. This paper describes the partial
automation of the protocol implementation process based on a formal specification of the protocol to be imple-
mented. An implementation strategy and a related software structure for the implementation of state transition
oriented specifications is presented. Its application is demonstrated with a much simplified Transport protocol.
The automated translation of specifications into implementation code in a high-level language is also discussed.
A semiautomated implementation strategy is explained which highlights several refinement steps, part of which
are automated, which lead from a formal protocol specification to an implementation. Experience with several
full implementations of the OSI Transport protocol is described.

[Boeh75a] Abstract- This paper summarizes some recent experience in analyzing and eliminating sources of
error in the design phase of large software projects. It begins by pointing out some of the significant differences
in software error incidence between large and small software projects. The most striking contrast, illustrated by
project data, is the large preponderance of design errors over coding errors on large scale projects, not only with
respect to numbers of errors, but also with respect to the relative time and effort required to detect them and
correct them.

The paper next presents a taxonomy of software error causes, and some analyses of the design error data,
performed to obtain a better understanding of the nature of large-scale software design errors and to evaluate
alternative methods of preventing, detecting, and eliminating them.

Based on this analysis of observational data, a hypothesis was derived regarding the potential cost-effec-
tiveness of an automated aid to detecting inconsistencies between assertions about the nature of inputs and out-
puts of the various elements (functions, modules, data bases, data sources, etc.) of the software design. This
hypothesis was tested by developing a prototype version of such an aid, the Design Assertion Consistency
Checker (DACC), using TRW's Generalized Information Management (GIM) System, and using it on a

202



August 9, 1989

* large-scale software project with 186 elements and 967 assertions about their inputs and outputs.
Of the 121,000 possible mismatches between input and output assertions, DACC found 818, at a cost in

computer time of $30. Most of the mismatches resulted from shortfalls in the initial version of DACC or the ini-
tial data preparation, such as lack of a synonym capability and a lack of explicit statements about external inputs
and outputs. However, a number of serious mismatches were exposed at a time when they were easy to correct,
and a most useful worklist generated of items needing resolution before allowing the design effort to proceed to

* further detail.
In general, the data confirmed the hypothesis about the general utility of a DACC capability for large

software projects. However, a number of additional features should be considered to compensate for current
deficiencies (in areas such as manuscript preparation) and to fully take advantage of having the software design in
machine-readable form.

* [Boeh75b] Introduction: The high cost of software should be considered more of an opportunity than a prob-
lem. Nobody can say for sure to what extent software "costs too much." However, the high cost implies that
additional improvements will lead to significant savings, which should justify additional investments to stream-
line some of the institutions, techniques, and procedures which often hinder software productivity.

This chapter will address three main questions: How high is the cost of software? Where do costs go?
What factors influence costs? (or, what can we do about them?)

• For reference, "software production" here includes all the effort involved in producing and maintaining
the necessary executive, support, and applications programs and their documentation, starting from a reason-
ably well-defined functional specification. Most of the software data comes from the Air Force, primarily from
the CCIP-85 study and the recent Air Force-Industry Software Cost Workshop, but they are probably fairly
representative of other software activities elsewhere.

* lBoeb7l Abstract- The study reported in this paper establishes a conceptual framework and some key initial
results in the analysis of the characteristics of software quality. Its main results and conclusions are:
" Explicit attention to characteristics of software quality can lead to significant savings in software life-cycle

costs.
* The current software state-of-the-art imposes specific limitations on our ability to automatically and quantita-

tively evaluate the quality of software.
• * A definitive hierarchy of well-defined, well-differentiated characteristics of software quality is developed. Its

higher-level structure reflects the actual uses to which software quality evaluation would be put; its lower-level
characteristics are closely correlated with actual software metric evaluations which can be performed.

• A large number of software quality-evaluation metrics have been defined, classified, and evaluated with
respect to their potential benefits, quantifiability, and ease of automation.

* Particular software life-cycle activities have been identified which have significant leverage on software qual-
* ity.

Most importantly, we believe that the study reported in this paper provides for the first time a clear, well-
defined framework for assessing the often slippery issues associated with software quality, via the consistent and
mutually supportive sets of definitions, distinctions, guidelines, and experiences cited. This framework is cer-
tainly not complete, but it has been brought to a point sufficient to serve as a viable basis for future refinements
and extensions.

• The bulk of the work reported in this book was performed in a study by TRW for the National Bureau of
Standards in 1973. The book presents this original material and subsequent updates in the following order:
" A preface which introduces, summarizes, and updates the 1973 study;
" The text of the 1973 study;
" A revised and updated version of the annotated bibliography prepared for the 1973 study.

* (Boeb81] Abbreviated Preface: A course in engineering economics has become a fairly standard component of
the hardware engineer's education. So far, the opportunities for software engineers to take a similar course
tailored to software engineering economics have been rare. As a result, [the author thinks] most software

40 203



August 9, 1989

engineers miss out on a chance to acquire and use a number of significant economic concepts, techniques, and
facts which can play a vital part in their future careers-and a vital part in making our software easier to live with
and more worthwhile.

Not surprisingly, then, the major objective of this book is to provide a basis for a software engineering
economics course, intended to be taken at the college senior/first-year graduate level.

[Boeh84a] Abstract: In this experiment, seven software teams developed versions of the same small-size
(2000-4000 source instruction) application software product. Four teams used the Specifying approach. These
teams used the Prototyping approach.

The main results of the experiment were the following.
1. Prototyping yielded products with roughly equivalent performance, but with about 40 percent less code and 45
percent less effort.

2. The prototyped products rated somewhat lower on functionality and robustness, but higher on ease of use and
ease of learning.

3. Specifying produced more coherent designs and software that was easier to integrated.
The paper presents the experimental data supporting these and a number of additional conclusions.

[Boeh84b] Introduction: A major effort at improving productivity at TRW led to the creation of the software
productivity project, or SPP, in 1981. The major thrust of this project is the establishment of a software develop-
ment environment to support project activities; this environment is called the software productivity system, or
SPS. It involves a set of strategies, including the work environment; the evaluation and procurement of
hardware equipment; the provision for immediate access to computing resources through local area networks;
the building of an integrated set of tools to support the software development life cycle and all project personnel;
and a user support function to transfer new technology. All of these strategies are being accomplished incremen-
tally. The current architecture is Vax-based and uses the Unix operating system, a wideband local network, and a
set of software tools.

This article describes the steps that led to the creation of the SPP, summarizes the requirements analyses
on which the SPS is based, describes the components which make up the SPS, and presents our conclusions.

[Boeh86] Overview: The spiral model of software development and enhancement presented here provides a new
framework for guiding the software process. Its major distinguishing feature is that it creates a risk-driven
approach to the software process, rather than a strictly specification-driven or prototype-driven process. It
incorporates many of the strcwigths of other models, while resolving many of their difficulties.

This section presents a short historical background of software process models and the issues they
address. Section 2 summarizes the process steps involved in the spiral model. Section 3 illustrates the applica-
tion of the spiral model to a software project, using the TRW Software Productivity Project as an example. Sec-
tion 4 summarizes the primary advantages, challenges, and implications involved in using the spiral model, and
Section 5 presents the resulting conclusions.

[Boeh87] Summary: A candidate top 10 list of software metric relationships, in terms of their value in industrial
situations. Here they are, in rough priority order:
1. Finding and fixing a software problem after delivery is 100 times more expensive than finding and fixing it dur-
ing the requirements and early design phases.

2. You can compress a software development schedule up to 25 percent of nominal, but no more.
3. For every dollar you spend on software development you will spend two dollars on software maintenance.
4. Software development and maintenance costs are primarily a function of the number of source instructions in
the product.

5. Variations between people account for the biggest differences in software productivity.
6. The overall ratio of computer software to hardware costs has gone from 15:85 in 1955 to 85:15 in 1985, and it is

still growing.

204



August 9, 1989

* 7. Only about 15 percent of software product-development effort is devoted to programming.
8. Software systems and software products each typically cost three times as much per instruction to fully
develop as does an individual software program. Software-system products cost nine times as much.

9. Walkthroughs catch 60 percent of the errors.
10. Many software phenomena follow a Pareto distribution: 80 percent of the contribution comes from 20 per-
cent of the contributors. Some examples: 20 percent of the modules contribute 80 percent of the cost, and 20

• percent of the modules contribute 80 percent of the errors (not necessarily the same ones).

[BootS0] Abstract: The concept of abstract data types is extended to associate performance information with
each abstract data type representation. The resulting performance abstract data type contains a functional part
which described the functional properties of the data type and a performance part which describes the perfor-
mance characteristics of the data type. The performance part depends upon 1) the algorithms and data represen-

* tation selected to represent the data type, 2) the particular machine on which the software realization of the data
type is realized, and 3) the statistical properties of the actual data represented by the data objects involved in the
data type. Methods for determining the necessary information to specify the performance part of the representa-
tion are discussed.

[Boro72] Abstract- Some consequences of the Blum axioms for step counting functions are investigated. Com-
* plexity classes of recursive functions are introduced analogous to the Hartmanis-Stearns classes of recursive

sequences. Arbitrarily large "gaps" are shown to occur throughout any complexity hierarchy.

[Boug86] Abstract- [The authors] present a method and a tool for generating test sets from algebraic data type
specifications. [The authors] give formal definitions of the basic concepts required in our approach of functional
testing. Then [the authors] discuss the problem of testing algebraic data types implementations. This allows the

* introduction of additional hypotheses and thus the description of the method is based on logic programming.
Some limitations of PROLOG are discussed and two extensions are presented, METALOG and SLOG, which
allow good implementations of [the authors] method.

[Bowe79] Abbreviated Introduction: This article addresses the integration and test phase by surveying military
standards for software quality, proposed quality metrics, and techniques that evaluate the readiness of software

• for acceptance testing. Some of the techniques discussed, such as providing test result visibility to the customer,
test effectiveness, and regression testing, apply to any software life-cycle phase.

[BoweSO] Summary: A standard software error classification is viable based on experimental use of different
schemes on Hughes-Fullerton projects. Error classification schemes have proliferated independently due to
varied emphasis on depth of causal traceability and when error data was collected. A standard classification is

• proposed that can be applied to all phases of software development. It includes a major causal category for
design errors. Software error classification is a prerequisite for both feedback for error prevention and detec-
tion, and for prediction of residual errors in operational software.

[Bowe83] Abstract: Software metrics (or measurements) which are used to indicate and predict levels of
software quality were extended from previous research to include considerations for distributed computing sys-

* tems. Aspects of the products of software life-cycle activities which could affect the quality levels of software,
and metrics to measure them, were identified. Two new quality factors, survivability and expandability, were vali-
dated. A guidebook for Software Quality Measurement was produced to aid in setting quality goals, applying
metric measurements, and making quality level assessments. New metrics for interoperability and reusability
were also included in the guidebouk.

*J [BoweS5] Abbreviated Preface: The purpose of this contract was to (1) consolidate results of previous RADC
contracts dealing with software quality measurement, (2) enhance the software quality framework, and (3)
develop a methodology to enable a software acquisition manager to determine and specify software quality

205



August 9, 1989

factors requirements. We developed the methodology and framework elements to focus on an Air Force
software acquisition manager specifying quality requirements for embedded software that is part of a command
and control application. This methodology and most of the framework elements are generally useful for other
applications and different environments. The Final Technical Report consists of three volumes:

e Volume I, Specification of Software Quality Attributes - Final Report.
* Volume II, Specification of Software Quality Attributes - Software Quality Specification Guidebook.
e Volume III, Specification of Software Quality Attributes - Software Quality Evaluation Guidebook.

Volume I describes the results of research efforts conducted under this contract, including recommenda-
tions for integrating quality metrics technology into the Air Force software acquisition management process,
recommended changes to Air Force software acquisition documentation, and summaries of software quality
framework changes and specification methodology features.

Volumes II and II describe the methodology for using the quality metrics technology and include an over-
view of the software acquisition process using this technology and the quality framework. Volume II describes
methods for specifying software quality requirements and addresses the needs of the software acquisition
manager. Volume III describes methods for evaluating achieved quality levels of software products and describes
the needs of data collection and analysis personnel.

Volume II also describes procedures and techniques for specifying software quality requirements in terms
of quality factors and criteria. Factor interrelationships, relative costs to develop high quality levels, and an
example for a command and control application are described. Procedures for assessing compliance with speci-
fied requirements are included.

Volume M also describes procedures and techniques for evaluating achieved quality levels of software
products. Worksheets for collecting metric data by software life-cycle phase and scoresheets for scoring each
factor are provided in the appendices. Detailed metric questions on worksheets are nearly identical to questions
in the Software Evaluation Reports proposed as part of the STARS measurement data item descriptions.

[Boye75] Abstract: SELECT is an experimental system for assisting in the formal systematic debugging of pro-
grams. It is intended to be a compromise between an automated program proving system and the current ad hoc
debugging practice, and is similar to a system being developed by King et al of IBM2 . SELECT systematically
handles the paths of programs written in a LISP subset that includes arrays. For each execution path SELECT
returns simplified conditions on input variables that cause the path to be executed, and simplified symbolic
values for program variables at the path output. For conditions which form a system of linear equalities and ine-
qualities SELECT will return the input variable values that can serve as sample test data. The user can insert
constraint conditions, at any point in the program including the output, in the form of symbolically executable
assertions. These conditions can induce the system to select test data in user-specified regions. SELECT can also
determine if the path is correct with respect to an output assertion. We present four examples demonstrating the
various modes of system operation and their effectiveness in finding bugs. In some examples, SELECT was suc-
cessful in automatically finding useful test data. In others, user interaction was required in the form of output
assertions. SELECT appears to be a useful tool for rapidly revealing program errors, but for the future there is a
need to expand its expressive and deductive power.

[Boye79] Abbreviated Preface: This book is a user's guide to a computational logic. A "computational logic" is
a mathematical logic that is both oriented towards discussion of computation and mechanized so that proofs can
be checked by computation. The computational logic discussed in this handbook is that developed by Boyer and
Moore.

This handbook contains a precise and complete description of our logic and a detailed reference guide to
the associated mechanical theorem proving system. In addition, the handbook includes a primer for the logic as

2. IBM is a registered trademark of International Business Machines Corp.

206



August 9, 1989

* a functional programming language, an introduction to proofs in the logic, a primer for the mechanical theorem
prover, stylistic advice on how to use the logic and theorem prover effectively, and many examples.

The logic was last described completely in our book A Computational Logic, published in 1979. In the
eight years since [this book] was published, the logic and the theorem prover have changed. On two occasions we
changed the logic, both times concerned with the problem of axiomatizing an interpreter for the logic as a func-
tion in the logic but motivated by different applications.

• There have been two truly important changes to the theorem prover since 1979, neither of which has to do
with additions to the logic. One was the integration of a linear arithmetic decision procedure. The other was the
addition of a rather primitive facility permitting the user to give hints to the theorem prover.

The most important changes have occurred not in the logic or the code but it our understanding and use of
them. The most impressive number theoretic result proved in 1979 was the existence and uniqueness of prime
factorizations; it is now Gauss's law of quadratic reciprocity. The most impressive metamathematical result was

* the soundness and completeness of a propositional calculus decision procedure; it is now Gbidel's incomplete-
ness theorem. These results are not isolated peaks on a plain but just the highest ones in ranges explored with the
system.

[Boye8O] Abstract: This note discusses two theorem-proving questions that received substantial discussion dur-
ing the Workshop. It does not pretend to be a thorough or impartial summary of every significant theorem-prov-

* ing issue raised.

[Boye84a] Abstract: This article consists of three parts: a tutorial introduction to a computer program which
proves theorems by induction; a brief description of recent applications of that theorem-prover; and a discussion
of several nontechnical aspects of the problem of building automatic theorem-provers. The theorem-prover
described has proven theorems such as the uniqueness of prime factorisations, Fermat's theorem and the recur-

• sive unsolvability of the halting problem.

[Brang0] Abstract: Guidelines are given for program testing and verification to insure quality software for the
programmer working alone in a computing environment with limited resources. The emphasis is on verification
as an integral part of the software development. Guidance includes developing and planning testing as well as the
application of other verification techniques at each lifecycle stage. Relying upon neither automated tools or for-

* mal quality assurance support, the guidelines should be appropriate for applications programmers doing small
development projects.

[Brin73] Summary: A central problem in program design is to structure a large program such that it can be
tested systematically by the simplest possible techniques. This paper describes the method used to test the RC
4000 multiprogramming system. During testing, the system records all transitions of processes and messages

* between various queues. The test mechanism consists of fifty machine instructions centralized in two pro-
cedures. By using this mechanism in a series of carefully selected test cases, the system was made virtually error
free within a few weeks. The test procedure is illustrated by examples.

[Brin7g] Summary: This paper describes a systematic method for testing monitor modules which control pro-
cess interactions in concurrent programs. A monitor is tested by executing a concurrent program in which the
processes are synchronized by a clock to make the sequence of interactions reproducible. The method separates
the construction and implementation of test cases and makes the analysis of a concurrent experiment similar to
the analysis of a sequential program. The implementation of a test program is almost mechanical. The method,
which is illustrated by an example, has been successfully used to test a multicomputer network program written
in Concurrent Pascal.

* [Bringfl Abstract: Now that several Ada compilers and interpreters have been validated, increased attention is
being given to Ada Programming Support Environments and the tools needed for Ada program development.
This paper discusses the capabilities needed in an Ada debugger in light of the language's tasking constructs, and

207



August 9, 1989

presents the design for a debugger which operates in concert with a single-processor Ada interpreter. This
debugger design demonstrates the extensions to sequential debugging techniques that are necessary to handle
concurrency, and shows that significant debugging functionality can be provided even without the inclusion of
automatic error diagnosis methods. The issues considered here include isolation of effects and display of the full
dynamic execution status, both of which are essential to diagnosis of concurrent programs.

[BritSI] Conclusion: As we develop better tools for recording and compiling software designs and code, those
who think about and practice programming will take greater interest in the more obscure aspects of a program:
its intent, meaning, resilience, and developmental history. Although the problem of writing correct programs,
especially those embedded within large systems or products, remains largely unsolved in practice, the situation is
improving. We can use inspections to further the investigation into how correct programs are constructed.
Several such inspections will be carried out to determine their usefulness and refine their practice. The purpose
of incorporating correctness arguments into inspections is not to improve inspections, but to improve program-
ming. This is not a modest objective. Steps will necessarily be small.

[Broo75] Abbreviated Preface: In many ways, managing a large computer programming project is like managing
any other large undertaking-in more ways than most programmers believe. But in many other ways it is dif-
ferent-in more ways than most professional managers expect.

Managing OS/360 development was a very educational experience, albeit a very frustrating one. The team,
including F.M. Trapnell who succeeded [the author] as manager, has much to be proud of. The system contains
many excellencies in design and execution, and it has been successful in achieving widespread use. Certain ideas,
most noticeably device-independent input-output and external library management, were technical innovations
now widely copied. It is now quite reliable, reasonably efficient, and very versatile. The effort cannot be called
wholly successful, however. The flaws in design and execution pervade especially the control program, as dis-
tinguished from the language compilers. Furthermore, the product was late, it took more memory than planned,
the costs were several times the estimate, and it did not perform very well until several releases after the first.

After leaving IBM in 1965, [the author] began to analyze the OS/360 experience to see what management
and technical lessons were to be learned. In particular, [the author] wanted to explain the quite different manage-
ment experiences encountered in System/360 hardware development and OS/360 software development.

My own conclusions are embodied in the essays that follow, which are intended for professional program-
mers, professional managers, and especially professional managers of programmers.

Although written as separable essays, there is a central argument contained especially in Chapters 2-7.
Briefly, [the author] believe that large programming projects suffer management problems different in kind from
small ones, due to division of labor. [The author] believes the critical need to be the preservation of the concep-
tual integrity of the product itself. These chapters explore both the difficulties of achieving this unity and
methods for doing so. The later chapters explore other aspects of software engineering management.

[Broo80al Abstract: The application of behavioral or psychological techniques to the evaluation of program-
ming languages and techniques is an approach which has found increased applicability over the past decade. In
order to use this approach successfully, investigators must pay close attention to methodological issues, both in
order to insure the generalizability of their findings and to defend the quality of their work to researchers in other
fields. Three major areas of methodological concern, the selection of subjects, materials, and measures, are
reviewed. The first two of these areas continue to present major difficulties for this type of research.

[Broogl] Introduction: A statistical analysis was conducted of structured programming and programmer per-
formance, with productivity measured as lines of code per man-month. The study findings support the following
productivity hypotheses: (1) Increasing the complexity of programming projects tends to lower productivity. (2)
The use of structured programming results in increased productivity. (3) Structured programming technology has
the highest payoff for severely constrained complex projects, the improvement ranging from 200% to over 600%
as compared to similar projects using conventional technology. The study tends to rule out the possibility that the
following factors could be responsible for the higher productivity of projects using structured programming: (1)

208



August 9, 1989

• the application of structured programming only to less complex, less constrained projects that would be likely to
exhibit productivity anyway; (2) the assignment of more experienced programmers, who would probably exhibit
higher productivity, to projects using structured programming; and (3) a "code explosion" (an increase in the
number of lines of code produced due to the tabular format of structured programs).

[BropS7] Abstract: As Ada is introduced into new environments, both managers and developers need to under-
• stand the ways in which the decision to use Ada as the target language will affect the software development lifecy-

cle. The Flight Dynamics division at NASA Goddard Space Flight Center is involved in a study analyzing the
effects of Ada on the development of their software. This project is one of the first to use Ada in this environ-
ment. In the study, two teams are each developing satellite simulators from the same specifications, one in Ada
and one in FORTRAN, the standard language in this environment. This paper will address the lessons learned
during the design phase including the effect of specifications on Ada-oriented design, the importance of the

* documentation style for the chosen design method, and the effects of Ada-oriented design on the software
development lifecycle. It is hoped that the issues faced in this project will show more clearly what may be
expected in designing with Ada-oriented design methods.

[Brow72a] Abbreviated Introduction: From the point of the user, a reliable computer program is one which per-
forms satisfactorily according to the computer program's specifications. The ability to determine if a computer

i program does indeed satisfy its specifications is most often based upon accumulated experience in using the
software. This is due in part to general agreement that the quality of computer software increases as the software
is extensively used and failures are discovered and corrected. In keeping with this philosophy, increasing
emphasis has been placed on exhaustive testing computer programs as the principal means of assuring sufficient
quality.

Nevertheless, a significant problem which pervades all software development is a lack of knowledge as to
4 how much testing of a software system or component constitutes sufficient verification. As a result, we often lack

sufficient confidence that the software will continue to operate successfully for unanticipated combinations of
data in a real-world environment.

In recognition of the high cost and uncertainty of software verification, TRW Systems' Product Assurance
Office initiated a company-funded effort to improve upon current testing methodology. The result of the study,
experimentation, design and development thus far conducted comprises the TRW Product Assurance Confi-

• dence Evaluator (PACE) system, an evolving collection of automated tools which provide support in various
phases of software testing.

The initial PACE instance was the FLOW program to support test evaluation activities. FLOW monitors
statement usage during test execution, thus providing a basic evaluation of test effectiveness. In addition, FLOW
supports the test planning activity by indicating the unexercised code, and consequently, the additional tests
required for more comprehensive testing.

(Brow75] Abstract: This paper presents a formulation of a novel methodology for evaluation of testing in sup-
port of operational reliability assessment and prediction. The methodology features an incremental evaluation of
the representativeness of a set of development and validation test cases together with definition of additional test
cases to enhance those qualities.

If test cases are derived in typical fashion (i.e., to find and remove bugs, to investigate software perfor-
* mance under off-nominal conditions, to exercise structural elements and functional capabilities of the software,

and to demonstrate satisfaction of software requirements), then the complete set of test cases is not necessarily
representative of anticipated operational usage. The paper reports on initial research into formulation of valid
measures of testing representativeness.

Several techniques which permit specification of expected operational usage are described, and a tech-
nique for evaluating the correlation between actual testing accomplished and expected operational usage is

* defined. An unbiased estimator for operational usage reliability is proposed and justified as a function of a speci-
fied operational profile; confidence in the estimate is derived from a measure of the degree to which testing is
representative of expected operational application.

209



August 9, 1989

An experimental application of the techniques to a small program is provided as an illustration of the pro-
posed use of the methodology for operational software reliability estimation. The relationship between structural
exercise testing thoroughness and operational usage representativeness is discussed; the specification of a quanti-
fied reliability requirement and an explicit, required representativeness measure (or confidence) is identified as
integral to effective application of the proposed reliability testing methodology; efforts to extend, formalize and
generalize the methodology are described; and expected benefits, as well as potential problems and limitations
are identified.

(Brow7g] Abstract: FAST (Fortran Analysis System) implements a powerful set of analysis capabilities on For-
tran source language programs. Its implementation was accomplished through the integration of existing
software systems and by the use of modern language system development tools. The result is an order of magni-
tude reduction in effort of implementation coupled with a sizable increase in system capabilities. The use of a
general purpose, commercially available data management system as a data handler and data correlator is a dom-
inant factor in both reduction of effort of implementation and generation of additional power and flexibility in
the analysis capabilities for systematically qualified program analyses which is unique among existing program
analyzers. This capability should be particularly useful in the program maintenance environment.

[Brow89] Abstract: A probabilistic model is presented which determines the optimal number of software test
cases required in situations where the following can be estimated as independent parameters: 1) the cost per test,
2) the cost per error if undetected until field implementation, 3) the number of software executions over its life-
time, 4) the number of possible different executions, and 5) the number of faults embedded in the software. A
formula is derived by the use of calculus which is solved by approximation techniques. Tables of optimal number
of tests over a range of parameter values are presented to illustrate the results. The model serves as a basis to
crystallize further research efforts to improve the accuracy of input variable estimation.

[Brue&3] Abstract: This paper introduces a modified version of path expressions called Path Rules which can be
used as a debugging mechanism to monitor the dynamic behavior of a computation. Path rules have been imple-
mented in a remote symbolic debugger running on the Three Rivers Computer Corporation PERQ computer
under the Accent operating system.

[Brya0] Abstract- This paper discusses the application of software product assurance to actual on-going pro-
jects. Several facets of software product assurance are presented in terms of their application to real-life situa-
tions. The performance of product assurance usually enhances product integrity. This benefit is obtained to a
lesser or greater degree regardless of when product assurance is first introduced in a project.

[Bryk89] Preface. The purpose of IDA Memorandum M-496, Bibliography of Testing and Evaluation Reference
Material, is to present the reference material acquired in the course of developing IDA Paper P-2132, SDS Test-
ing and Evaluation: A Review of the State-of-the-Art in Software Testing and Evaluation With Recommended R&D
Tasks. This document was prepared for the Strategic Defense Initiative Organization (SDIO).

[Buck79] Abstract: The increasing criticality of software mandates a standard for software quality assurance
plans. Such a standard, developed by the Computer Society Software Engineering Standards Subcommittee,
appears here.

[Budd78a] Introduction: When testing software the major question which must always be addressed is "If a pro-
gram is correct for a finite number of test cases, can we assume it is correct in general." Test data which possess
this property is called Adequate test data, and, although adequate test data cannot in general be derived algo-
rithmically, several methods have recently emerged which allow one to gain confidence in one's test data ade-
quacy.

Program mutation is a radically new approach to determining test data adequacy which hold promise of
being a major breakthrough in the field of software testing. The concepts and philosophy of program mutation

210



August 9, 1989

• have been given elsewhere, the following will merely present a brief introduction to the ideas underlying the sys-
tem.

Unlike previous work, program mutation assumes that competent programmers will produce programs
which, if they are not correct, are "almost" correct. That is, if a program is not correct it is a "mutant" - it
differs from a correct program by simple errors. Assuming this natural premise, a program P which is correct on
test data T is subjected to a series of mutant operators to produce mutant programs which differ from P in very

• simple ways. The mutants are then executed on T. If all mutants give incorrect results then it is very likely that P
is correct (i.e., T is adequate). On the other hand, if some mutants are correct on T then either: (1) the mutants
are equivalent to P, or (2) the test data T is inadequate. In the latter case, T must be augmented by examining the
non-equivalent mutants which are correct on T: a procedure which forces close examination of P with respect to
the mutants.

At first glance it would appear that if T is determined adequate by mutation analysis, then P might still
* contain some complex errors which are not explicitly mutants of P. To this end there is a COUPLING EFFECT

which states that test data in which all simple mutants fail is so sensitive that it is highly likely that all complex
mutants must also fail.

[Budd8Oa] Abbreviated Introduction: In [this paper] we will present two types of theoretical results concerning
the questions: 1) If a program P is written by a competent programmer and if P passes the 0 mutant test with test

• data D, does the function actually computed by P equal the partial recursive function that specifies the intended
behavior of P? 2) (Coupling Effect): If P passes the subset of a mutant test with data D, does P pass the 0 mutant
test with data D? General results are expressed in terms of properties of the language class L, and specific results
for a class of decision table programs and for a subset of LISP. Portions of the work on decision tables and LISP
have appeared elsewhere, but the presentations given here are both simpler and more unified. In the final section
we present a system for applying program mutation to FORTRAN and we introduce a new type of software

* experiment, called a "beat the system" experiment, for evaluating how well our system approximates an affirma-
tive response to the program mutation questions.

[BuddS0d] Abstract: We consider two interpretations for what it means for test data to demonstrate correctness.
For each interpretation, we examine under what conditions data sufficient to demonstrate correctness exists, and
whether it can be automatically detected and/or generated. We establish the relation between these questions and

* the problem of deciding equivalence of two programs.

[Budd85] Abstract: Both theoretical and empirical arguments suggest that specifications and implementations
are equally important sources of information for generating test cases. Nevertheless, the majority of test genera-
tion procedures described in the literature deal only with the program source, ignoring specifications. In this
paper we outline a procedure for measuring test case effectiveness using specifications given in predicate calculus

* form. This method is similar to the mutation analysis method of testing programs.

[Bunc0] Abstract: An approach to analyzing the interaction of hardware failure modes with computer software
is described. The approach considers the software requirements, not the design or implementation and is an
extension of the FMEA (failure mode and effects analysis) discipline. It has been developed to address the needs
of the Space Shuttle Orbiter Project and is being applied to Orbiter subsystems. The basic approach is applicable

• to other hardware/software systems, and guidelines for its application are presented.

[Burs74] Abstract: A method of proving facts about programs is presented in an informal manner, in the hope
that it will have some intuitive appeal to programmers. It deriv .s essentially from Manna's method, but it is influ-
enced by the recent idea of "executing" a program symbolically as part of the proof process. Some examples are
worked out, including one to invert a permutation in situ and one to traverse a tree; the latter seems to come out

* rather easily this way. Finally this technique and the Floyd one are related to a system of modal logic.

[Cai79] Comment: In his article "A Controlled Experiment in Program Testing and Code

211



August 9, 1989

Walkthroughs/Inspections," Glenford J. Myers states that the overall results showing people's ability to find
errors are rather dismal. Dr. Myers does not indicate whether any of the 59 participants complained about the
program's style and the tricks it employs. It this were not the case, then not only [is the author] not surprised at
the result, but [he is] also quite shocked - it would show the participants' meek acceptance of tricks and bad style
as "normal."

One may wonder if it is not less painful to sit down and code the program anew and more reliably in the
time spent on tracking down the errors. That experiment has not been done, and it would be interesting to know
its results.

It is also not obvious whether some of the errors listed ought not, in fact, to be classified as omissions
from the specification; for example, from the specification it follows that a tab character is not a break character,
and nowhere is there any mention of how many printing positions an output line may occupy. Clearly the fact that
a tab is a single character and the fact that it occupies a number of printing positions on a certain device are two
different things. A formatting program is especially sensitive to the character set and to the effects characters
have on the output device.

[Camp79] Abstract: This paper describes the enhancement of Pascal to specify synchronization between con-
current processes by path expressions. The extended language is being used to gain experience in the design and
construction of practical real-time systems and operating systems. An encapsulation mechanism is included to
synchronize all accesses to encapsulate data. A network message transfer system is presented as an extended
example of the use of path expressions.

[Card86a] Abstract Software engineers have developed a large body of software design theory and folklore,
much of which has never been validated. This paper reports the results of an empirical study of software design
practices in one specific environment. The practices examined affect module size, module strength, data cou-
pling, descendant span, unreferenced variables, and software reuse. Measures characteristic of these practices
were extracted from 887 Fortran modules developed for five flight dynamics software projects monitored by the
Software Engineering Laboratory. The relationship of these measures to cost and fault rate was analyzed using a
contingency table procedure. The results show that some recommended design practices, despite their intuitive
appeal are ineffective in this environment, whereas others are very effective.

[Card87a] Abstract: The theory of software science proposed by Halstead appears to provide a comprehensive
model of the program construction process. Although software science has been widely criticized on theoretical
grounds, its measures continue to be used because of apparently strong empirical support. This study reexam-
ined one basic relationship proposed by the theory: that between estimated and actual program length. The
results show that the apparent agreement between these quantities is a mathematic artifact. Analyses of both
Halstead's own data and another larger dataset confirm this conclusion. Software science has neither a firm
theoretical nor empirical foundation.

[CardX'b] Abstract: Many new software development practices, tools, and techniques have been introduced in
recent years. Few, however, have been empirically evaluated. The objectives of this study were to measure tech-
nology use in a production environment, develop a statistical model for evaluating the effectiveness of technolo-
gies, and evaluate the effects of some specific technologies on productivity and reliability. A carefully matched
sample of 22 projects from the Software Engineering Laboratory database was studied using an
analysis-of-covariance procedure. Limited use of the technologies considered in the analysis produced approxi-
mately a 30 percent increase in software reliability. These technologies did not demonstrate any direct effect on
development productivity.

[Care77] Abstract: This paper presents a software testing and Quality Assurance technology based on a special
set of development methodologies. A specific example employing a top-down design process is explored in depth
to demonstrate traceability from requirements to system test. The peripheral advantages of this technology are
also explored.

212



August 9, 1989

* [Carp7s] Abstract: DECA is a computer program which is use in conjunction with a top-down dominated
design methodology. The program organizes, validates, and produces a document depicting the design of a
software system. The use of DECA significantly enhances the quality of the software design. The quality of the
design in turn significantly benefits the quality of the implemented software system.

[Carv88] Abbreviation: One general approach to detecting synchronization errors, called static analysis, is to
* analyze (not execute) the program to derive an approximation of the feasibility set of a concurrent program. A

number of (static) analysis techniques have been developed for detecting synchronization errors. Generally,
these analysis techniques derive an approximation set which is the set of syntactically possible SYN-sequences;
such techniques are referred to as syntax-based synchronization analysis techniques.

We have developed a new approach to analyzing concurrent programs, which is to derive constraints on
the feasible SYN-sequences of a concurrent program according to the program's syntactic and semantic informa-

*t tion. These constraints, called feasibility constraints or (constraints if there is no ambiguity), show restrictions on
the ordering of synchronization events allowed by the program. By using feasibility constraints, we can obtain a
better approximation of the feasibility set of a concurrent program and improve the effectiveness of error detec-
tion by static analysis.

[Cava78] Abstract: Research in software metrics incorporated in a framework established for software quality
* measurement can potentially provide significant benefits to software quality assurance programs. The research

described has been conducted by General Electric Company for the Air Force Systems Command Rome Air
Development Center. The problems encountered defining software quality and the approach taken to establish a
framework for the measurement of software quality are described in this paper.

[Cha88] Abstract: MURPHY is a language-independent, experimental methodology for building safety-critical,
* real time software, which wil include an integrated tnon set. Using Ada as an example, this paper presents a tech-

nique for verifying the safety of complex, real-tuae software using Software Fault Tree Analysis. The templates
for Ada are presented along with an exampie of applying the technique to an Ada program. The tools in the
MURPHY tool set to aid in this type of analysis are described.

[Chan73] Abstract: The hotion of a program structure has inspired several authors to describe techniques for
* producing programs that have "good" structure. These techniques, however, do not include definitions for pro-

gram structure or good structure. It is simple asserted that programs produced using these techniques either have
good structure or are more likely to have good structure than programs produced without using these techniques.
Instead, good structure has been characterized by certain properties. For example, the work of Dijkstra and
Parnas as well as the work of Simon and Alexander, concerning complexity in systems, suggest that programs or
a system of programs having good structure possess several properties.

[Chan84] Abstract: A programmer often writes and tests programs in a bottom-up manner, producing code
fragment and testing each fragment on a few examples to convince himself that the program works so far. These
intermediate tests are typically lost without full utilization. The objective of this project is to create a kind of
information retrieval system for test cases to remedy this situation. The "program testing assistant" described
herein is intended to aid BASIC-PLUS programmers during incremental program development. As in the pro-

* duction of any piece of software tool, issues of ease of use and user-friendliness are of main concern in our test-
ing assistant, along with software engineering considerations such as maintainability and reliability.

[ChangS] Introduction: The importance of software testing in high-reliability, real-time applications such as
telecommunications switching cannot be overemphasized. The software of these systems must meet high reliabil-
ity requirements while supporting a wide range of functions.

Requirements validation depends largely on the techniques used for specification, so the augmented finite-
state machine (FSM) model used to capture the external behavior of a real-time system is central to the environ-
ment. Therefore, this paper describes the validation techniques used and explores those aspects of the

• 213



August 9, 1989

specification model that facilitate test generation and execution using the behavioral description. We refer to this
theme as requirements modeling for testability.

Our thesis is: although an FSM or an augmented FSM maybe relatively limited in its ability to capture the
whole range of practical systems' behaviors, it is adequate for real-time systems in which sequential computa-
tions dominate. The FSM model should be preferred for applications in which high reliability is a primary con-
cern; expressive power can be traded off to ensure quality.

[Chm89] Abbreviated Introduction: System performance concerns most system analysts. To model perfor-
mance, you need a practical modeling method tailored to your environment. Existing modeling methods, which
can model either queuing behavior or asynchronous concurrent behavior, are inadequate for today's complex
systems. Many applications, including multiprocessor operating systems and distributed systems, require both
modeling capabilities.

We prescat an approach that uses an enhanced model based on two familiar modeling methods, the queu-
ing network and petri net. Our approach includes a graphical modeling tool, called TPQN, a textual specification
language, called TPQL, and a simulator, called TPQS.

TPQN can represent a system with both synchronization conditions and queuing behaviors, something
that cannot be modeled with either the petri net or queuing network alone. We illustrate TPQN's capabilities with
a performance analysis of a real-time multitasking scheduler that had been previously implemented on top of
SunOS on a Sun-3 workstation.

We have conducted some experiments with the TPQS simulator on a Sun-3. The results have helped us to
analyze the system's performance and validate our modeling tool.

[Chap79] Introduction: Intuition and common sense generally agree that software which appears simple is supe-
rior to software that appears complex, whatever the inherent complexity of the job. This position is in fact incor-
porated in the appraisal guidelines of structured design as "simplicity." But applying intuition and common
sense is not really sufficient to obtain consistently simple software. What is needed is objective, quantitative, reli-
able, valid and convenient ways of measuring either the complexity or the simplicity in software. To that end, a
number of proposals have been advanced.

This paper proposes an alternative measure of software complexity. The background of the measure is
briefly given, and its computational procedure described. Then it is applied to a given software design of a small
modular structured program. Afterward, the measure is compared with other alternative measures and with pro-
grammer ratings of the program. The paper closes with a discussion of the validity of the proposed measure of
software complexity.

[Chap82] Abstract: This paper describes the design and implementation of a program testing assistant which
aids a programmer in the definition, execution, and modification of test cases during incremental program
development. The testing assistant helps in the interactive definition of test cases and executes them automati-
cally when appropriate. It modifies test cases to preserve their usefulness when the program they test undergoes
certain types of design changes. The testing assistant acts as a fully integrated part of the programming environ-
ment and cooperates with existing programming tools such as a display editor, compiler, interpreter, and
debugger.

[Chea79] Abstract: Symbolic evaluation is a form of static program analysis in which symbolic expressions are
used to denote the values of program variables and computations. It does not require the user to specify which
path at a conditional branch to follow nor how many cycles of a loop to consider. Instead, a symbolic evaluator
uses conditional expressions to represent the uncertainty that arises from branching and develops and attempts
to solve recurrence relations that describe the behavior of loop variables.

We describe a symbolic evaluator for part of the EL1 language, with particular emphasis on techniques for
handling conditional data sharing patterns, the behavior of array variables, and the behavior of variables in loops
and during procedure calls. An expression simplifier, which is the heart of the system, is described in some
detail. Potential applications of the symbolic evaluator to problems in program validation, verification, and

214



August 9, 1989

* optimization are mentioned.

[Cheh81] Abstract: Four automated specification and verification environments are surveyed and compared:
HDM, FDM, Gypsy, and AFFIRM. The emphasis of the comparison is on the way these systems could be used
to prove security properties of an operating system design.

• [Chen78a] Abstract: This paper proposes a measure of program control complexity from an information theory
viewpoint. A set of empirical data showing programmer productivity as a function of program control complexity
is also presented. The data reveals a step-function-like contour to programmer productivity with increasing pro-
gram control complexity.

[Chen8l] Abstract: The development of quantitative measures to evaluate software development techniques is
necessary if we are going to develop appropriate methodologies for software production. Data is collected by the
Software Engineering Laboratory at NASA Goddard Space Flight Center on developing medium scale projects
of up to ten man years effort. In this study, cluster analysis was used on this collected data and several measures
are proposed. These measurements are objective, quantifiable, are the results of the methodology, and most
important, seem relevant.

* [Chen83] Abstract: Computations of distributed systems are extremely difficult to specify and verify using tradi-
tional techniques because the systems are inherently concurrent, asynchronous, and nondeterministic. Further-
more, computing nodes in a distributed system may be highly independent of each other, and the entire system
may lack an accurate global clock.

In this paper, we develop an event-based model to specify formally the behavior (the external view) and
the structure (the internal view) of distributed systems. Both control-related and data-related properties of distri-

* buted systems are specified using two fundamental relationships among events: the "precedes" relation,
representing time order; and the "enables" relations, representing causualty. No assumption about the existence
of a global clock is made in the specifications.

The specification technique has a rather wide range of applications. Examples from different classes of
distributed systems, include communication systems, process control systems, and a distributed prime number
generator, are used to demonstrate the power of the technique.

0 The correctness of a design can be proved before implementation by checking the consistency between
the behavior specification and the structure specification of a system. Both safety and liveness properties can be
specified and verified. Furthermore, since the specification technique defines the orthogonal properties of a sys-
tem separately, each of them can then be verified independently. Thus, the proof technique avoids the exponen-
tial state-explosion problem found in state-machine specification techniques.

I [CherfOal Abbreviated Introduction: As part of its current standards initiative, NBS is studying methods to
ensure the quality of both software procured by the government and software developed within the government.
In this paper we discuss the use of programming environments in developing and procuring quality software.

Since software quality cannot be assured using standard control methods, we propose a different
approach to ensure quality. This approach rests on the thesis that quality in the software product can be achieved
through control of the development process. Hence we propose the specification of software quality standards
not in terms of properties of the final software product but by specifying how the product should be developed.
The use of development tools and techniques with specific properties, e.g., the use of a design specification sys-
tem that includes data flow and consistency analysis, would be standard for government procured software. Pro-
perties of the processes for producing requirements, design, code, and testing would be specified with software
quality standards. In addition, the products produced at each development stage would be recorded in adherence
to documentation standards. The various pieces of the development process when incorporated into a single sys-

• tem would constitute a programming environment.

[CherSOb] Abstract: This paper is oriented towards those quality control problems peculiar to the procurement

* 215



August 9, 1989

of software. We discuss the deficiencies, and possible corrections, of several current methodologies. We propose
a set of software management and development tools for software quality assurance which enables better
contractor-developer communication during the development. The paper also includes a discussion of how
sophisticated programming environments can play a central role in procured software development and a discus-
sion of the associated research issues.

[Cher86] Abstract: Inductive inference, the automatic synthesis of programs, bears certain ostensible relation-
ships with program testing. For inductive inference, one must take a finite sample of the desired input/output
behavior of some program and produce (synthesize) an equivalent program. In the testing paradigm, one seeks a
finite sample for a function such that any program (in a given set) which computes something other than the
object function differs from the object function on the finite sample. In both cases, the finite sample embodies
sufficient information to isolate the desired program from all other possibilities. Techniques from inductive infer-
ence are used to investigate the theoretical limits of program testing and to provide techniques for effective pro-
gram testing.

[Cber87b] Abstract: Inductive inference, the automatic synthesis of programs, bears certain ostensible relation-
sh?s with program testing. For inductive inference, one must take a finite sample of the desired input/output
aehavior of some program and produce (synthesize) an equivalent program. In the testing paradigm, one seeks a
finite sample for a function such that any program (in a given set) which computes something other than the
object function differs from the object function on the finite sample. In both cases, the finite sample embodies
sufficient knowledge to isolate the desired program from all other possibilities. These relationships are investi-
gated and general recursion theoretic properties of testable sets of functions are exposed.

[Cher$8] Abstract: In this paper we take an abstract set based approach to testing. With this approach we are
able to discuss testing issues which are totally representation free. We develop a game theoretic approach to test-
ing and obtain some complexity results from this approach. We develop a notion of testing in the limit and dis-
cuss alternative definitions of testing.

[Ches77] Abstract: In this paper we introduce a software design methodology in which the design is constantly
being evaluated as it develops. Our thesis is that proper evaluation methods can aid a designer to make sure that
i) his specifications are consistent with his intuition (or requirements); ii) the quality of his design is reasonable.
Another way to view our methodology is that it helps a designer to build mock-up models of his design for evalua-
tion before actual construction begins.

Our approach is intended to fulfill three goals:
1. To allow the execution of designs as programs either symbolically or with a specification interpreter which
does the equivalent of a hand simulation.

2. To determine the performance characteristics of a design.
3. To evaluate the "quality" of a design and aid the designer in choosing alternative designs.

To reach these goals, we are developing a specification language for defining abstract models of a pro-
posed system. Another language is being developed to document the hierarchical design process. Finally, some
softwnre tools to aid our methodology are under development, including an interpreter and some performance
modeling systems.

[Choq86] Abstract: This paper deals with the generation of test data sets from algebraic data type specifications.
We base ourselves on a previous work where basic concepts required in our approach of functional testing were
defined and where a general method for generating test data sets was elaborated. Because of the similarity
between a conditional equation and between a clause in a logic program, logic programming appears to be well
adapted to implement this method and derive automatically test data from a specification. But some limitations
of standard logic programming interpreters need to be alleviated. Especially, a logic interpreter handling "con-
straints" is necessary to apply in their whole generality some hypotheses made on an implementation under test.
We study such an extension of a Prolog interpreter and explain the improvements effected. A simple example

216



0

August 9, 1989

* and a realistic one are given.

[Chow78] Abstrae We propose a method of testing the correctness of control structures that can be modeled
by a finite-state machine. Test results derived from the design are evaluated against the specification. No "execut-
able" prototype is required. The method is based on a result in automata theory and can be applied to software
testing. Its error-detecting capability is compared with that of other approaches. Application experience is sum-

* marized.

[Chri8l] Overview: This paper provides an overview of a new approach to the measurement of software. The
measurements are based on the count of operators and operands contained in a program. The measurement
methodologies are consistent across programming language barriers. Practical significance is discussed, and
areas are identified for additional research and validation.0
[Chry7S] Abstract: The purpose of this research was to examine the relationship between processing charac-
teristics of programs and experience characteristics of programmers and program development time. The ulti-
mate objective was to develop a technique for predicting the amount of time necessary to create a computer pro-
gram. The fifteen program characteristics hypothesized as being associated with an increase in programming
time required are objectively measurable from preprogramming specifications. The five programmer charac-

* teristics are experience-related and are also measurable before a programming task is begun. Nine program
characteristics emerged as major influences on program development time, each associated with increased pro-
gram development time. All five programmer characteristics were found to be related to reduced program
development time. A multiple regression equation which contained one programmer characteristic and four pro-
gram characteristics gave evidence of good predictive power for forecasting program development time.

* [ChurS61 Abstract: A procedure for evaluating a software prototype is presented. The need to assess the proto-
type itself arises from the use of prototyping to demonstrate the feasibility of a design or development strategy.
The assessment procedure can also be of use in deciding whether to evolve a prototype into a complete system.
The procedure consists of identifying evaluation criteria, defining alternative design approaches, and ranking the
alternatives according to the criteria.

• [Chus87] Abstract: A new coverage measure is proposed for efficient and effective software testing. The con-
ventional coverage measure for branch testing has such defects as overestimation of software quality and redun-
dant test data selection because all branches are treated equally. These problems can be avoided by paying atten-
tion to only those branches essential for path testing. That is, if one branch is executed whenever another partic-
ular branch is executed, the former branch is nonessential for path testing. This is because a path covering the
latter branch also covers the former branch. Branches other than such nonessential branches will be referred to

• as essential branches.
A testing tool for the new measure is developed in order to discriminate essential branches from

nonessential branches and to measure the coverage rate of these essential branches. By using this tool, it is ascer-
tained that the number of essential branches is about 60 percent of all branches.

As a result, the new measure reduces software quality overestimation because the accumulative curve of
the new measure to the number of executed test data is closer to linearity than that of the conventional measure.

* Another advantage is the prevention of redundant test data selection. It results from a 40 percent reduction in
the number of branches to be monitored and is confirmed by a reasonable algorithm for test data selection.
Furthermore, an efficient algorithm for redundancy elimination of a selected test data set is presented.

[Cini75] Contents: Chapters in this book address the following topics: Probability spaces and random variables;
Expectations and independence; Bernoulli processes and sums of independent random variables; Poisson

* processes; Markov chains; Limiting behavior and applications of Markov chains; Potentials, excessive func-
tions, and optimal stopping of Markov chains; Markov processes; Renewal theory; and Markov renewal theory.

217



August 9, 1989

[ClarI6b 'Abstract: This paper describes a system that attempts to generate test data for programs written in
ANSI Fortran. Given a path, the system symbolically executes the path and creates a set of constraints on the
program's input variables. If the set of constraints is linear, linear programming techniques are employed to
obtain a solution. A solution to the set of constraints is test data that will drive execution down the given path. If
it can be determined that the set of constraints is inconsistent, then the given path is shown to be nonexecutable.
To increase the chance of detecting some of the more common programming errors, artificial constraints are
temporarily created that simulate error conditions and then attempt is made to solve each augmented set of con-
straints. A symbolic representation of the program's output variables in terms of the program's input variables is
also created. The symbolic representation is in a human readable form the facilitates error detection as well as
being a possible aid in assertion generation and automatic program documentation.

[Clar7ga] Abstract: An overview of some of the current program validation techniques is given. Though a
variety of such techniques exist, it is now commonly agreed that program testing is an essential part of the pro-
gram development process. Two testing methodologies, functional and structural, are described and the case
made for combining both methodologies. Finally, a system that aids in structural testing is described.

[Clar83b] Abstract Program errors can be considered from two perspectives-cause and effect. The goal of pro-
gram testing is to detect errors by discovering their effects, while the goal of debugging is to search for the associ-
ated cause. In this paper, we explore ways in which some of the results of testing research can be applied to the
debugging process. In particular, computational testing and domain testing, which are two error-sensitive test
data selection strategies, are described. Ways in which these selection strategies can be used as debugging aids
are then discussed.

[Clar84] Abstract: Symbolic evaluation is a program analysis method that represents a program's computations
and domain by symbolic expressions. This method has been the foundation for much of the current research on
software testing. Most path selection and test data selection techniques, which are two of the primary concerns
of testing research, require the information provided by symbolic evaluation. Symbolic evaluation is also
employed by verification techniques. In addition to formal verification, several less rigorous verification tech-
niques utilize the symbolic expressions created by symbolic evaluation to certify program properties.

In this paper, the general symbolic evaluation method is explained. Several path selection and test data
selection techniques that utilize the information provided by symbolic evaluation are then described. Some
informal verification techniques, which also employ this information, are discussed. Finally, the partition
analysis method, which uses symbolic evaluation to combine both testing and verification is described.

[ClarS5a] Abstract: A number of path selection testing criteria have been proposed throughout the years.
Unfortunately, little work has been done on comparing these criteria. To determine what would be an effective
path selection criteria for revealing errors in programs, we have undertaken an evaluation of these criteria. This
paper reports on the results of our evaluation for those path selection criteria based on data flow relationships.
We show how these criteria relate to each other, thereby demonstrating some of their strengths and weaknesses.

[ClargSb] Abstract: Symbolic evaluation is a program analysis method that represents a program's computations
and domain by symbolic expressions. In this paper a general functional model of a program is presented first.
Then, three related methods of symbolic evaluation, which create this functional description from a program,
are described: path-dependent symbolic evaluation provides a representation of a specified path; dynamic sym-
bolic evaluation, which is more restrictive but less costly than path-dependent symbolic evaluation, is a data-
dependent method; and global symbolic evaluation, which is the most general yet most costly method, captures
the functional behavior of an entire program when successful. All three methods have been implemented in
experimental systems. Some of the major implementation concerns, which include effectively representing
loops, determining path feasibility, dealing with compound data structures, and handling routine invocations, are
explained. The remainder of the paper surveys the range of applications to which symbolic evaluation techniques
are being applied. The current and potential role of symbolic evaluation in verification, testing, debugging,

218



August 9, 1989

* optimization, and software development is explored.

[Clarg6a] Abstraet A number of path selection criteria have been proposed throughout the years. Unfor-
tunately, little work has been done on comparing these criteria. To determine what would be an effective path
selection criterion for revealing errors in programs, we have undertaken an evaluation of these criteria. In our
initial work, we compared three families of data flow path selection criteria and found that the strongest criteria

* in these families are incomparable and that, in two of the families, the strongest criteria fail to satisfy certain
minimal coverage requirements. In this paper, we provide an overview of our previous results. We then introduce
minor changes to the original criteria to assure that they each satisfy these minimal coverage requirements and
show how these modified criteria relate to each other. We conclude with a discussion on directions for future
work in this area.

* [Clarg6c] Abstract: Tools in a software development environment often manipulate objects that are instances of
attributed graphs. Moreover, an individual attributed-graph instance may be manipulated by several different
tools in an environment. During the prototyping phase in the design of a software development environment,
experimentation with tools may dictate changes to the high-level structure of an attributed graph as well as
changes to the graph's underlying representation. We have developed a meta-tool called GRAPHITE to facili-
tate both kinds of experimentation while minimizing the impact of that experimentation on the tools in the

* environment. This meta-tool and its potential contributions to an experimental effort to build an advanced Ada
software development environment are described in this paper.

[Clargia] Abstract: Current research indicates that software reliability needs to be achieved through the careful
integration of a number of diverse testing and analysis techniques. To address this need, the Team environment
has been designed to support the integration of and experimentation with an ever growing number of software

• testing and analysis tools. To achieve this flexibility, we exploit three design principles: component technology so
that common underlying functionality is recognized; generic realizations so that these common functions can be
instantiated as diversely as possible; and language independence so that tools can work on multiple languages,
even allowing some tools to be applicable to different phases of the software lifecycle. The result is an environ-
ment that contains building blocks for easily constructing and experimenting with new testing and analysis tech-
niques. Although the first prototype has just recently been implemented, we feel it demonstrates how modularity,

* genericity, and language independence further extensibility and integration.

[ClarS8b] Introduction: It is clear from recent research that to achieve highly reliable software a number of test-
ing techniques will need to be effectively automated and integrated together into a powerful testing system. To
achieve this goal we have been pursuing two research directions. One direction has been an investigation into
which testing techniques should be included in such a system. As part of this effort we have evaluated several dif-

* ferent techniques to understand their strengths and weaknesses [Clar85a, Rich86b]. This evaluation has led to
the preliminary development of a model for integrating testing techniques that appears quite promising for tack-
ling this difficult task.

The second research direction is the design and development of a testing system that can support the
integration of various testing techniques. Certainly the results of the first direction will have a major impact on
the second. Many of the basic underlying capabilities of various testing techniques are the same, however. In par-

• ticular, most rely upon symbolic or data flow information such as could be gathered by symbolic evaluation or
data flow analysis tools. Thus, we have been able to explore the design of a testing system that would provide
these basic testing capabilities as well as hold the potential for supporting the integration of more advanced tech-
niques as work on the first research direction has progressed.

This document reports on our progress to date on designing and developing the testing system. The next
section provides a high level description of the system architecture and gives a brief overview of each of the

* major components and their interaction. Then each ensuing section describes one component of the system and
the status of our work on that component. The appendices contain the actual design documents and user manu-
als. The research on evaluating and integrating advanced testing techniques is described in a separate document.

• 219



August 9, 1989

[CoebSO] Abbreviated Preface: Work on this book was started when [the authors] were members of the staff of
Iowa State College. At that time requests were received rather frequently from research workers. Some wanted
advice on the conduct of a specific experiment: others, who had decided to use one of the more complex designs
that have been discovered in recent years, asked for a plan or layout that could be followed during the experi-
mental operations. Although the logical principles governing the subject of experimentation are admirably
expounded in Fisher's book The Design of Experiments, these requests indicated a need for a different type of
book, one which would describe in some detail the most useful of the designs that have been developed, with
accompanying plans and an account of the experimental situations for which each design is most suitable.

[Coch3] Abbreviated Preface: This book was developed from a course of lectures on sample survey tech-
niques. The purpose of the book is to present a reasonably comprehensive account of sampling theory as it has
been developed for use in sample surveys, with sufficient illustrations to show how the theory is applied in prac-
tice, and with a supply of exercises to be worked by the student.

[Cohe77] Summary: This paper describes a language for studying the behaviour of programs, based upon the
data collected while these programs are executed by a computer. Besides being a useful tool in debugging, the
language is also valuable in the experimental evaluation of the complexity of algorithms, in studying the inter-
dependence of conditionals in a program and in determining the feasibility of transporting programs from one
machine to another. The program one wishes to analyse is written in an Algol 60-like language; when the program
is executed it automatically stores, in a data base, the information needed to answer general questions about
computational events which occurred during execution. This information consists (basically) of the list of labels
passed while the program is being executed, and the current values of the variables. Since the list of labels is
describable by regular expressions, these expressions can also be used to identify specific subparts of the list and
therefore allow access to the values of the variables. This constitutes the basis for the design of the inquiry
language. The user's questions are automatically answered by a processor which inspects the previously gen-
erated data base. The paper also presented examples of the use of the language and describes the implementation
of its processor.

[Cohe82] Abstract Prototypes are built for a variety of reasons. This paper offers an alternative to the use of a
prototype as a means of testing a specification (i.e. someone who "knows" what he wants compares his intuitive
understanding with the behavior of the prototype on particular test cases). The alternative is symbolic execution
of a formal specification, i.e. the specification is the prototype and its behavior determined by symbolic execu-
tion rather than the traditional "concrete" execution. This is an extension of the approach to rapid prototyping
based on operational specification and an alternative to testing prototypes whether manually constructed or
developed mechanically from such an operational specification. One advantage of this approach is that the pro-
totype need not be built at all. Of course, the formal specification must be written, but this is often necessary
anyway, especially if the specifier and implementor are different people. A more important advantage arising
from symbolic execution is that a large subset of the possible behaviors can be examined at once.

[Come79] Abstract: In this paper we:
1. discuss the need for quantitatively reproducible experiments in the study of top-down design;
2. propose the design and writing of tutorial papers as a suitably general and inexpensive vehicle;
3. suggest the software science parameters as appropriate metrics;
4. report two experiments validating the use of these metrics on outlines and prose; and
5. demonstrate that the experiments tended toward the same optimal modularity.

The last point appears to offer a quantitative approach to the estimation of the total length or volume (and
the mental effort required to produce it) from an early stage of the top-down design process. If results of these
experiments are validated elsewhere, then they will provide basic guidelines for the design process.

[CorS"7] Abstract: The Ada Software Repository (ASR) is a collection of Ada programs, software com-
ponents, information files, and educational material that resides on the computer known as SIMTEL20 on the

220



August 9, 1989

* Defense Data Network (DDN), a world-wide network of computer networks supported by the US Department
of Defense. This repository has been accessible to any host computer on the DDN since November 26, 1984, and
is available to any member of the Ada community in the United States and its allies.

The Ada Software Repository (ASR) is a free source of Ada programs and information. It serves two
roles: to promote the exchange and use of Ada programs (including reusable software components) and to pro-
mote Ada education (by providing information on items of interest to the Ada community and by providing

* examples of working, useful Ada programs). There is over 40M bytes of source code, documentation, and infor-
mation files in the ASR.

[Cont86] Abbreviated Preface: This book is intended to be used by both practitioners and students who are or
who expect to be involved in managing or producing software. It is our firm belief that software engineering in
general and software metrics in particular should be a part of the curriculum of all computer science programs.

Our goal is that, through this book, many readers will be introduced to the world of software metrics and
models. We also believe that this material will serve as an impetus to researchers in software engineering and
software developers to derive new metrics and models, and to gather data to help confirm the utility of new and
existing metrics and models.

[Cook82] Abstract: Software metrics, an area of software engineering, is concerned with various measurements
* of computer software and its development. Software metrics, its importance, some current areas of investiga-

tion, and problems are described. An annotated bibliography of work in software metrics is included.

[Cou183] Abstract: Halstead proposed a methodology for studying the process of programming known as
software science. This methodology merges theories from cognitive psychology with theories from computer sci-
ence. There is evidence that some of the assumptions of software science incorrectly apply the results of cogni-

* tive psychology studies. Halstead proposed theories relative to human memory models that appear to be without
support from psychologists. Other software scientists, however, report empirical evidence that may support
some of those theories. This anomaly places aspects of software science in a precarious position. The three con-
f cting issues discussed in this paper are 1) limitations of short-term memory and number of subroutine parame-
ters, 2) searches in human memory and programming effort, and 3) psychological time and programming time.

* [Cox8l] Abstract: In this paper [the author] describe the practical problems of designing a regression test set for
an existing mini-computer operating system. The ideal regression test would test each function with all possible
combinations of the options for each variation of the operating system. This is impractical if not impossible so
the alternative is to choose the individual cases for maximum coverage. To do that the system is viewed both
functionally and structurally and cases are selected for inclusion in the test set. The method of selecting the tests
is described along with the tools that will be needed to measure the coverage and to maintain the test set.

[Crai88a] Abstract: The Trusted Systems Group of I.P. Sharp Associates Limited has recently released a proto-
type formal verification system, called m-EVES. m-EVES consists of a new language, called m-Verdi, for imple-
menting and specifying software; a new logic (which has been proven sound); and a new theorem prover, called
m-NEVER, which integrates many state-of-the-art techniques drawn from the theorem proving literature.

In this paper, after a brief overview of the m-EVES system, an application of m-EVES to a proof of a non-
• trivial security property (non-interference) for a pedagogical computer system (the Low Water Mark system) is

discussed. An example demonstrates some of the power and novel features of m-EVES. The paper concludes
with a comparison of the m-EVES solution with similar efforts using the Gypsy Verification Environment and the
Boyer-Moore theorem prover.

(CraIS8b] Abstract: This paper describes the development of a new tool for formally verifying software. The
* tool is called m-EVES and consists of a new language, called m-Verdi, for implementing and specifying software;

a new logic, which has been proven sound; and a new theorem prover, called m-NEVER, which integrates many
state-of-the-art techniques drawn from the theorem proving literature. Two simple examples are used to present

• 221



August 9, 1989

the fundamental ideas embodied within the system.

[Curr86] Abstract: The accepted approach to software development is to specify and design a product in
response to a requirements analysis and then to test the software selectively with cases perceived to be typical to
those requirements. In contrast it is possible to embed the software development and testing process within a
formal statistical design. In such a design, software testing can be used to make statistical inferences about the
reliability of the future operation of the software. This paper describes a procedure for certifying the reliability of
software before its release to users. The ingredients of this procedure are a life cycle of executable product incre-
ments, representative statistical testing, and a standard estimate of the MTF (mean time to failure) of the pro-
duct at the time of its release.

[Curt79a] Abstract: This experiment is the third in a series investigating characteristics of software which are
related to its psychological complexity. A major focus of this research has been to validate the use of software
complexity metrics for predicting programmer performance. In this experiment we improved experimental pro-
cedures which produced only modest results in the previous two studies. The experimental task required 54
experienced Fortran programmers to locate a single bug in each of three programs. Performance was measured
by the time to locate and successfully correct the bug. Much stronger results were obtained than in earlier stu-
dies. Halstead's E proved to be the best predictor of performance, followed by McCabe's V(G) and the number
of lines of code.

[CurtSl] Abstract: Three software complexity measures (Halstead's E, McCabe's V(G), and the length as meas-
ured by number of statements) were compared to programmer performance on two software maintenance tasks.
In an experiment on understanding, length and V(G) correlated with the percent of statements correctly
recalled. In an experiment on modification, most significant correlations were obtained with metrics computed
on modified rather than unmodified code. All three metrics correlated with both the accuracy of the modification
and the time to completion. Relationships in both experiments occurred primarily in unstructured rather than
structured code, and in code with no comments. The metrics were also most predictive of performance for less
experienced programmers. Thus, these metrics appear to assess psychological complexity primarily where pro-
gramming practices do not provide assistance in understanding the code.

[DACS79b] Preface: The purpose of this document is to record, as accurately as is possible in a still-evolving
discipline, the terminology currently being used in the field of software engineering. We hope that the DACS
GLOSSARY will help to improve communication within the software engineering community and will also pro-
vide an impetus toward the sorely needed standardization of terminology.

This software engineering glossary is one of the products of the Data and Analysis Center for Software
(DACS). The DACS will continue to update this glossary to reflect current term usage. Suggestions, comments,
and critiques are welcome.

[DOD88a] Forward:
1. This standard establishes uniform requirements for software development that are applicable throughout

the system life cycle. The requirements of this standard provide the basis for Government insight into a
contractor's software development, testing, and evaluation efforts.

2. This standard is not intended to specify or discourage the use of any particular software development
method. The contractor is responsible for selecting software development methods (for example, rapid
prototyping) that best support the achievement of contract requirements.

3. This standard, together with the other DOD and military documents referenced in Section 2, provides the
means for establishing, evaluating, and maintaining quality in software and associated documentation.

4. Data Item Descriptions (DIDs) applicable to this standard are listed in Section 6. These DIDs describe a
set of documents for recording the information required by this standard. Production of deliverable data
using automated techniques is encouraged.

222



August 9, 1989

• 5. Per DODD 5000.43, Acquisition Streamlining, this standard must be appropriately tailored by the program
manager to ensure that only cost-effective requirements are cited in defense solicitations and contracts.
Tailoring guidance can be found in DOD-HDBK-248, Guide for Application and Tailoring of Require-
ments for Defense Material Acquisitions.

[DODD86a] Abstract: The purpose of this Manual is to describe the format, content, and submission pro-
* cedures for Test and Evaluation Master Plans (TEMPS) of major defense acquisition programs. The TEMP is

the basic planning document for all test and evaluation (T&E) related to a particular system acquisition and is
used by OSD and all DoD Components in planning, reviewing, and approving T&E. The TEMP provides the
basis for all other detailed T&E planning documents and serves as an essential element of the Joint Resources
Management Board (JRMB) decision-making process outlined in DoD Instruction 5000.2, "Major System
Acquisition Procedures."

[DODD86b] Purpose: This Manual describes the procedures to be followed in preparing Test and Evaluation
Master Plans (TEMPs) for major defense acquisition programs, including those major (to include OSD desig-
nated) programs that are exempted from the Joint Resources Management Board (JRMB) process or when
JRMB authority has been delegated to the DoD Components.

• [DODDS7] Overview: This Manual describes procedures for preparing the software portion of the Test and
Evaluation Master Plan (TEMP). The Manual's objective is to establish a disciplined framework that will result
in software testing that is methodically planned, results oriented, and designed to produce meaningful evalua-
tions.

[DODS86] Abbreviateu !forward: This standard contains requirements for the development, documentation,
• and implementatio-, c' A software quality program. This program includes planning for and conducting evalua-

tions of the quality ot software, associated documentation, and related activities, and planning for and conduct-
ing the follow-up activities necessary to assure timely and effective resolution of problems.

This standard, together with other DOD and military specifications and standards governing software
developm-ent, configuration management, specification practices, project reviews and audits, and subcontractor
management, provide a means for achieving, determining, and maintaining quality in software and associated

• documentation. This standard incorporates the applicable requirements of MIL-STD-1520 and MIL-STD-1535.
This standard implements the policies of DODD 4155.1, Quality Program, and provides all of the neces-

sary elements of a comprehensive quality program applicable to software development and support. This stan-
dard interprets the requirements of MIL-Q-9858, Quality Program Requirements, for software and is to ue used
in conjunction with MIL-Q-9858 for system development and support projects.

* [Dahi72] Table of Contents: Notes on structured programming, correctness of proofs, validity of proofs. Notes
on data structuring, the concept of type, unstructured data types, recursive data structures, axiomatisation,
references. Hierarchical program structures, object classes, coroutines, list structures, program concatenation,
concept hierarchies, references.

[Daly77] Abstract: This paper describes four major aspects of software management: development statistics,
• development process, development objectives, and software maintenance. The control of both large and small

software projects is included in the analysis.

[Darr78] Abstract: Symbolic execution provides a basis for a program analysis tool that allows one to choose
intermediate points in a spectrum ranging between individual test runs and general correctness proofs. One can
perform a single "symbolic execution" of a program that is equivalent to a large (possibly unbounded) number of

* normal test runs. Not only can test results be checked by careful manual inspection, but if a machine interpret-
able specification is supplied, the results can be checked automatically. Furthermore, by varying the amount of
symbolic data and program specification introduced, one can move from a normal execution (no symbolic data)

• 223



August 9, 1989

to a symbolic execution that provides a proof of correctness.

[Davi77I Abstract: The paper considers informally the relationship between computer aided mathematical
proof, formal algebraic languages, computation with transcendental numbers, and proof by sampling.

[Davi82b] Abbreviated Introduction: There are at least four phases in the development of "correct" software:
- Understanding the problem. The program designer may work with intended users of the system to develop an

intuitive understanding of the problem and possible approaches to its solution.
- Formal specification. Once the designer knows intuitively how to solve the problem, the solution must be

specified unambiguously.
- Programming. An implementation of the specification is programmed.
- Verification. The implementation developed in step three is shown to satisfy the specification of step two.
There is a certain amount of testing and debugging that goes on at each of these stages until one is satisfied with
the current step and moves on to the next. Several verification techniques have been developed to assist in
accomplishing step four. However, even after a proof is completed we cannot claim to have a "correct" program,
only one that satisfies the given specification.

How does one "debug" a specification? We cannot hope to formally prove that a specification is "correct"
with respect to our intuition, but we can at least test it to see that it conforms to our intuition in specific cases.

[Davi83a] Preface: Theoretical computer science is the mathematical study of models of computation. As such,
it originated in the 1930s, well before the existence of modern computers, in the work of the logicians Church,
Goi :-el, Kleene, Post, and Turing. This early work has had a profound influence on the practical and theoretical
deviopment of computer science. Not only has the Turing-machine model proved basic for theory, but the work
of these pioneers presaged many aspects of computational practice that are now commonplace and whose intel-
lectual antecedents are typically unknown to users. Included among these are the existence in principle of all-
purpose (or universal) digital computers, the concept of a program as a list of instructions in a formal language,
the possibility of interpretive programs, the duality between software and hardware, and the representation of
languages by formal structures based on productions. While the spotlight in computer science has tended to fall
on the truly breathtaking technological advances that have been taking place, important work in the foundations
of the subject has continued as well. It is our purpose in writing this book to provide an introduction to the vari-
ous aspects of theoretical computer science for undergraduate and graduate students that is sufficiently
comprehensive that the professional literature of treatises and research papers will become accessible to our
readers.

We are dealing with a very young field that is still finding itself. Computer scientists have by no means
been unanimous in judging which parts of the subject will turn out to have enduring significance. In this situation,
fraught with peril for authors, we have attempted to select topics that have already achieved a polished classic
form, and that we believe will play an important role in future research.

[Dav183bI Introduction: We propose a definition of the notion of adequacy of software test data and discuss jus-
tification, difficulties, and properties of the notion. It is not the purpose of this paper to suggest a definite practi-
cally applicable criterion of test data adequacy. Rather we present a theoretical analysis which, it is believed,
gives insight into such questions as:
1. For a given program, what points must belong to a test set in order that it may be deemed adequate?
2. For a given program how many points must belong to an adequate test set?
3. What kind of approximation to "correctness" can be provided by the knowledge that a program has been
"adequately" tested?
We believe, in general, that an adequacy criterion should be invoked only after the test data fails to expose
errors. Clearly, as long as there is an element of the test set on which the program does not agree with the specifi-
cation, we know that the test data is still doing its job and that testing (and subsequent debugging) must continue.
Once the program does agree with the specification on all elements of a set of test data, we must decide whether
the testing phase can end, and hence we will need to invoke some kind of adequacy criterion.

224



August 9, 1989

* [DavglSa] Abstract: A study of the predictive value of a variety of syntax-based program complexity measures is
described. Experimentation with variants of new chunk-oriented measures showed that one should judiciously
select measurable software attributes as proper indicators of what one wishes to predict, rather than hoping for a
single, all purpose complexity measure. This study has shown that it is possible for particular complexity meas-
ures or other factors to serve as good predictors of some properties of program but not for others. For example,
a good predictor of construction time will not necessarily correlate well with the number of error occurrences.

* Halstead's effort measure (E) was found to be a better predictor than the other two nonchunk measures
we evaluated: McCabe's V(G) and lines of code, but at least one chunk measure predicted better than E in every
case.

[DFr85] Abstract: This work deals with issues of interactive debugging for the concurrent language ECSP. The
debugger matches a formal specification of the expected behavior. This specification can be given at different lev-

* els of abstraction. Control is returned to the user when an error is detected. The user can then modify the flow of
the computation and/or dynamically change the specification of the expected behavior. The debugger implemen-
tation is based on program transformation techniques.

[DeMi77] Abbreviated Introduction: Until very recently, research in software reliability was divided quite neatly
into two - usually warring - camps: methodologies with a mathematical basis and methodologies without such a

• basis. In the former view, "reliability" is identified with "correctness" and the principle tooi has been formal and
informal verification. In the latter view, "reliability" is taken to mean the ability to meet overall functional goals
to within some predefined limits. We have argued that the latter view holds a great deal of promise for further
development at both the practical and analytical levels. Howden proposes a first step in this direction by describ-
ing a method for "testing" a certain restricted class of programs whose behavior can - in a sense Howden makes
precise - be algebraicized. In this way, "testing" a program is reduced to an equivalence test, the major com-
ponents of which become
1. a combinatorial identification of "equivalent" structures;
2. an algebraic test

I -f 2'

* where fi, i = 1, 2 is a multivariable polynomial (multinomial) of degree specified by the program being con-
sidered.

We are inspired by Rabin and, less directly, by the many successes of Erd&s and Spencer to attempt a pro-
babilistic solution to (ii). Using these methods, we show that (ii) can be tested with probability of error E with
only o((gi)) evaluations of multinomials, where g is a slowly growing function of only e. In particular, 30 or so
evaluations should give sufficiently small probability of error for most practical situations.

[DeMi781 Abstract: In many cases tests of a program that uncover simple errors are also effective for uncovering
much more complex errors. This so called coupling effect can be used to save work during the testing process.

[DeM179a] Abstract: It is argued that formal verifications of programs, no matter how obtained, will not play the
same key role in the development of computer science and software engineering as proofs do in mathematics.

• Furthermore the absence of continuity, the inevitability of change, and the complexity of specification of signifi-
cantly many real programs make the formal verification process difficult to justify and manage. It is felt that ease
of formal verification should not dominate program language design.

[eMI87a] Abbreviated Preface: This book is an updated and edited version of the report of the Software Test
and Evaluation Project of the Secretary of Defense (Research and Engineering). The primary objective of STEP
was (and remains) the development of improved policy and guidance for the use by the U.S. Department of
Defense for the test and evaluation of computer software for so-called "mission-critical" applications.

[The book provides] state-of-the-art and state-of-the-practice overviews. These overviews contain brief

* 225



August 9, 1989

descriptions of major test methodologies, catalogs of automated tools to support them, essentially exhaustive
bibliographies, case studies of good and bad examples of software testing and exegeses of major standards.

[DeMi87b] Abbreviated Abstract- The Mothra environment is an integrated set of tools and interfaces that sup-
port the planning, definition, preparation, execution, analysis and evaluation of tests of software systems. The
support provided by Mothra is applicable from the earliest stages of software design and development through
the progressively later stages of system integration, acceptance testing, operation and maintenance. Mothra has
been designed to address [various] cost concerns. Two primary design criteria, in particular, are significant in this
regard. First, the Mothra interfaces-particularly user interfaces-are high-bandwidth. This allows us to present
more information during testing and retesting. Coupled with proper design and integration with familiar displays,
it should obviate the need for extensive training to use Mothra.

Secondly, the overall Mothra architecture imposes no a priori constraints on the size of the software sys-
tems that can be tested in the environment. The practical meaning of this criterion is that the same architecture is
able to service programs varying in size from individual modules of less than 102 source lines to fully integrated
systems of more than 10s lines. The human user-the tester-is able to apply comparable functions across a familiar
interface as the software being tested evolves in size and complexity by several orders of magnitude. In fact, the
only indicators of size or complexity that have ties to the Mothra architecture are the operating system cost
penalties and performance delays inherent in manipulating massive objects. All other costs and resource
demands are under the direct control of the tester.

An important mechanism for meeting these criteria is that Mothra is reconfigurable, allowing the integra-
tion of user and system tools with which the tester may already be familiar, and allowing the system to make use
of different underlying hardware architectures or different capabilities. We address this in Mothra by the use of
thematic tools for software testing. For example, programmers in modern development environments interact
increasing with an array of very powerful source language debuggers. Even though formal testing methodologies
and debugging are very different activities, the debugging theme can be used as a metaphor to carry the tester
from tool to tool as the software being tested evolves.

One Mothra system has been constructed using the AT&T Bell Labs built interactive bitmap display ter-
minal running under the control of a UNIX 3 window manager called Layers. The host environment is a modestly
configured VAX 11/780 running UNIX 4.3 BSD. Another version has been implemented on VAX stations run-
ning Ultrix4 1.2 and the X Window System. However, the architecture of Mothra encourages rehosting. Further-
more, explicit operations allow Mothra processes to spawn parallel and vectorized processes for execution by a
Cyber 205 (or any other powerful parallel machine.

[DeMI87c] Abstract: This paper presents a new technique for automatically generating test data. The method is
based on mutation analysis and uses constraints to specify test cases designed to find particular types of errors. A
prototype implementation has been used to effectively kill mutants in a mutation system. The technique also
combines the capabilities of previous test data generation methods. The paper includes an initial set of con-
straints and discusses some of the problems that must be solved in order to develop a complete implementation
of the technique.

(DeMlS7d] Abstract: Mothra is a software testing environment that supports mutation-based testing of software
systems. Mothra is interactive; it provides a high-bandwidth user interface to make software testing faster and
less painful. Mothra currently runs on a variety of systems under 4.3 BSD UNIX, UNIX System V, and
ULTRIX-32 1.2. This paper begins with a brief introduction to mutation analysis. We then take the reader on a
guided tour of Mothra, emphasizing how it interacts with the tester. We conclude with a short discussion of

3. UNIX is a registered trademark of AT&T

4. Ultrix is a registered trademark of Digital Equipment Corporation

226



August 9, 1989

* Mothra's internal design.

[DeMiSga] Abstract: Mothra is a software testing environment that supports mutation-based testing of software
systems. Mothra is interactive; it provides a high-bandwidth user interface to make software testing faster and
less painful. Mothra currently runs on a variety of systems under 4.3 BSD UNIX, UNIX System V, and
ULTRX-32 1.2. This paper begins with a brief introduction to mutation analysis. We then take the reader on a

* guided tour of Mothra, emphasizing how it interacts with the tester. Then we present with a short discussion of
Mothra's internal design. Next, we discuss some major problems with using mutation analysis and discuss possi-
ble solutions. We conclude by presenting a solution to one of these problem-a new method of automatically gen-
erating mutation-adequate test data.

[DeMIHab] Abstract: The purpose of this IDA Paper is to document the results of an analysis of software testing
* and verification technology conducted for the Ada Joint Program Office (AJPO) and the Rome Air Develop-

ment Center (RADC) by the Institute for Defense Analyses (IDA). The Paper presents a coordinated strategy
for meeting a critical technology goal of the U.S. Department of Defense - the development of computer
software for these systems upon which the Armed Forces can rely for the success of missions with extreme and
often life critical requirements.

* [DeRe76] Abstract: We distinguish the activity of writing large programs from that of writing small ones. By
large programs we mean systems consisting of many small programs (modules), usually written by different peo-
ple.

We need languages for programming-in-the-small, i.e., languages not unlike the common programming
languages of today, for writing modules. We also need a "module interconnection language" for knitting those
modules together into an integrated whole and for providing an overview that formally records the intent of the

* programmer(s) and that can be checked for consistency by a compiler.

[Dela8S] Abstract: Metrics are the quantification of environmental and performance factors to measure the
effectiveness of activities in the areas of resources, schedule, quality, and risk. Metrics provide both a prospec-
tive and retrospective measure of accomplishment. Retrospective data provides a baseline for the next project.
Prospective data support forecasting, planning, and control of on-going activities. The latter is obviously prefer-

* able.
This paper summarizes the types of metrics developed during the foundation phase of the Army

WWMCCS Information System (AWIS), and the methodology applied to achieve a selected subset of these
metrics during full scale development, which starts early in 1988 and is expected to last for five years.

[Denn78] Abstract: Queueing network models have proved to be cost effective tools for analyzing modern com-
puter systems. This tutorial paper presents the basic results using the operational approach, a framework which
allows the analyst to test whether each assumption is met in a given system. The early sections describe the
nature of queueing network models and their applications for calculating and predicting performance quantities.
The basic performance quantities - such as utilizations, mean queue lengths, and mean response times - are
defined, and operational relationships among them are derived. Following this, the concept of job flow balance is
introduced and use to study asymptotic throughputs and response times. The concepts of state transition bal-
ance, one-step behavior, and homogeneity are then used to relate the proportions of time that each system state
is occupied to the parameters of job demand and to device characteristics. Efficient methods for computing basic
performance quantities are also described. Finally the concept of decomposition is used to simplify analyses by
replacing subsystems with equivalent devices. All concepts are illustrated liberally with examples.

[DiMaSS] Abstract. This symbolic run-time debugger for Ada provides facilities for observing and manipulating
the execution of a monitored program, also for concurrent aspects. The debugger can be used interactively, and
also as a monitoring program to control the application. A feature of this project is the use of relational algebra
for defining compiler and kernel interfaces and for handling debugger information. The implementation is based

* 227



August 9, 1989

on an Ada task to interface with the debugging operator and a set of user-defined Ada monitoring tasks. A proto-
type of the debugger was completed as a part of ART, a relational translator and interpreter for Ada.

[DlJk76a] Table of Contents: Executional abstractions. The role of programming languages. States and their
characterization. The characterization of semantics. The semantic characterization of a programming language.
Two theorems. On the design of properly terminating constructs. Euclid's algorithm revised. The formal treat-
ment of some small examples. On nondeterminancy being bounded. An essay on the notion: "the scope of vari-
ables." Array variables. The linear search theorem. The problem of the next permutation. The problem of the
Dutch national flag. Updating a sequential file. Merging problems revisited. An exercise attributed to R.W.
Hamming. The pattern matching problem. Writing a number as the sum of two squares. The problem of the
smallest prime factor of a large number. The problem of the most isolated villages. The problem of the shortest
subspanning tree. Rem's algorithm for recording of equivalence classes. The problem of convex Hull in three
dimensions. Finding the maximal strong components in a directed graph. On manuals and implementations. In
retrospect.

(Dijk76b] Abbreviated Introduction: Reviewing recent experiences gained during the design and construction of
a multiprogramming system [the author] finds [himself] torn between two apparently conflicting conclusions.
Confining [himself] to the difficulties more or less mastered [the author] feels that such a job is (or at least should
be) rather easy; turning [the authors] attention to the remaining problems such a job strikes [the author] as cru-
elly difficult. The difficulties that have been overcome reasonably well are related to the reliability and the produ-
cibility of the system, the unsolved problems are related to the sequencing of the decisions in the design process
itself.

[The author] shall mainly describe where we feel that we have been successful. This choice has not been
motivated by reasons of advertisement for one's own achievements; it is more that a good knowledge of what-and
what little!-we can do successfully, seems a safe starting point for further efforts, safer at least than starting with a
long list of requirements without a careful analysis whether these requirements are compatible with each other.

[DilI88a] Abstract: There have been several efforts to use symbolic execution to test and analyze concurrent pro-
grams. Recently proof systems have also emerged for concurrent programs and for the Ada language in particu-
lar. This paper reports on an experience with developing two different approaches, which use symbolic execu-
tion, to prove partial correctness and general safety properties of Ada programs. One approach is based upon
interleaving the task components while the other is based upon verifying the tasks in isolation and then perform-
ing cooperation proofs. Both approaches extend past efforts by incorporating tasking proof rules into the sym-
bolic executor allowing Ada programs with tasking to be formally verified.

The limitations of each approach are presented, along with each approach's advantages and disadvan-
tages. In particular, the difficulty of dealing with communication statements in a loop structure are addressed in
detail.

[Dil188b] Abstract: Symbolic execution has been used successfully with sequential programs for generating the
verification conditions required for correctness proofs. This paper shows how the symbolic execution model for
sequential programs can be extended to a tasking subset of Ada. The criteria for correct operation of a con-
current program include safety properties, such as mutual exclusion and freedom from deadlock. The extended
model, therefore, provides a basis for the automatic generation of verification conditions for proving general
safety properties of Ada tasking programs.

[Dil8Sc] Abstract: An approach to the design of concurrent software systems based on the constrained expres-
sion formalism is described. This formalism provides a rigorous conceptual model for the semantics of con-
current computations, thereby supporting analysis of important system properties as part of the design process.
This approach allows designers to use standard specification and design languages, rather than forcing them to
deal with the benefits of formal rigor without the associated pain of unnatural concepts or notations for its users.
The conceptual model of concurrency underlying the constrained expression formalism treats the collection of

228



August 9, 1989

* possible behaviors of a concurrent system as a set of sequences of events. The constrained expression formalism
provides a useful closed-form description of these sequences. Algorithms were developed for translating designs
expressed in a wide variety of notations into these constrained expression descriptions. A number of powerful
analysis techniques that can be applied to these descriptions have also been developed.

[DoerSS] Abstract This paper describes research conducted by the Software Engineering Laboratory (SEL) on
* the use of dynamic variables as a tool to monitor software development. The intent of the project is to identify

project independent measures which may be used in a management tool for monitoring software development.
This study examines several Fortran projects with similar profiles. The staff was experienced in developing these
types of projects. The projects developed serve similar functions. Because these projects are similar we believe
some underlying relationships exist that are invariant between the projects. These relationships, once well
defined, may be used to compare the development of different projects to determine whether they are evolving

0 the same way previous projects in this environment evolved.

[Down85a] Abstract: In this paper, an approach to the modeling of software testing is described. A major aim
of this approach is to allow the assessment of the effects of different testing (and debugging) strategies in dif-
ferent situations. It is shown how the techniques developed can be used to estimate, prior to the commencement
of testing, the optimum allocation of test effort for software which is to be nonuniformly executed in its opera-

* tional phase. In addition, the question of application of statistical models in cases where the data environment
undergoes changes is discussed. Finally, two models are presented for the assessment of the effects of imperfec-
tions in the debugging process.

[Down86] Abstract: This paper shows how a major 4and questionable) assumption underlying a previously
reported approach to the modeling of software testing can be relaxed in order to provide a more realistic model.

* Under the assumption of uniform execution the new model is found to perform only marginally better than the
previous model, indicating that the uniform execution assumption is a poor one. A nonuniform execution model,
also developed in the paper, is then shown to give very good performance on application to three sets of software
reliability data. The results obtained point the way to further developments which are likely to lead to models
whose performance is superior to that of the nonuniform execution model presented here. The paper also
devotes some attention to the problem of comparison of performance of different models and points out some

• difficulties in this area.

[Drap66] Abbreviated Preface: We have tried to bring together in this book a number of procedures developed
for regression problems in current use. Since our emphasis is on practical application, we have stated theoretical
results without proofs in many cases. While the text can be used without any computing equipment at all (or
perhaps with only a desk calculator), we have made use of computer printouts in some parts of the book. We

• have also provided various exercises, some of which can be solved easily "by hand," and other more extensive
ones for which use of an electronic computer would be helpful, though not absolutely essential.

This book provides a standard, basic course in multiple linear regression, but it also includes material that
either has not previously appeared in a textbook or, if it has appeared, is not generally available. For example,
Chapter 3 discusses the examination of residuals; Chapter 6 examines the methods employed as selection pro-
cedures in various types of regression programs; Chapter 8 discusses the planning of large regression studies; and

* Chapter 10 provides a basic introduction to the theory of nonlinear estimation.

[DukeS9J Abbreviated Introduction: Verifying and validating flight and mission-critical systems is a major
activity at the Dryden Flight Research Facility of the National Aeronautics and Space Administration's Ames
Research Center. The Ames-Dryden staff is responsible for flight safety for all vehicles flown at the Dryden facil-
ity, which is located in the desert north of Los Angeles. Because these systems are used in research aircraft, the

• V&V experience at Ames-Dryden is primarily with one-of-a-kind research systems on experimental vehicles.
The Ames-Dryden V&V methodology relies on testing, peer review, abstract models, simulations, and

validation by actual flight. This methodology also relies, in a large part, on engineering judgement and a tradition

• 229



August 9, 1989

that has evolved from experience with flight-critical systems that include the digital flight-control system on the
F-8, the three-eights-scale remotely piloted F-15, the highly maneuverable Himat, the Advanced-Fighter Tech-
nology Integration F-16, and the X-29 forward-swept-wing aircraft.

[Dncm81] Abstract- We present a method for generating test cases that can be used throughout the entire life
cycle of a program. This method uses attributed translation grammars to generate both inputs and outputs, which
can then be used either as is, in order to test the specifications, or in conjunction with automatic test drivers to
test an implementation against the specifications.

The grammar can generate test cases either randomly or systematically. The attributes are used to guide
the generation process, thereby avoiding the generation of many superfluous test cases. The grammar itself not
only drives the generation of test cases but also serves as a concise documentation of the test plan.

In this paper, we describe the test case generator, show how it works in typical examples, compare it with
related techniques, and discuss how it can be used in conjunction with various testing heuristics.

[Dunh83] Abbreviated Introduction: Software engineering can attain the status of scientific discipline only if it is
built upon a solid foundation of objective measurement. In fact, its maturity as a discipline will be reflected in the
degree to which measurement becomes a normal part of the software development and maintenance process.

Measurement is a difficult area to discuss as an isolated topic because it is fundamental to virtually all
aspects of software engineering and management. But this is precisely what makes it so important. In one article,
we cannot hope to cover all possible uses for measurement or all possible types of measures and models. We can,
however, provide a framework for discussion.

Measurement from the perspective of those involved in software development and maintenance has prac-
tical benefits as a management, development, and contractual tool. From the scientist's perspective, it is useful
in the development of quantitative models. This article reviews measurement and modeling activities: resource
expenditures, software and system reliability, system performance, and user performance. It then describes the
measurement activities in the STARS program, which are designed to further advance the technology of meas-
urement and to facilitate its widespread use.

[Dunh86] Digital computers are being used more frequently for process control applications in which the cost of
system failure is high. Consideration of the potentially life-threatening risk, resulting from the high degree of
functionality being ascribed to the software components of these systems, has stimulated the recommendation of
various designs for tolerating software faults. Such designs are not panaceas, for they still entail-as did the fault
intolerant designs they are superceding-an unknown probability of failure. The paper discusses four reliability
data gathering experiments which were conducted using a small sample of programs for two problems having
ultrareliability requirements, n-version programming for fault detection, and repetitive run modeling for failure
and fault rate estimation. The experimental results agree with those of Nagel and Skrivan in that the program
error rates suggest an approximate log-linear pattern and the individual faults occurred with significantly different
error rates. Additional analysis of the experimental data raises new questions concerning the phenomenon of
interacting faults. This phenomenon may provide one explanation for software reliability decay. The fourth
experiment underscored the difficulty in distinguishing between observations of deficiencies in the design of the
algorithm an4I observations of software faults for real-time process control software. These experiments are a
part of a program of serial experiments being pursued by the System Validation Methods of NASA-Langley
Research Center to find a means of credibly performing reliability evaluations of flight control software.

[Dun74] Abbreviated Preface: This book has been based on notes originally developed for a one-semester
course in analysis of variance, regression, and covariance. We had two general objectives in [it's development].
[To prepare] a self-contained textbook, [and one] that might be useful as a reference.

Chapters 1 through 4 provide the introduction necessary for studying analysis of variance and regression.
Chapters 5,6, and 7 deal with the fixed effects model analysis of variance Model I. Chapter 8 gives a brief intro-
duction to confounding, still with Model I. Chapter 9 presents variable effects models (Models H and IH).
Chapters 10, 11, and 12 introduce linear, multiple, and polynomial regression; Chapter 13 is concerned with

230



August 9, 1989

* covariance analysis. In Chapter 14 we discuss various techniques for screening data before analysis. We consider
this material so important that it must be gathered together into a single chapter and placed as conspicuously as
possible; clearly it cannot be the first chapter, and so it must be the last.

[DunaS2] Abbreviated Introduction: As we see it - and it is heartening to note that this is becoming the prevail-
ing view - software quality assurance is the mapping of the managerial precepts and design disciplines of quality
assurance onto the applicable management and technological space of software engineering. In the transfer, fam-
iliar quality assurance approaches to improving control and performance metamorphose into techniques and
tools different from those to which the quality community is accustomed. For its part, software approaches to
the production and maintenance of computer software are given new form as well as procedural efficiency. Yet
both communities, to their mutual advantage, can easily relate to this concept of software quality assurance.

Software quality assurance can be constructive, can avoid being a bureaucratic impediment, only by draw-
* ing upon fundamental concepts of both software engineering and quality assurance. It is the resulting amalgam

which we set out to describe and how many ingredients can be seen in the road map to the balance of the book,
which is provided toward the end of Chapter 1.

[Dunn"] Table of Contents: Introduction. To err is human; to find the bug, divine, an overview ot development
methodologies. Static methods. Requirements and design reviews, code reviews, static analysis, proof of

0 correctness. Dynamic testing. Matters of strategy, glass box testing, black box testing, analysis of defect and
failure data. Operational phase. Configuration control, maintenance and modification.

[Duns77] Abstract: One measure of programming complexity is the number of "program changes" that must be
made from the initial version of a program until it is in final form. A count of errors occurring in the debugging
process is an accepted measure of difficulty in programming. Using source modules from an experiment involv-
ing thirty-three subjects developing a moderately difficult program, it has been demonstrated that "program
changes" correlates well with the count of errors. In addition, subjects whose initial version of a program had
either a moderate average nesting depth and/or a moderate usage of global variables made fewer program
changes during development.

[Duns78b] Abstract: Programming complexity (the amount of difficulty in constructing a program) may depend
upon certain programming factors (choices of programming language features). Using program changes as a pro-
gramming complexity measure, previous research has identified five potential programming factors. This paper
suggests that subjects tend to use the same levels of these factors in two different programming languages sup-
porting the conjecture that these factors are elements of individual programming style. It also describes five
potential programming factors, and although each has intuitive appeal, only average procedure length was
related to programming complexity.

[Dura7T] Abstract: Program testing remains the major way in which program designers convince themselves of
the validity of their programs. Software reliability measures based on hardware reliability concepts have been
proposed, but adequate models of software reliability have not yet been developed. Investigators have recently
studied formal program testing concepts, with promising results, but have not seriously considered quantitative
measures of the "degree of correctness" of a program. We present models for determining, via testing, such pro-
babilistic measures of program correctness as the probability that a program will run correctly on randomly
chosen input data, confidence intervals on the number of errors remaining in a program, and the probability that
the program has been completely tested. We also introduce a procedure for enhancing correctness estimates by
quantifying the error reducing performance of the methods used to develop and debug a program.

[DuraSo] Abstract: The point of all validation techniques is to raise assurance about the program under study,
0 but no current methods can be realistically thought to give 100% assurance that a validated program will perform

correctly. There are currently no useful ways for quantifying how "well-validated" a program is. One measure of
program correctness is the proportion of elements in the program's input domain for which it fails to execute

* 231



August 9, 1989

correctly, since the proportion is zero i.f.f. the program is correct. This proportion can be estimated statistically
from the results of program tests and from prior subjective assessments of the program's correctness. Three
examples are presented of methods for determining s-confidence bounds on the failure proportion. It is shown
that there are reasonable conditions (for programs with a finite number of paths) for which ensuring the testing
of all paths does not give better assurance of program correctness.

[Dura8la] Abstract: Random testing of programs is usually (but not always) viewed as a worst case of program
testing. Test case generation that takes into account the program structure is usually preferred. Path testing is an
often proposed ideal for structural testing. Path testing is treated here as an instance of partition testing, where
by partition testing is meant any testing scheme which forces execution of at least one test case from each subset
of a partition of the input domain. Simulation results are presented which suggest that random testing may often
be more cost effective than partition testing schemes. Also, results of actual random testing experiments are
presented which confirm the viability of random testing as a useful validation tool.

[DuraSlb] Abstract- Mill's capture-recapture sampling method allows the estimation of the number of errors in
a program by randomly inserting known errors and then testing the program for both inserted and indigenous
errors. This correspondence shows how correct confidence limits and maximum likelihood estimates can be
obtained from the test results. Both fixed sample size testing and sequential testing are considered.

[DuvaSO] Abstract- This paper summarizes the results of a study to determine the data requirements for
software reliability modeling. The major assumptions of the models are presented along with a brief description
of their uses and the data needed to exercise the models. Methodologies for evaluating failure databases are
presented including a sample evaluation to determine the adequacy of the data to do comparisons across a wide
variety of projects and to determine if the database contains data elements as required by the various models.

[DyerSO] Abbreviated Introduction: In this paper on software development, the focus is on the blend of modem
software methods with established development practices. Reducing diversity, increasing visibility, and improv-
ing productivity in the development process are the principal means of intellectual control of development.
Improved product quality, product transportability, and product adaptability are longer-range goals.

The development methodology is defined in terms of practices that recognize the increased precision
introduced by modem design methods and that attempt to introduce the rigor of modem design into the methods
of software product development. Code management practices deal with the implementation of software and the
control of its release as a product. Integration engineering practices address plans for building software pro-
ducts.

[DyerSSa] Introduction: Testing to confirm that the implemented software (and its design) satisfies its intended
requirements is performed by someone other than the software developer. In this case, black box or function
testing is performed, not to verify that the code executes, but, more importantly, that it performs its intended
job. Independent testers are disassociated from the product design and are more objective in verifying that a pro-
duct operates as expected. This independent testing is commonly defined as the software verification step in the
software life cycle.

This chapter discusses an approach to software verification which downplays the current error detection
focus and promotes an operational testing focus. Functional testing from an operational use perspective demon-
strates not only that the software performs its job, but also that it does it in the planned user environments. The
emphasis on user perspective should help ensure the development of executing products which are also usable in
the field and whose field reliability (M'ITF) can be estimated during development.

To implement this approach, a statistical testing procedure is defined for function verification. The pro-
cedure uses the probability distributions of the product inputs and randomized sampling techniques to organize
test material. The randomization supports statistical inferences about the product's operational characteristics
and an estimation of its expected reliability (MTFF).

232



August 9, 1989

* [East72] Abstract: A method is presented for obtaining system confidence limits based on component test
results. The techniques consists of estimating the asymptotic variance of the maximum likelihood estimate of
system reliability, equating this to the estimate of the variance in binomial sampling, and solving for n and x, the
pseudo-numbers of system tests and successes. These are then substituted into the incomplete beta function and
confidence limits obtained in the usual way for binomial sampling.

* [Eekh8] Summary: Fundamental to the development of redundant software techniques (known as fault-tolerant
software) is an understanding of the impact of multiple joint occurrences of errors, referred to here as coincident
errors. A theoretical basis for the study of redundant software is developed which (1) provides a probabilistic
framework for empirically evaluating the effectiveness of the general (N-version) strategy when component ver-
sions are subject to coincident errors, and (2) permits an analytical study of the effects of these errors. The basic
assumptions of the model are: (i) independently designed software components are chosen in a random sample

* and (ii) in the user environment, the system is required to execute on a stationary input series. An intensity func-
tion, called the intensity of coincident errors, has a central role in the model. This function describes the propen-
sity of a population of programmers to introduce design faults in such a way that software components fail
together when executing in the user environment. The model is used to give conditions under which an N-version
system is a better strategy for reducing system failure probability than relying on a single version of software. In
addition, a condition which limits the effectiveness of a fault-tolerant strategy is studied, and we ask whether sys-

* tem failure probability varies monotonically with increasing N or whether an optimal choice of N exists.

[Ehre76] Abstract: The number of tests, which are necessary to prove the performance of a program, can be
reduced to an executable number, if the structure of the program is investigated. The analysis starts from the
memory dump. The program is first divided into those pieces, which are without labels or branchings. Then the
mappings of the program and their input and output areas are identified, further those areas which influence

* branchings. The next step states which ranges of values in the individual areas are distinguished by the program
and which junctions of areas are relevant. From this, the kind and the number of the necessary tests can be
derived. By means of observing their main variables loops are divided into simpler structures

The method has been applied for the verification of the user programs of the protection system of the 800
ME boiling water reactor plant in Brunsbuttel.

[EhrI7] Abstract: A number of time-domain software reliability models attempt to predict the growth of a sys-
tem's reliability during the system test phase of the development life cycle. In this paper we examine the results
of applying several types of Poisson-process models to the development of a large system for which system test
was performed in two parallel tracks, using different strategies for test data selection. We show that the reliability
growth predicted by non-homogeneous Poisson process models was found for only one of these testing stra-
tegies. These results imply that the applicability of a reliability growth model to a given software development

• project will depend on the nature of that project's system test process; they also raise theoretical questions about
the assumption of certain statistical properties for failure occurrence during testing.

[Ehne69] Abstract: Functional testing of operating systems is in transition from a predominantly imprecise art
to an increasingly precise science. The process that controls this testing is maturing correspondingly. The laissez-
faire approach is giving way to a disciplined approach characterized by rigorous definition of the test plan, sys-

* tematic control of the test effort, and objective quantitative measurement of the test coverage. This paper
describes just such a disciplined test control process, which is composed of five steps: 1) the survey, which estab-
lishes the intended extent of testing; 2) the identification, which creates a fist of functional variations eligible for
testing; 3) the appraisal, which ranks and subsets the eligible variations so that test resources can be directed a
those with the higher payoff; (4) the review, which calculates the test coverage of the test case library; and 5) the
monitor, which verifies attainment of the planned testing coverage. Throughout the test process, specification
testing is distinguished from program testing.

[Ehne7l] Abbreviated Abstract: This paper discusses some lessons [the author has] learned from testing large,

* 233



August 9, 1989

complex software systems. Actually, [the author] believe these lessons are equally applicable to small software
packages. While the large systems are admittedly particularly vulnerable to error, the small systems may have
many more users and thus the impact of error can be equally great.

[The author] will be addressing functional testing but not performance testing. Just as performance testing
involves space and time measures of system utilization, so functional testing involves spatial and temporal meas-
ures of system quality.

[En.73] Abstract: This paper describes a partially automated and disciplined process for testing the
equivalence between a functional specification and its implementation in software, firmware or hardware. The
semantic content of a specification expressed in a natural language is restated in boolean graph form as a logical
relationship between causes and effects. This cause-effect graph is processed to yield (1) a list of the functional
primitives, or variations, (2) the definition of a syntactically feasible test library which will efficiently validate
these variations, and (3) the faulty variations detectable by each test. The correspondence between functional
variations and decision table rules is also addressed.

[Elsh76b] Abstract- The source code for 120 production PL/I programs from several General Motors' commer-
cial computing installations has been collected. The programs have been scanned both manually and automati-
cally. Some data from the scanning process are presented and interpreted.

The programs are considered with respect to five attributes: 1) the size of the programs, 2) the readability
of the programs, 3) the complexity of the programs, 4) the discipline followed by the programmers, and 5) the
use of the programming language. Each areas is reviewed with pertinent data presented whenever it is available.

The report should be of interest to anyone involved with programming. The report helps explicitly iden-
tify some areas of programming in which a better job could be done. Although the programs analyzed are written
in PLI, those persons from installations using other languages, particularly Cobol, have indicated that the infor-
mation presented is typical.

[,lsh78c] Abstract: The October 1988 issue of SIGPLAN Notices carries an article that compares functionally
equivalent programs that differ in their internal structure. The basis for comparing the programs is a measure
called cyclomatic complexity whose value is the cyclomatic number of the graph that corresponds to the flow of
control of the program. One program is of particular interest since all of the well-structured versions of the pro-
gram that are discussed have a higher cyclomatic complexity than the unstructured version. In this paper another
wel-structured version of the program is presented for which the cyclomatic complexity is reduced to that of the
original unstructured version. In the process, some of the shortcomings of the cyclomatic number as a complex-
ity measure are revealed.

[Elsh84J Abstract: Twenty program complexity measures are studied with respect to how well they identify the
more complex procedures in a software system. The measures have been applied to three large sets of PL/I pro-
cedures representing three different types of applications. Four of these complexity measures have been found to
form a characteristic set. That is, when procedures are kept within reasonable bounds for the four selected meas-
ures, they will most likely be within reasonable bounds for all of the other measures. The measures and their
interpreted meanings are:

e length - the quantity of source code,
9 unique operators - the variety of programming language actions,
e data difficulty - the average number of variable appearances, and
e unique operands - the variety of constants and variables.

[Elsp72a] Abstract: The purpose of this paper is to point out the significant quantity of work in progress on tech-
niques that will enable programmers to prove their programs correct. This work has included: investigations in
the theory of program schemas or abstract programs; development of the art of the informal or manual proof of
correctness; and development of mechanical or semi-mechanical approaches to proving correctness. At present,
these mechanical approaches rely upon the availability of powerful theorem-provers, development of which is

234



August 9, 1989

0 being actively pursued. All of these technical areas are here surveyed in detail, and recommendations are made
concerning the direction of future research toward producing a semi-mechanical program verifier.

[EmdeSl] Abstracth Our goal is to obtain a specification of a relational data base as an abstract data type in such
a way that a computer program can simulate on a small scale the inteded use of the data base by generating for-
mal consequences of the specification (that is, without the existence of any implementation of the data base).

* There are two candidates for the specification formalism to be used: equations and the Horn clauses of logic.
Apart from a specification of a relational data base, the paper is devoted entirely to a comparison between

equations and clauses. We compare three aspects: mathematical semantics, the computational aspects, and
expressiveness. We propose to discard equations as a distinct formalism, but will regard them as a special case of
clauses. In principle we use as specification a clausal sentence containing literally the equations conventionally
used in data type specification, but we find certain slight departures conducive to clarity. As a program (to be exe-

* cuted by a PROLOG processor) we use another sentence obtained from the specification by a translation pro-
cess that guarantees correctness.

[Emer84] Abstract: The decomposition of a large program into modules can be guided by the use of a property
called cohesion, first described by Constantine. Cohesion is a quality that describes the degree to which the dif-
ferent actions performed by a module contribute to a unified function. However, this technique may be difficult
to apply due to the subjective nature of the definitions of levels of cohesion. In this paper a software metric is
defined and proposed as a discriminant for classifying modules according to their cohesion. Formal properties of
the metric are derived which can be used to set the metric value ranges for module classification.

[Endr7S] Abstracb Program errors detected during internal testing of the operating system DOS/VS form the
basis for an investigation of error distributions in system programs. Using a classification of the errors according
to various attributes, conclusions can be drawn concerning the possible causes of these errors. The information
thus obtained is applied in a discussion of the most effective methods for the detecting and prevention of errors.

[,rc8'] Abstract: Deployment of software controlled systems for providing communications services has grown
very rapidly. For example, a large proportion of telephone central offices are now Stored Program Control Sys-
tems (SPCS). In the course of this growth, it has been found that software, like hardware, is subject to various
kinds of problems throughout the software life cycle which may seriously affect the software cost, intended
delivery date, field performance, and inservice support. As a result, Bell Communications Research, Inc.
(BELLCORE) has proposed generic software reliability and quality requirements for telecommunications
software to meet typical telephone company needs. These requirements are intended to reduce software life
cycle costs by assuring that the software is designed, developed, tested, produced, installed, and supported in a
manner that is consistent with modern software quality concepts and practices.

[EvanS3a] Abstract: Several studies have appeared in recent years examining the sensitivity of standard software
complexity metrics to common rules of program structuring. In most cases, these studies found support for the
use of certain metrics as indices of program quality as represented by program structure. In the research
described in this paper, a broader analysis of metric sensitivity to the structuring rules was conducted. The con-
clusions reached differ greatly from those previously advocated in the literature; i.e., the metrics under con-

S sideration are shown to be relatively insensitive to program structure.

[Evan83b] Abbreviated Introduction: In their study of the psychological complexity of software, Curtis, et. al.,
remark that "no simple relationship between computational and psychological complexity is expected." In the
discussion below, we elaborate on this observation through a series of examples.

[Evan84a] Abstract: The complexity of control flow in a program is generally believed to be an important deter-
minant of the testability and the comprehensibility of the program. Several metrics have been proposed to meas-
ure this aspect of complexity, including the nesting level metric of Harrison and Magel and the cyclomatic

*l 235



August 9, 1989

complexity of McCabe. In this paper, the theory underlying cyclomatic complexity is analyzed and shown to be
poorly developed, and the nesting level metric is reconstructed from a simpler conceptual basis. In each case,
the emphasis is on the need to provide software metrics with an adequate theoretical foundation.

[EvanS4b] Abbreviated Preface: This book guides the software manager through the software testing morass.
The book will identify the individual components and test levels that must be integrated into a cohesive structure,
and outline how the testing program is to be planned and managed. It will identify tools, techniques, and metho-
dologies that must be incorporated if testing is to succeed.

The book offers solutions to the recurring management problems characteristic of software testing,
which invariably turn into crises during the later stages of a software project. Problems all center around a single
theme: The project planners have not adequately estimated what will occur during the testing period and cannot
control resources and activities during this critical implementation stage.

[Evan84c] Abstract: In a recent paper the author has presented evidence that, contrary to several studies in the
literature, certain software complexity metrics are not consistently sensitive to the application of program style
rules. In the present paper, these results are summarized and extended to two additional metrics. The new results
indicate both that current complexity metrics are improper indices of program quality, as measured by style, and
that many commonly used style rules do not address questions of minimizing interprocedural information flow
complexity.

[Faga76 Abstract: Substantial net improvements in programming quality and productivity have been obtained
through the use of formal inspections of design and of code. Improvements are made possible by a systematic
and efficient design and code verification process, with well-defined roles for inspection participants. The
manner in which inspection data is categorized and made suitable for process analysis is an important factor in
attaining the improvements. It is shown that by using inspection results, a mechanism for initial error reduction
followed by ever-improving error rates can be achieved.

[FagaS6] Abstract: This paper presents new studies and experiences that enhance the use of the inspection pro-
cess and improve its contribution to development of defect-free software on time and at lower costs. Examples
of benefits are cited followed by descriptions of the process and some methods of obtaining the enhanced
results.

Software inspection is a method of static testing to verify that software meets its requirements. It engages
the developers and others in a formal process of investigation that usually detects more defects in the product-
and at lower cost-than does machine testing. Users of the method report very significant improvements in quality
that are accompanied by lower development costs and greatly reduced maintenance efforts. Excellent results
have been obtained by small and large organizations in all aspects of new development as well as in maintenance.
There is some evidence that developers who participate in the inspection of their own product actually create
fewer defects in future work. Because inspections formalize the development process, productivity and quality
enhancing tools can be adopted more easily and rapidly.

[Fair75] Abstract: This paper describes an experimental program testing facility called the interactive semantic
modeling system (ISMS). The ISMS is designed to allow experimentation with a wide variety of tools for collect-
ing, analyzing, and displaying testing information. The design methodology is applicable to procedural program-
ming languages, and Algol 60 is being used as the vehicle for elaboration of design principles and implementation
techniques.

This paper discusses the ISMS design, and describes the various types of analysis and display tools being
developed to facilitate program testing. The ISM Preprocessor is described, and an example is presented to illus-
trate the data structures utilized in the ISMS.

[Fair79] Abstract: ALADDIN is an interactive facility for debugging and testing of assembly language pro-
grams. ALADDIN differs from traditional debuggers by allowing the user to specify breakpoint assertions,

236



S

August 9, 1989

0 rather than breakpoint locations. Assertions are logical relations among various components of the program
state. If an assertion becomes false during execution of the object program a breakpoint is executed and control
is passed to the user's terminal. ALADDIN can also be used as a testing tool to verify that asserted behavior
matches actual behavior under various sets of input data and test conditions.

[FarrS] Abstract: With the ever-increasing role that software is playing in the weapon systems, a great need has
arisen for tools that are useful in developing cost-effective software. An area of research has arisen over the last
10 years in providing a software manager quantitative statements about the reliability of the software. Using this
quantitative measure, the manager can make a determination of when software testing should terminate and how
to best utilize testing personnel. This report discusses the various approaches that have been advocated for relia-
bility estimation. It reviews the various model assumptions, the estimates of reliability, the precision of those
estimates, and the data required for their implementation. A comparison is then made among some of these

• models based upon studies that have been done. General comments concerning software reliability implementa-
tion are discussed in the final section of the report.

[FarrS$] Abstract: The concept of software reliability and its measurement is receiving a lot of attention in the
software development community. With the ever increasing role that software is playing in today's and tornr-
row's society, software developers and users are asking: "Just how 'good' is the software?" and "how much test-
ing should be done before the software is released?" The software reliability methodology attempts to provide
quantitative measures to help answer these questions. Unfortunately, to arrive at these measures requires com-
plex numerical computations, usually requiring the assistance of a computer. A software reliability analysis tool
called the "Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS)" was
developed several years ago for this purpose. Originally, the tool was designed for a mainframe/mini computer
environment. This paper describes an adaptation of that tool for the personal computer (PC) and relates how it
differs from the one for larger computer systems,

The PC version of SMERFS includes several features which are illustrated in this paper, using as data
either time-between-error occurrence (wall clock or central processing unit) or error counts per-time-period.
These features are data input and data management, editing capability, data transformations, model fitting for
software reliability measurement, and features of the software that allow the user to determine the adequacy of fit
as well as aids in determining the best model. The current version of SMERFS has incorporated eight software
reliability models. These models include the following: John Musa's Execution Model, Goel's Non-homogene-
ous Poisson Models using both types of data, the Geometric Model, a Generalized Poisson Model,
Schneidewind's Model, and Brooks and Motley's Model.

[Feat89] Abstract: Constructing specifications of complex tasks is often a laborious activity in spite of the rich
* vocabulary provided by specification languages. An incremental approach to construction is proposed, with the

virtue of offering considerable opportunity for mechanized support. Following this approach one builds a specifi-
cation through a series of elaborations that incrementally adjust a simple initial specification. Elaborations per-
form both refinements, adding further detail, and adaptations, retracting over simplifications and tailoring
approximations to the specifics of the task. It is anticipated that the vast majority of elaborations can be con-
cisely described to a mechanism which will then perform them automatically. When elaborations are indepen-
dent, they can be applied in parallel, leading to diverging specifications which must later be recombined.

The approach is intended to facilitate comprehension and maintenance of specifications, as well as their
initial construction. The advantages of following this approach stem from the gradual nature of the elaboration
process, the separation of concerns through following independent elaborations in parallel, the simplicity of the
individual elaboration steps (the effects of each step are well delineated), and the availability of an explicit record
of construction.

[Feld&9] Abstract: The advent of high-resolution graphics workstations at reasonable cost offers great potential
in the development of high-level, graphics-oriented debugging tools. The advent of programming languages,
Ada, in particular, which support concurrency with high-level primitives, affords the opportunity to develop new

* 237



August 9, 1989

models of debugging for programs incorporating concurrent tasks. The marriage of graphics and concurrency-
oriented debugging can provide powerful tools indeed.

We have development a demonstration-quality graphics-assisted debugger for intertask communication in
Ada. Based on the static task-specification diagrams of Booch, the debugger animates the activity of a collection
of communicating tasks, and runs on a DEC GIGI terminal connected to a VAX 11-780 under TeleSoft's Ada
compiler.

The model has been subjected to empirical validation, using under-graduate students as experimental sub-
jects. Subjects were required to debug erroneous tasking programs using both the graphical debugger and a tex-
tual one.

[]Ferr771 Abstract: State machines provide a convenient and indispensable mathematical framework for defin-
ing precise specifications of complex software systems. Such specifications stand as pivotal elements between
requirements and designs, and permit the definition of three levels of correctness in software systems, namely 1)
interpretation correctness between requirements and specification, 2) program correctness between specifica-
tion and design, and 3) implementation correctness between design and programmed hardware. Formal tech-
niques-already exist for program correctness and implementation correctness. However, there is a need for for-
mal techniques for interpretation correctness; methods of semantics are proposed as a basis for such techniques.

[FetzS8] Abbreviated Introduction: The notion of program verification appears to trade upon an equivocation.
Algorithms, as logical structures, are appropriate subjects for deductive verification. Programs, as causal models
of those structures, are not. The success of program verification as a generally applicable and completely reliable
method for guaranteeing program performance is not even a theoretical possibility.

[Feue79aJ Abstract: It is no longer a surprise that the program maintenance dominates the total cost of a large
software system over its lifetime. In response to these costs, the emphasis in program design has largely shifted
from the time and space issues of machine efficiency to issues of clear and flexible program structures that can be
easily maintained.

The goal of this project is to identify measurable program properties that influence maintainability. More
precisely, we examine the effect of various program characteristics on the subsequent frequency and magnitude
of program errors.

[Fisc77] Abstract: The literature in the areas of software management and software engineering admit to a possi-
ble reduction in the reliability of software after modifications have been made. Validation of maintenance modifi-
cations is commonly referred to as retest, and has yet to be adequately resolved. The problem is how to effi-
ciently select previously run test cases to be rerun on the software to assure no degradation of reliability. This
paper develops several alternative retest philosophies and identifies a common operations research technique for
solution. Detailed examples show how 0-1 integer programming can identify a minimum number of previously
executed tests necessary to fully retest every affected program element at least once. Use of this model to deter-
mine proper selection of test cases can reduce the cost of software maintenance and increase confidence in the
reliability of the code.

[Fitz7ga] Abstract: During recent years, there have been many attempts to define and measure the "complex-
ity" of a computer program. Maurice Halstead has developed a theory that gives objective measures of software
complexity. Various studies and experiments have shown that the theory's predictions of the number of bugs in
programs and of the time required to implement a program are amazingly accurate. It is a promising theory
worthy of much more probing scientific investigation.

This paper reviews the theory, called "software science," and the evidence supporting it. A brief descrip-
tion of a related theory, called "software physics," is included.

[Fion77] Abstract: This thesis applies and extends mathematical program verification to systems programs. The
design methodology is based upon the use of abstract data types and the construction and verification of both

238



August 9, 1989

* specifications and implementations for them. The abstract data type is a means of modularization which encap-
sulates the representation of a data structure and the algorithms which operate directly upon it. The specification
technique appeals to various mathematical structures (e.g. sets and sequences) to describe an abstract state for
objects of a given type. The correctness of the formal specifications is cast in terms of the proof rule is given to
formulate the theorems necessary for proving the invariance of predicates across formal specifications. The
applicability of the methodology to operating systems is explored. It is found that a hierarchical decomposition is

* most amenable to verification, and that the implementation language used is a function of that hierarchy. The
example of a process dispatcher module of a hypothetical operating system is used to illustrate the process of
design, specification, implementation, and verification using the methodology. Various properties are proven of
the abstract specifications, including one representation of the concept of fair service. Programs are then written
for the specifications and their correctness is verified.

(flon7ga] Abstract: We present weakest pre-conditions which describe weak correctness, blocking, deadlock,
and starvation for nondeterministic programs. A procedure for converting parallel programs to nondeterministic
programs is described, and the correctness of various example parallel programs is treated in this manner.
Among these are a busy-wait mutual exclusion scheme, and the problem of the Five Dining Philosophers.

[Flonal] Abstract- We describe a formal theory of the total correctness of parallel programs, including such
* heretofore theoretically incomplete properties as safety from deadlock and starvation under fair-scheduling. We

present a sound and complete set of proof rules for the total correctness of parallel programs expressed in non-
deterministic form.

The proof of soundness and completeness is novel in that we show that the weakest pre-conditions for the
correctness criteria are actually fixed-points (least or greatest) of continuous functions over the complete lattice
of total predicates. We have obtained proof rule schemata which can universally be applied to least or greatest
fixed-points of continuous functions. Therefore, a system of proof rules is a priori sound and complete once it is
shown that certain weakest pre-conditions are extremum fixed-points. The relationship between true parallelism
and nondeterminism is also discussed.

[Form77] Abstract: In this article we introduce the problem of computer software reliability and discuss a pro-
babilistic model for describing the failure of software. We suggest a procedure for estimating the parameters of
the model and propose a stopping rule for debugging the software. We apply our procedure to some published
data on software failures.

[Form79] Abstract: This paper discusses certain stochastic aspects of the software reliability problem. First an
empirical stopping rule for debugging and testing computer software is discussed. Then some results are
presented on choosing a time interval for testing the hypothesis that a software system contains no errors, given

0 certain costs and risk constraints.

[Fosd76a] Abstract: The ways that the methods of data flow analysis can be applied to improve software reliabil-
ity are described. There is also a review of the basic terminology from graph theory and from analysis in global
program optimization. The notation of regular expressions is used to describe actions on data for sets of paths.
These expressions provide the basis of a classification scheme for data flow which represents patterns of data

• flow along paths within subprograms and along paths which cross subprogram boundaries. Fast algorithms, origi-
nally introduced for global optimization, are described and it is shown how they can be used to implement the
classification scheme. It is then shown how these same algorithms can also be used to detect the presence of data
flow anomalies which are symptomatic of programming errors. Finally, some characteristics of an experience
with Dave, a data flow analysis system embodying some of these ideas, are described.

[Fosd76b] Abstract: In an earlier paper, the authors have defined type 1 and type 2 data flow anomalies to be,
respectively, the reference to an undefined variable and the definition of a variable without subsequent reference.
It is not difficult to devise search techniques to detect such anomalies when the anomalous data flow is contained

* 239



August 9, 1989

in a single procedure. When the data flow crosses procedure boundaries, however, many difficulties may arise. In
this paper, we carefully define the conditions under which interprocedural anomalies occur. We also show how
algorithms currently used in global program optimization can easily be adapted to yield highly efficient algorithms
for the detection of such interprocedural anomalies.

[Fost8O] Abstract: A hardware failure analysis technique adapted to software yielded three rules for generating
test cases sensitive to code errors. These rules, and a procedure for generating these cases, are given with exam-
ples. Areas for further study are recommended.

[Fost83] Introduction: The subject paper uses the phrase "error-sensitive" and includes the [initial] ESTCA
paper in its references. The latter paper uses the same phrase to describe a different method. This comment
challenges the claim that domain t sting is a "more promising" error detection strategy. Figures in the subject
paper are referenced but not reproduced. Therefore the comment cannot be verified without that paper at hand.

[Fost84] Abstract: The usual approach to testing software with logic expressions considers that n variables can
realize 2^(2^2n) functions. Therefore, to distinguish one Boolean expression in n variables (a "correct" one)
from all others ("errors") 2^n tests are necessary.

[Fostg5] Abbreviated Introduction: This note revises and re-substantiates the original ESTCA rule [Fost8O] for
generating or evaluating test data for simple conditional or comparison expressions. Comments on other
methods are included.

The rules apply to the lowest program component - "variable operator variable-or-constant" expressions.
Clearly, if any part of any expression is incorrect, then so is the program. Rules developed in this continuing
study are intended to identify data that meets error sensitivity criteria for all expression types. Rules for logic
expressions and combinations of comparisons are in [Fost841.

[FranSO] Abstract: Discussed is a distributed system based on communication among disjoint processes, where
each process is capable of achieving a post-condition of its logic space in such a way that the conjunction of local
post-conditions implies a global post-condition of the whole system. The system is then augmented with extra
control communication in order to achieve distributed termination, without adding new channels of communica-
tion. The algorithm is applied to a problem of constructing a sorted partition.

[Fran85a] Abstract: This paper describes ASSET, a tool which uses information about a program's data flow to
aid in selecting test data for the program and to evaluate test data adequacy. ASSET is based on the family of
data flow test selection and test data adequacy criteria developed by Rapps and Weyuker. ASSET accepts as
input a program written in a subset of Pascal, a set of test data, and one of the data flow adequacy criteria and
indicates to what extent the criterion has been satisfied by the test data.

[Fran86] Abstract: Most test data adequacy criteria based upon path selection have the unfortunate property
that for some programs with unexecutable paths, no set of test data is adequate. In this paper we define a new
family of adequacy criteria, derived from the data flow testing criteria, which circumvent this problem by only
requiring the test data to exercise those definition-use associations which are executable. The inclusion relation-
ship among these criteria is explored.

[Frangg] Abstract: A test data adequacy criterion is a predicate which is used to determine whether a program
has been tested "enough." An adequacy criterion is applicable if for every program there exists a set of test data
for the program which satisfies the criterion. Most test data adequacy criteria based on path selection fail to
satisfy the applicability property because, for some programs with unexecutable paths, no adequate set of test
data exists. In this paper, we extend the definitions of the previously introduced family of data flow testing cri-
teria to apply to programs written in a large subset of Pascal. We then define a new family of adequacy criteria
called feasible data flow testing criteria, which are derived from the data flow testing criteria. The feasible data

240



August 9, 1989

* flow testing criteria circumvent the problem of nonapplicability of the data flow testing criteria by requiring the
test data to exercise only those definition-use associations which are executable. We show that there are signifi-
cant differences between the relationships among the feasible data flow testing criteria.

We also discuss a generalized notion of the executability of a path through a program unit. A script of a
testing session using our data flow testing tool, ASSET, is included in the Appendix.

[Ftjl77] Abstract. Verification is presented as a method of ensuring high reliability of software systems. Verifica-
tion consists of an early analysis of program requirements and design specifications, followed by extensive pro-
gram analysis and system/program execution testing. It is performed in parallel with software development by an
organization independent of the development group, with the objective of detecting conceptual and implementa-
tion errors before program acceptance. Software analysis and testing aids for cost-effectively automating routine
tasks are described. The results of several verification projects are discussed to illustrate common types of errors

* and techniques for their detection. Key aspects of verification planning are presented for projects that are
required to achieve highly reliable software.

[Gabo76] Abstract- In this paper we analyze the complexity of algorithms for two problems that arise in
automatic test path generation for programs: the problem of building a path through a specified set of program
statements and the problem of building a path which satisfies impossible-pairs restrictions on statement pairs.
These problems are both reduced to graph traversal problems. We give an efficient algorithm for the first, and
show that the second is NP-complete.

[Gaff79] Abstract. McCabe has shown that the complexity of a computer program may be defined as the
cyclomatic number of the graph theoretic representation of its control structure and that that number (less one)
is equal to the number of conditional jumps (J) in the structure. It can be shown that a range of values for this fig-
ure can be derived from an estimate of the number of inputs and outputs in a program, such as obtainable from
its specification. If o Inputs - - Outputs - N, then the least value of J (=J.-J) = N log 2 N. This figure is derived
from information theoretic arguments. It is noted to be equal to the least number of switches in a telephone
exchange and to the least number of operations in a sort. If we know that a program whose size is to be estimated
is expected to be similar to others in which the proportion of conditional jumps is "L," then the minimum
number of instructions would be equal to L*Ji,, while the more likely number would be L*J,,, where J. =

• N 2 . This formulation is compared with several of Halstead's formulas which can be used to estimate the size of a
program using estimates of the number of input/output parameters, the numbers of operators, and the language
level. Comparisons are made using the new "complexity"-based estimators, and those of Halstead.

[Gafflal Abstract: This paper describes some of the potential for applying software metrics to the management
of the software development process. It also considers some of the practical difficulties one typically faces in

0 evolving and validating a software metric. One difficulty is the collection of baseline data in the real world of
software production in which controlled experiments typically are not possible. The results of some recent quan-
titative 'metrics' investigations are presented and their practical implementations for software estimation and
control are cited. These investigations are thought to be representative of the process of evaluating software data
not obtained under 'controlled' conditions such as is typically the situation in the natural science laboratory.

• [Gaflilb] Abstract- The nature of "software quality" and some software metrics are defined and their relation-
ship to traditional software indicators such as "maintainability" and "reliability" are suggested. Recent work in
the field is summarized and an outlook for software metrics in quality assurance is provided. The material was
originally presented as a tutorial at the "ACM SIGMETRICS Workshop/Symposium of Measurement and
Evaluation of Software Quality" on March 25, 1981.

[Gaff]8J Abstract: Availability is a significant measure of software performance. A system's availability is a
function of the availability of its software component which is directly related to the number of errors remaining
in it at delivery, the latent error content. This paper presents a method for estimating the latent error content of

• 241



August 9, 1989

an element of software; this can be done commencing with data obtained during design and code inspections.
The availability of the software unit, then, is a function of the rate of discovery of these errors.

[Gal181] Abstract- In the second part of this work, the author formulates a new inductive assertion method
applying to the class of nondeterministic flowchart programs with recursive procedures studied in part 1. Using
results on unfolding proved in part 1, he proves that this method is sound and complete with a finite number of
assertions. He studies four notions of correctness: two notions of partial correctness (existential and universal)
and the corresponding notions of total correctness. He also formalizes two notions of extension and equivalence
(existential and universal) in the second-order predicate calculus.

[Gann75] Abstract- The language in which programs are written can have a substantial effect on their reliability.
This paper discusses the design of programming languages to enhance reliability. It presents several general
design principles, and then applies them to particular languages constructs. Since we can not logically prove the
validity of such design principles, empirical evidence is needed to support or discredit them. Gannon has per-
formed a major experiment to measure the effect of nine specific language-design decisions in one context.
Analysis of the frequency and persistence of errors shows that several decisions had a significant impact on relia-
bility.

[Gann76] Abstract: The goal of reliable programming is to minimize the number of errors in completed pro-
grams. The language in which programs are written can have a significant impact on the reliability of the pro-
gramming process.

One common language feature that appears in different forms in many programming languages is the data
type. Data types may be associated with operands in one of three ways: statically typed operands. Furthermore,
programmers trying to convert an operand from one type to another, who were forced to grapple with the
representation of the operand, committed errors that cast doubt upon the ability of programmers to write reli-
ably in a language which treats its operands as collections of bits.

This preliminary data suggests that a more detailed and controlled experiment will be required to enable
us to draw firm conclusions about the role of data types in reliable programming. A proposal for such an experi-
ment is described in the paper.

[Gann7T7] Abstract. The language in which programs are written can have a substantial effect on the reliability of
the resulting programs. This paper discusses an experiment that compares the programming reliability of sub-
jects using a statically typed language and a "typeless" language. Analysis of the number of errors and the
number of runs containing errors shows that, at least in one environment, the use of a statically typed language
can increase programming reliability. Detailed analysis of the errors made by the subjects in programming solu-
tions to reasonably small problems shows that the subjects had difficulty manipulating the representation of data.

[Gann79] Abstract.- Two software testing techniques-static analysis and dynamic path (branch) testing-are receiv-
ing a great deal of attention in the world of software engineering these days. However, empirical evidence of their
ability to detect errors is very limited, as is data concerning the resource investment their use requires. Research-
ers such as Goodenough and Howden have estimated or graded these testing methods, as well as such other tech-
niques as interface consistency, symbolic testing, and special values testing. However, this paper seeks to demon-
strate empirically the types of errors one can expect to uncover and to measure the engineering and computer
time which may be required by the two testing techniques for each class of errors during system-level testing.

[GannSO] Abbreviated Introduction: A series of articles have made the data type "traversable stack" something
of a cause celebre. At the University of Maryland we are constructing a system called DAISTS (Data Abstrac-
tion Implementation, Specification, and Testing System) for testing data abstraction implementations, and here
report how DAISTS fared on two traversable stack specifications. We concluded that subtle errors (by defini-
tion those undetected by an author in her or his own work) are sometimes easy to discover through testing, but
that other, more obvious mistakes may slip by tests.

242



August 9, 1989

0 [Ga=nnl] Abstract- A compiler-based system DAISTS that combinies a data-abstraction implementation
language (derived from the SIMULA class) with specification by algebraic axioms is described. The compiler,
presented with two independent syntactic objects in the axioms and implementing code, compiles a "program"
that consists of the former as test driver for the latter. Data points, in the form of expressions using the abstract
functions and constant values, are fed to this program to determine if the implementation and axioms agree.
Along the way, structural testing measures can be applied to both code and axioms to evaluate the test data.

* Although a successful test does not conclusively demonstrate the consistency of axioms and code, in practice the
tests are seldom successful, revealing errors. The advantage over conventional programming systems is three-
fold:
1. The presence of the axioms eliminates the need for a test oracle; only inputs need be supplied.
2. Testing is automated: a user writes axioms, implementation, and test points; the system writes the test drivers.
3. The results of tests are often surprising and helpful because it is difficult to get away with "trivial" tests: what is
not significant for the code is liable to be severe test of the axioms, and vice versa.

[Gann85] Abstract: Packages are one of the primary features of Ada. They can be used to group declarations or
subprograms or to create new encapsulated types. Metrics are presented which characterize the use of Ada pack-
ages, indicating where program structure may make changes difficult, and suggesting how the structure may be
improved. The use of such metrics should aid in the transition to, and better use of Ada. The metrics are applied
to examples of a ground-support satellite system.

[Gann86] Abstract: Modules allow programmers to group related data and/or procedures and to limit the
amount of information that is accessible to the rest of the program. Splitting a program into modules should
localize the effects of program changes to correct errors or to improve the implementation (i.e., making it more
robust or more efficient). In addition, since modules are usually self-contained, they can be reused from project
to project. The designers of Ada recognized three major uses for modules:
1. A named collection of declarations that mokes a group of types and variables available much like a Fortran
common block;

2. A group of related subprograms that provides a library facility;
3. An encapsulated data type that provides the names of the type and it operations, but hides the details of the
representation of objects of the type and implementation of the type's operations.

While the first two uses are familiar to many programmers, the third use is not supported by many commonly
used programming languages. Strong syntactic clues are available to help programmers decide what objects
comprise the first two kinds of modules (e.g., all types and constants, a collection of global variables, or a set of
utility routines), but fewer hints are available to aid in grouping objects in problem-oriented terms. Deciding
what objects to encapsulate in a system is a formidable challenge.

0 [Garc84] Abstract: In this paper we discuss the issues involved in debugging a distributed computing system. We
describe the major differences between debugging a distributed system and debugging a sequential program. We
suggest a methodology for distributed debugging, and we propose various tools or aids.

[Gatng1] Discussion of the software problem which delayed the first Shuttle orbital flight.

[Geig79] Abbreviated Introduction: The validation strategy presented here can be considered as a first step
toward proving the correct functioning of a real-time software system, in this case for an advanced computerized
nuclear reactor protection system. It may also serve as a guideline for the systematic validation and testing of
other safety oriented systems.

[Gel178] Abstract: Proofs of program correctness tend to be long and tedious, whereas testing, though useful in
detecting errors, usually does not guarantee correctness. This paper introduces a technique whereby test data
can be used in proving program correctness. In addition to simplifying the process of proving correctness, this
method simplifies the process of providing accurate specification for a program. The applicability of this

• 243



August 9, 1989

technique to procedures and recursive programs is demonstrated.

[Golp791 Introduction: Testing, as practiced today, is almost exclusively concerned with the verification of
presently-required function. The purpose of this note is to focus on future function, i.e. change, and to propose
that the concerns of testing be broadened to include maintainability. What follows is meant to clarify this propo-
sal and to suggest some maintenance testing methodologies in order to stimulate research.

(Ge1p88] Abbreviated Introduction: We can trace the evolution of software test engineering by examining
changes in the testing process model and the level of professionalism over the years. The current definition of a
good software testing practice involves some preventive methodology.

[Gerh76a] Abstract: Errors, inconsistencies, or confusing points are noted in a variety of published algorithms,
many of which are being used as examples in formulating or teaching principles of such modern programming
methodologies as formal specification, systematic construction, and correctness proving. Common properties of
these points of contention are abstracted. These properties are then used to pinpoint possible causes of the
errors and to formulate general guidelines which might help to avoid further errors. The common characteristic
of mathematical rigor and reasoning in these examples is noted, leading to some discussion about fallibility in
mathematics, and its relationship to fallibility in these programming methodologies. The overriding goal is to
cast a more realistic perspective on the methodologies, particularly with respect to older methodologies, such as
testing, and to provide constructive recommendations for their improvements.

[Gerh76bJ Abstract: Backtracking is a well-known technique for solving combinatorial problems. It is of interest
to programming methodologists because 1) correctness of backtracking programs may be difficult to ascertain
experimentally and 2) efficiency is often of paramount importance. This paper applies a programming methodol-
ogy, which we call control structure abstraction, to the backtracking technique. The value of control structure
abstraction in the context of correctness is that proofs of general properties of a class of programs with similar
control structures are separated from proofs of specific properties of individual programs of the class. In the
context of efficiency, it provides sufficient conditions for correctness of an initial program which may subse-
quently be improved for efficiency while preserving correctness.

The paper provides several abstract variations of backtracking programs, along with correctness state-
ments and assertions, and an overall parameterization of the backtracking technique to facilitate selection of the
appropriate variant abstraction for a concrete problem. The methodology is illustrated on the eight queens,
knight's tour, malicious secretary, and good sequences problems. Also discussed are the amount of work
involved in the control structure abstraction approach for this particular application area, its relationship to the
data structure abstraction method, and its possible application to other areas.

[Gerh8O] Abstract: AFFIRM is an experimental system for the algebraic specification and verification of
abstract data types and Pascal-like programs using these types. The heart of the system is a natural deduction
theorem prover for the interactive proof of verification conditions and properties of data types. Additional
features include tools for the analysis of algebraic specifications, verification of small programs, the specification
and partial proof of a large file updating module, and the proof of high level properties of protocols and security
kernels.

[Gerh4] Abstract: The goal of this paper was to model a specification language and its analyzer using axiomatic
methods derived from those applied previously to abstract data type and state transition specifications. The
models attempt to cover many interesting features of PSL/PSA, a widely used specification language and
analyzer for information systems. Simple properties expected to hold for actual PSL/PSA were formalized and
proved about some models, with assumptions about undefined parts. Both model formulation and property
proofs were performed within the AFFIRM Specification and Verification System. The results show (1) the
applicability of axiomatic methods for modeling a new kind of software system, (2) insights into the PSL/PSA
class of specification system, (3) a possible route for formal definition of such analyzers, and (4) additional

244



August 9, 1989

* •lessons on the art of specification, modeling, verification, and validation.

[Gsrhlga] Abstract. This paper describes a suite of tools to support analysis of properties of sequences associ-
ated with a specification, with input or output to a program, or with simple behavioral models of a system under
design. The toolset's capabilities include: generating sequences to satisfy combinations of conditions, organizing

these condition combinations as tables of cases to serve as test data, and visualizing the effects of executing a
• chosen sequence. The technology base is Prolog extended with a powerful window package.

[Gerh88b] Position Statements Included:
1. Gaudel, M-C., and B. Marre. "Generation of Test Data from Algebraic Specifications."
2. Wild, C. "Generic Constraint Logic Programming and Incompleteness in the Analysis of Software."

• [GermgTa] Abstract- Most high level languages with multiprocessing do not have built in mechanisms to detect
deadlocks during program execution. We present transformation rules for taking an original Ada program P and
deriving a new program P', such the P' has a potential deadlock if P does, and P' signals whenever a deadlock is
about to occur. In principle, the transformations can be applied mechanically, giving a practical tool for debug-
ging deadlocks. Since this method modifies the source program, it can be used with any implementation of the
language, without special knowledge of the implementation of tasking. The transformations that we have

• developed thus far are sufficient to handle most of the complexities of Ada tasking, including arbitrary task
types, conditional entry calls, selective waits, timed entry calls, and intertask exceptions.

In the course of this work, we have developed some generally useful source program transformations,
such as one to uniformly introduce task identifiers. We have also developed some interesting concurrent algo-
rithms for the deadlock monitoring.

An actual monitor program for detecting deadlocks has been implemented in Ada. Our basic approach
* and monitoring algorithms are applicable to other languages with multiple processes.

[Germ)4 Abstract: We present a deadlock monitoring algorithm for Ada tasking programs which is based on
transforming the source program. The transformations introduce a new task called the monitor, which receives
information from all other tasks about their tasking activities. The monitor detects deadlocks consisting of circu-
lar entry calls as well as some noncircular blocking situations. The correctness of the program transformations is

• formulated and proved using an operational state graph model of tasking. The main issue in the correctness
proof is to show that the deadlock monitor algorithm works correctly without having simultaneous information
about the state of the program.

In the course of this work, we have developed some useful techniques for programming tasking applica-
tions, such as a method for uniformly introducing task identifiers.

We argue that the ease of finding and justifying program transformations is a good test of the generality
* and uniformity of a programming language. The complexity of the full Ada language makes it difficult to safely

apply transformational methods to arbitrary programs. We discuss several problems with the current semantics
of Ada's tasks.

[Getz83] Abstract A very high-level trace for data structures is one which displays a data structure in the shape
in which the user conceptualizes it, be it a tree, an array, or a graph. GRAPHTRACE is a system that facilitates

• the very high-level graphic display of interrelationships among dynamically allocated Pascal records. It offers the
user a wide range of options to enable him to "see" the data structures on a graphics screen in a format as close
as possible to that in which he visualizes it, thereby providing a useful display capability when the user's concep-
tual model is a directed graph or tree.

The system is interactive, allowing the user to refine his plotting instructions stepwise. He may specify dif-
ferent combinations of pointer directions, omit certain records, and select a root record if desired. As an addi-

* tional diagnostic aid, the user may dump the contents of specified records in a format as close as possible to the
original source code in which they were defined.

The system is written in Pascal. It consists of a precompiler as well as various coordinate assignment and

* 245



August 9, 1989

plotting routines which provide for selective display of the user's data structures.
The issue of portability of the system is discussed in detail.

[Gibs89] Abstract: An experiment is designed to investigate the relationship between system structure and
maintainability. An old, ill-structured system is improved in two sequential stages, yielding three system versions
for the study. The primary objectives of the research are to determine how or whether the differences in the sys-
tems influence maintenance performance; whether the differences are discernible to programmers; and whether
the differences are measurable. Experienced programmers perform a portfolio of maintenance tasks on the sys-
tems. Results indicate that system improvements lead to decreased total maintenance time and decreased fre-
quency of ripple effect errors. This suggests that improving old systems may be worthwhile and may yield benefits
over the remaining life of the system. System differences are not discernible to programmers; apparently pro-
grammers are unable to separate the complexity of the systems from the complexity of the maintenance tasks.
This finding suggests a need for further research on the efficacy of subjectively based software metrics. Finally,
results indicate that a selected set of automatable, objective complexity metrics reflected both the improvements
in the system and programmer maintenance performance. These metrics appear to offer potential as project
management tools.

[Glb79] Abstract: David Gelperin (SEN 4 2) tries to define maintainability in "TRW" terms, using words such
as changability and testability which are defined [for the author] in vague and narrow ways. If we are going to
engineer the software, then [the author] suggests that our definitions should (1) encompass a broader scope of
the concept, (2) have operationally useful measuring methods, and (3) relate more closely to already accepted
maintainability concepts in the systems engineering literature.

[GIlkXX] Abstract: It is shown that a software design methodology based solely on the identification of abstrac-
tions is insufficient for the engineering of complex software systems. Performance analysis is then introduced as
an important and necessary tool for choosing between alternatives during design. Methods for carrying out the
necessary analysis are discussed. These methods are based on a state model of the computation and a probabilis-
tic grammar based model of the input. Finally a brief description of our continuing research in software design is
presented.

[Gii88] Abstract: Embedded real time control systems typically require the use of special debugging environ-
ments, which consists of a special debugging processor that hosts the debugging software and that monitors the
execution of the separate target system via a special hardware interface. Our focus is on extending the set of base
debugging features typically found in such an environment to provide better support for real time task debugging
and to provide a more visual graphic display of program behavior. We have developed a system that provides
such facilities, in the form of a task condition specification and checking system and a multi-window graphics
display. We have implemented a prototype of these novel debugging features that demonstrates how they work
and how they assist in the debugging process. We illustrate the features of our system here by providing a "tour"
through an example debugging session. We also comment on various constraints that directed the prototype
development process.

[Ginz65] Abstract Procedures for program testing associated with implementation of a large complex real-time
system are discussed step by step. The discussion includes testing both in a simulated environment and in real
time. Final testing and monitoring of the system performance are also briefly considered.

[GirgSS] Abstract: The idea of weak mutation testing is to construct test data which would force program com-
ponents such an expressions and variable references to produce a wrong 'result' if they were to contain certain
types of error, for example, off-by-a-constant or wrong-variable. The idea of data flow driven testing is to con-
struct test data which forces the execution of different interactions between variable definitions and references in
a program.

This paper describes a tool for FORTRAN 77 programs which has been developed to help the user apply

246



0

August 9, 1989

* the weak mutation and data flow testing techniques. The tool instruments a given source program and collects a
program execution history. It is then able to report on the completeness of the test data with respect to weak
mutation and a family of data flow path selection criteria. Some preliminary experiments with use of the tool are
described.

[Glrg86a] Abstract: A system called FORTEST has been developed which helps a user apply weak mutation
* testing, data flow testing and control flow testing for FORTRAN 77 programs. This paper concentrates on exper-

iments which have been performed to compare the ability of test coverage criteria, monitored by the FORTEST
system, to aid discovery of a large number of errors seeded into sample programs. Although overall the control
flow strategy was the most effective method in discovering errors, it does not provide such specific guidance in
the construction of test data as the other strategies. What is more, some errors were exposed only by the data
flow method. Hence it is argued that the diverse strategies are best seen as complementary rather than competing

* methods.

[Glas79] Abbreviated Preface: Software reliability has been a neglected field. Some emphasis has been placed in
recent years on mangement to achieve reliability, and the measurement of reliability, but technology to achieve
reliability has progressed little in the same time period.

That situation is changing. Software implementors and purchasers of software, particularly the Depart-
* ment of Defense, are beginning to insist on reliability as a requirement of delivered software. This guidebook is a

survey of technological and management techniques, written as a menu. Each item in the menu is evaluated,
examples of use are given, and references are provided for further study. Recommendations for achievement of
software reliability are also provided.

The guidebook is intended to be useful for all application areas and sizes of software projects; special
emphasis is placed on the problems of large projects, such as those of military/space applications and massive

* interrelated data bases.
The reader is expected to be a software manager or technologist or student who has a basic understanding

of what software is, but whose knowledge of reliability concepts is either rudimentary or has not been updated to
include recent developments.

[Glas80] Abbreviated Introduction: The literature rarely provides value judgments about which methodologies
• might prove most effective in identifying and correcting the kinds of errors which practicing professional pro-

grammers commonly make. An exception is the work of Howden. Here, a set of known software errors is
analyzed against a set of methodologies to determine which methodologies might have detected which errors.
Out of this analysis comes a set of "enlightened" advocacies of particular techniques which could have found a
large number of the known errors.

This paper reports on an extension of Howden's work. Whereas Howden limited his review to highly
* mathematical scientific library programs, this review examines real-time software with a considerably more

varied set of logical requirements. Whereas Howden limited his review to an intense understanding of small
number of errors, this review took a less time-consuming look at a larger number of errors. Whereas Howden
considered a small set of reliability methodologies, this review considered a somewhat larger sample of the
methodologies defined in (an earlier paper by the author].

The broad conclusions of this paper are similar to those of Howden. A set of reliability methodologies is
0 needed; no one or two techniques are sufficient to come close to guaranteeing software reliability. That set should

include some sort of functional testing, some sort of structured testing, and some sort of static analysis. How-
ever, the specific methodologies recommended as a result of this study differ somewhat from Howden's recom-
mendations.

[Giass8] Abstract: Persistent software errors - those which are not discovered until late in development, such as
when the software becomes operational - are by far the most expensive kind of error. Via analysis of software
problem reports, it is discovered the predominant number of persistent errors in large-scale software efforts are
errors of omitted logic, that is, the code is not as complex as required by the problem to be solved. Peer design

* 247



August 9, 1989

and code review, desk checking, and ultra-rigorous testing may be the most helpful of the currently available
technologies in attacking this problem. New and better methodologies are needed.

[Glig87] Abstract: A new security testing method is proposed that combines the advantages of both traditional
"black box" (monolithic functional) testing and "white box" (functional-synthesis-based) testing. The new
method allows significant coverage both for security model-based tests and for individual kernel-call tests. It
eliminates redundant kernel test cases 1) by using a variant of control synthesis graphs, 2) by analyzing dependen-
cies between descriptive kernel-call specifications, and 3) by exploiting access check separability. A higher
degree of test assurance is achieved than that of other security testing methods because the new method helps
eliminate cyclic dependencies among test programs for different kernel calls. The application of this method to
the testing of the Secure Xenix kernel is illustrated.

[GoeI79] Abstract- This paper presents a stochastic model for the software failure phenomenon based on a
nonhomogeneous poisson process (NHPP). The failure process is analyzed to develop a suitable mean-value
function for the NHPP; expressions are given for several performance measures. Actual software failure data are
analyzed and compared with a previous analysis.

[Goel80c] Abstract: In March 1978, Schick and Wolverton published a paper [Schi78] in the IEEE Transactions
on Software Engineering. Moranda criticized several aspects of this paper. His critique was reviewed by Little-
wood and rebutted by Schick and Wolverton. The purpose of this note is to summarize and comment on the main
points raised in these discussions.

[Goel$l] Abbreviated Introduction: During the last decade, numerous studies have been undertaken to quantify
the failure process of large scale software systems. An important objective of these studies is to predict software
performance and use the information for decision making. An important decision of practical concern is the
determination of the amount of time that should be spent in testing. This decision of course will depend on the
model used for describing the failure phenomenon and the criterion used for determining system readiness.

In this paper we present a cost model based on the time dependent fault detection rate model of Goel and
Okumoto and describe a policy that yields the optimal value of test time T.

A brief overview of the failure model is given in Section 2. The cost model and the optimal policies are
described in Sectiop I The results are illustrated via numerical examples in Section 4.

[Goe183] Abstract: The purpose of this guidebook is to provide state-of-the-art information about the selection
and use of existing software reliability models. Towards this objective, we have presented a brief summary of the
available models backed by a detailed discussion of most of the models in the appendixes. One of the difficulties
in choosing a model is to find a match between the testing environment and a class of models. To help a user in
this process, we have presented a detailed discussion of most of the assumptions that characterize the various
software reliability models. The process of developing a model has been explained in detail and illustrated via
numerical examples.

[GoelSS] Abstract: A number of analytical models have been proposed during the past 15 years for assessing the
reliability of a software system. In this paper we present an overview of the key modeling approaches, provide a.
critical analysis of the underlying assumptions, and assess the limitations and applicability of these models during
the software development cycle. We also propose a step-by-step procedure for fitting a model and illustrate it via
an analysis of failure data from a medium-sized real-time command and control software system.

[Goel88] Abstract: This report presents the results of an experiment investigating the effect of Fortran and Ada
languages on program reliability. The experimental design employed was a 2 full factorial design, i.e., a design
in two variables, each of two levels. The problem used in the experiment was the Launch Interceptor Program
(LIP), a simple but realistic anti-missiles system. Reliability comparisons between Ada and Fortran programs
were based on the total number of errors as well as on errors found during various testing phases. Some

248



0

August 9, 1989

0 comparisons were also based on error density, the number of errors per 100 non-comment lines of code. It was
found that on the average, the Ada programs had about 70 percent less errors. Similar differences were found
for data based on error causes and error types.

[GoguSO] Abbreviated Introduction: This note describes a certain general approach to system design and verifi-
cation based on the use of a high level executable specification language. We begin with a discussion of the nature
of specification languages, and give a rather long list of desirable features. We then discuss the two SRI design
and specification projects. SPECIAL with HDM, and the combination of CLEAR, OBJ and CAT in the light of
these requirements. We conclude by indicating some possible new directions.

[Good70] Abstract: A definition is given of computer interval arithmetic suitable for implementation on a digi-
tal computer. Some computational properties and simplifications are derived. An ALGOL code segment is
proved to be a correct implementation of the definition on a specified machine environment.

[Good75a] Abstract: This paper examines the theoretical and practical role of testing in software development.
We prove a fundamental theorem showing that properly structured tests are capable of demonstrating the
absence of errors in a program. The theorem's proof hinges on our definition of test reliability and validity, but
its practical utility hinges on being able to show when a test is actually reliable. We explain what makes tests
unreliable (for example, we show by example why testing all program statements, predicates, or paths is not usu-
ally sufficient to insure test reliability), and we outline a possible approach to developing reliable tests. We also
show how the analysis required to define reliable tests can help in checking a program's design and specifications
as well as in preventing and detecting implementation errors.

[Good7$c] Abstract: This paper is an initial progress report on the development of an interactive system for ver-
ifying that computer programs meet given formal specifications. The system is based on the conventional induc-
tive assertion method: given a program and its specifications, the object is to generate the verification conditions,
simplify them, and prove what remains. The important feature of the system is that the human user has the
opportunity and obligation to help actively in the simplifying and proving. The user, for example, is the primary
source of problem domain facts and properties needed in the proofs. A general description is given of the overall
design philosophy, structure, and functional components of the system, and a simple sorting program is used to
illustrate both the behavior of major system components and the type of user interaction the system provides.

(Good75d] Abstract: This paper defines exception conditions, discusses the requirements exception handling
language features must satisfy, and proposes some new language features for dealing with exceptions in an ord-
erly and reliable way. The proposed language features serve to highlight exception handling issues by showing
how deficiencies in current approaches can be remedied.

[Good75e Abstract: Techniques are presented for the design of computer programs that are proved to meet
stated specifications. The design strategy is the simultaneous step-wise refinement of both the program and its
proof so that at each step the program constructed so far is proved. At each step, the specifications for a single
program unit are given, the unit is designed, and then proved, by automatically supportable methods, before

* going on to successive steps. The proof i) shows that the program unit meets its specifications, ii) exhibits any
assumptions the unit makes about the problem domain, and iii) defines the specifications for units to be designed
in later steps. The design process is based on the refinement of operational and data abstractions in both the pro-
gram and its specifications. These abstractions are what allow the proof at each step to be supported by
automatic, or interactive, program proving systems. The abstractions also keep the proofs of the individual units
at an appropriate level of abstraction and also largely independent, thus significantly reducing the size of the

* complete proof of the entire program. These techniques of provable programming are illustrated by two exam-
ples.

[Good79al Abbreviated Introduction: Testing is the principal method of deciding whether a program is ready for

• 249



August 9, 1989

operational use. In this paper, [the author] will examine various testing approaches. The purpose behind this
examination is
1. to summarize what is known today about testing principles and practices, alerting software developers to
shortcomings and advantages of some methods under development;

2. to stimulate productive research on testing methodology by identifying areas where further work is needed;
and

3. to provide a framework within which testing techniques can be identified, evaluated, and improved.

[Gord76] Abstract: Recent discoveries in the area of Algorithm Structure or Software Physics have produced a
number of hypotheses. One of these relates the number of elementary mental discriminations required to imple-
ment an algorithm to measurable properties of that algorithm, and the results of one set of experiments confirm-
ing this relationship have been published. That publication, while significant, made no claim to finality, suggest-
ing instead that further experiments were warranted. This paper will present the results of a second set of experi-
ments, having the advantages of being conducted in a single implementation language, Fortran, from problem
specifications readily available in computer textbooks.

The first section of this paper presents the timing hypothesis, and the elementary equations upon which it
rests. The second section presents the details of the experiment and the results which were obtained, and the
third section contains an analysis of the data.

(Gord79a] Abstract: The sharply rising cost incurred during the production of quality software has brought with
it the need for the development of new techniques of software measurement. In particular, the ability to objec-
tively assess the clarity of a program is essential in order to rationally develop useful engineering guidelines for
efficient software production and language development.

A functional relation between the clarity of a program and the number and frequency of operators and
operands which occur in the program is presented. This measure of program clarity provides an estimate of the
amount of mental effort required to understand the program, assuming that the reader is fluent in the program-
ming language employed.

This measure is tested by applying it to several published examples which demonstrate improvements in
program clarity. The objective assessment which is provided using this measure is found to agree with the experi-
mental data gathered.

[Gord79b] Abstract: Several measures of program clarity have been proposed which attempt to assess the clarity
of a program as a function of easily measured properties of the code. Such measures include the number of vari-
ables or statements, or the density of go to's.

The measure of program clarity, developed in the field of software science, equates the amount of mental
effort required to understand a program with the ratio of program volume to implementation level. To be effec-
tive, a measure such as this should reflect the improvement in clarity which occurs when program transforma-
tions which make software easier to understand are applied.

The removal of each of six impurity classes from poorly written programs is studied. For a wide class of
programs, purification reduces the amount of effort required for comprehension as predicted by the measure.

[GordgSa] Abstract: The purpose of this technical note is to formulate a framework for the evaluation of
software metrics and to present preliminary results toward that formulation. This framework is in support of
DOD's Software Technology for Adaptable Reliable Systems (STARS) program whose principle software-
related goals are:
1. Improve productivity (up to tenfold).
2. Improve quality (maintainability, enhancability, correctness, efficiency) and reliability.
3. Increase portability.
4. Promote development and application of reusable software.
5. Reduce time and cost to develop defense software.

The STARS program will achieve these goals by conducting research and development on integrated

250



August 9, 1989

* Software Engineering Environments (SEEs) and then utilize them. An integrated SEE will provide automated
tools for carrying out the task of various software life cycle phases such as requirements analysis, design, coding,
module testing, integration testing, and maintenance.

vffIRE's role is that of system research and analysis in determining and developing techniques to meas-
ure and evaluate the progress made in achieving the aforementioned goals. The remainder of this technical note
presents the initial results of MITRE's review of software metrics and suggestions for future activities.

[Gord86] Abstract: In a distributed environment events occur concurrently on different processors. The order
in which events occur cannot be easily determined; a program that works correctly one time may fail subse-
quently if the timing between processors changes. For this research, we have investigated distributed program-
ming bugs that depend on the relative order between events. We describe a tool (called TAP) to aid the program-
mer in discovering the causes of timing errors in running programs, describe experiments using TAP, and report

* the impact TAP's history-keeping mechanism has on the running time of various distributed programs. We also
show that TAP is useful in finding other types of distributed program bugs.

[Gord8I] Abstract: In a distributed environment, events occur concurrently on different processors. The order
in which events occur cannot be easily determined; a program that works correctly one time may fail subse-
quently if the timing between processors changes. For this research, we have investigated distributed program

• bugs that depend on the relative order between events. We describe a tool (called TAP) to aid the programmer in
discovering the causes of timing errors in running programs. TAP, a tool similar to a postmortem debugger, uses
the history of interprocess communication to construct a timing graph, a directed graph where an edge joins
node x to node y if event x directly precedes event y in time. The programmer can then use TAP to look at the
graph to find the events that occurred in an unacceptable order.

Because of the nondeterministic nature of distributed programs, we feel a history-keeping mechanism
must always be active so that bugs can be dealt with as they occur. Our goal is to colect enough information at
run time to construct the timing graph if needed. Since it is always active, this mechanism must be efficient.

We also describe experiments run using TAP and report the impact that TAP's history-keeping mechanism
has on the running time of various distributed programs.

[Gor87] Abstract: Mockingbird is a testing methodology founded on a formal specification of the test space.
0 The specifications are executable and bidirectional. When run in one direction they act as generators, producing

tests whose properties conform to the specification. When run in the opposite direction they act as acceptors,
validating tests against the specification. The specification language is a combination of context-free grammars
and constraint systems. The semantics of the specification are based on Constraint Logic Programming. This
paper describes the philosophy, design and implementation of Mockingbird and its use in testing a large, com-
plex system.

[Gors80] Abbreviated Abstract: In this investigation of the factors that contribute to program simplicity and
understandability (and thus modifiability), we are considering a program to be structured if the control structure
can be expressed via a Nassi-Shneiderman Diagram which is equivalent to being a Structured Program in the
scheme of Linger, Mills and Witt. We assert that it is insufficient to merely identify these factors. We further
assert that it also is insufficient to present subjective measures of these factors in that subjective measurements

0 reduce to opinions and are not measurements at all. If we are satisfied with subjective measurements of com-
plexity, then we are satisfied with opinions of complexity and are also complacently satisfied with programming as
an "art." A science of programming necessarily implies the ability to objectively measure on a quantitative scale
the important characteristics of a program or of a system of programs.

A system of programs considered at the source statement level possesses a structure directly derived from
the top-down analysis and module definition. Although this macro-structure-the inter-module structure-may be
relatively simple and hierarchical, it may be complex. What does the word "complex" mean? Can we objec-
tively measure the simplicity/complexity factor in a quantitative sense at the inter-module level?

* 251



August 9, 1989

[Goui74] Abstract: This experiment represents a new approach to the study of the psychology of programming,
and demonstrates the feasibility of studying an isolated part of the programming process in the laboratory. Thirty
experienced FORTRAN programmers debugged 12 one-page FORTRAN listings, each of which was syntacti-
cally correct but contained one non-syntactic error (bug). Three classes of bugs (Array bugs, Iteration bugs, and
bugs in Assignment Statements) in each of four different programs were debugged. The programmers were
divided into five groups, based upon the information or debugging "aids," given them. Key results were that
debug times were short (median 6 min.). The aids groups did not debug faster than the control group; program-
mers adopted their debugging strategies based upon the information available to them. The results suggested that
programmers often identify the intended state of a program before they find the bug. Assignment bugs were more
difficult to find than Array and Iteration bugs, probably because the latter could be detected from a high-level
understanding of the programming language itself. Debugging was at least twice as efficient the second time pro-
grammers debugged a program (though with a different bug in it). A simple hierarchical description of debugging
was suggested, and some possible "principles" of debugging were identified.

[GourSl] Abbreviated Introduction: It is the purpose of this thesis to describe a new theoretical framework for
testing that [provides a more useful criterion for judging testing than whether or not it is capable of verification,
provides a way of comparing methods of testing with each other, addresses program reliability, and generalizes
previous work on the subject]. Chapter II develops the framework, including definitions that relate verification
and testing and the relative powers of methods of testing. Chapter ITM shows how previous work, both theoretical
and applied fits into this framework. Important theoretical works are shown to be special cases of the new
framework and the framework is shown to satisfy some previously articulated needs. Many of the common con-
ceptions about the power of various practical testing methods are confirmed, but one, the implication of muta-
tion testing's "competent programmer hypothesis," is shown to be false. One of the conceptions confirmed by
the framework is the importance of finding greater use for specifications of programs in the generation of test
data. Prior work on this subject is outlined and then Chapter IV presents in detail a new method for generating
test data from formal specifications.

[GourS3] Abstract: Testing has long been in need of mathematical underpinnings to explain its value as well as
its limitations. This paper develops and applies a mathematical framework that 1) unifies previous work on the
subject, 2) provides a mechanism for comparing the power of methods of testing programs based on the degree
to which the methods approximate program verification, and 3) provides a reasonable and useful interpretation
of the notion that successful tests increase one's confidence in the program's correctness.

Applications of the framework include confirmation of a number of common assumptions about practical
testing methods. Among the assumptions confirmed is the need for generating tests from specifications as well as
programs. On the other hand, a careful formal analysis of the usual assumptions surrounding mutation analysis
shows that the "competent programmer hypothesis" does not suffice to ensure the claimed high reliability of
mutation testing. Hardware testing is shown to fit into the framework as well, and a brief consideration of its
shows how the practical differences between it and software testing arise.

[Gradg7a] Introduction: Many organizations responsible for the evolution of software systems seem to operate
constantly in a reactive mode, fighting the flames of the most recent fire. Behind the visible sense of urgency,
though, three primary strategic elements appear to control the actions of managers:
" minimizing defects,
" minimizing engineering effort and schedule, and
" maximizing customer satisfaction.

In a broad sense, the ultimate objective of all three approaches is customer satisfaction. This article specifically
discusses their relationships to the maintenance of delivered software.

[Grem84] Abstract: Considerable resources are devoted to the maintenance of programs including that required
to correct errors not discovered until after the programs are delivered to the user. A number of factors are
believed to affect the occurrence of these errors, e.g., the complexity of the programs, the intensity with which

252



August 9, 1989

* programs are used, and the programming style. Several hundred programs making up a manufacturing support
system are analyzed to study the relationships between the number of delivered errors and measures of the pro-
grams' size and complexity (particularly as measured by software science metrics), frequency of use, and age.
Not surprisingly, program size is found to be the best predictor of repair maintenance requirements. Repair
maintenance is more highly correlated with the number of lines of source code in the program than it is to
software science metrics, which is surprising in light of previously reported results. Actual error rate is found to

* be much higher than that which would be predicted from program characteristics.

[Grle76] Abstract. The ideas behind proofs for programs are outlined, and conventional definitions of assign-
ment, etc., are given. The main part of this paper is the idealized development of nontrivial program in a discip-
lined fashion. The use of Dijkstra's "calculus" for formal development of programs as a guide to structured pro-
gram development is discussed in relation to the example presented.

[Grie77] Abstract: A parallel program, Dijkstra's on-the-fly garbage collector, is proved correct using a proof
method developed by Owicki. The fine degree of interleaving in this program makes it especially difficult to
understand, and complicates the proof greatly. Difficulties with proving such parallel programs correct are dis-
cussed.

* [Grle79] Abbreviated Abstract: The most prevalent approach to proving that a program satisfies a given pro-
perty has been the invariant-assertion method. Invariant assertions are supplied to express relationships between
the different program variables and are attached to specific program points with the understanding that the asser-
tion is to hold every time control passes through the points. Assuming that the assertion attached to the program
entrance (input specification) holds, partial correctness is established if we can prove that the assertion attached
to the program exit (output specification) holds whenever control reaches the exit. A completely different

* method, typically the well-founded set method, is applied to prove program termination, i.e., to prove that if the
input specification holds, then control will eventually reach the exit. The two proofs establish the total correct-
ness of the program. The intermittent-assertion method, originally introduced by R.M. Burstall, allows one to
establish total correctness by a single proof. This method again involves affixing assertions to points in the pro-
gram with the intention that, at least once, control will pass through the point with the assertion satisfied by the
current variable values.

* The authors first present and illustrate the intermittent-assertion method by a variety of examples selected
to illustrate different aspects of total correctness are markedly simpler than any known conventional counter-
parts. Then the authors show how proofs by conventional methods may be translated into intermittent-assertion
proofs. They effectively show that the translation process is purely mathematical and does not increase the com-
plexity of the proof. Finally, they present two applications of the intermittent-assertion method. The intermit-
tent-assertion method is employed to establish the validity of the transformation of a recursive program into an

* equivalent iterative one. The second application is concerned with the correctness proof of continuously operat-
ing programs.

[Grnag0a] Abstract: In the paper a comparison of processing time and reliability performance for the Recovery
Blocks scheme and N-Version Programming technique is presented. Derived queuing models can be useful in
deciding which of the strategies should be used, depending on system parameters.

[GrovwO] Abstract: An implementation of Ada should be based on a machine-independent translator generating
code for a Virtual Machine, which can be realized on a variety of machines. This approach, which leads to a
high degree of compiler portability, has been very successful in a number of recent language implementation pro-
jects and is the approach which has been specified by the U.S. Army and Air Force in their requirements for
Ada implementations.

• This paper discusses the rationale, requirements and design of such a Virtual Machine for Ada. The dis-
cussion concentrates on a number of fundamental areas in which problems arise: basic Virtual Machine struc-
ture, including storage structure and addressing; data storage and manipulation; flow of control; subprograms,

* 253



August 9, 1989

blocks and exceptions; and task handling.

[GuinS7 Abstract: Program Mutation is a testing methodology that provides quantitative information on the
status of software development. Mothra is a testing environment that uses Program Mutation as its underlying
methodology. It consists of an integrated set of tools and interfaces that allow the user to interactively test a
software system written in Fortran-77 throughout the software development cycle. It is currently being run under
UNIX 4.X BSD and Ultrix V1.2.

This document is primarily a users manual for the first time users of Mothra, although it also intends to
serve as a reference manual for the more experienced user. The first section gives introductory background and
tries to explain the functionality given by the Mothra testing environment. It should only be read by those with lit-
tie knowledge of mutation testing, and those wishing more detailed information should consult the bibliography.
In the second section the different user interfaces to Mothra are explored and examples of software testing are
developed. A user wanting questions answered about the specifics of an interface should consult the section
relating to that specific interface.

[Gutt77] Abstract: Abstract data types can play a significant role in the development of software that is reliable,
efficient, and flexible. This paper presents and discusses the application of an algebraic technique for the specifi-
cation of abstract data types. Among the examples presented is a top-down development of a symbol table for a
block structured language; a discussion of the proof of its correctness is given. The paper also contains a brief
discussion of the problems involved in constructing algebraic specifications that are both consistent and com-
plete.

[Gutt7ga] Abstract: A data abstraction can be naturally specified using algebraic axioms. The virtue of these
axioms is that they permit a representation-independent formal specification of a data type. An example is given
which shows how to employ algebraic axioms at successive levels of implementation. The major thrust of the
paper is twofold. First, is is shown how the use of algebraic axiomatizations can simplily the process of proving
the correctness of an implementation of an abstract data type. Second, semi-automatic tools are described
which can be used both to automate such proofs of correctness and to derive an immediate implementation from
the axioms. This implementation allows for limited testing of programs at design time, before a conventional
implementation is accomplished.

[Gutt78b] Summary: There have been many recent proposals for embedding abstract data types in programming
languages. In order to reason about programs using abstract data types, it is desirable to specify their properties
at an abstract level, independent of any particular implementation. This paper presents an algebraic technique
for such specifications, develops some of the formal properties of the technique, and show that these provide
useful guidelines for the construction of adequate specifications.

[GuttO] Abstract: The formulation and analysis of a design specification is almost always of more utility than
the verification of the consistency of a program with its specification. Good specification tools can assist in the
process, but have generally not been proposed and evaluated in this light. In this paper we outline a specification
language combining algebraic axioms and predicate transformers, present part of a non-trivial example (the
specification of a high-level interface to a display), and finally discuss the analysis of this specification.

[Hall80] Abstract: This is a highly non-technical discussion of nine concepts basic to data processing security.
The concepts are: DP RESOURCES, THREAT, VULNERABILITY, EXPOSURE, ADVERSE EVENT,
LIKELIHOOD, RISK, CONTROL, and RISK MANAGEMI NT. A good grasp of these concepts and their
inter-relationships is key to understanding this relatively new an ill decidely undisciplined discipline.

[HaII86] Abbreviated Abstract: Cloze tests (i.e., fill-in-missing-parts tests) have been a long-standing measure of
prose comprehension. They seem to offer software engineers several theoretical and practical advantages over
multiple-choice comprehension quizzes, the most common software comprehension measurement tool. Through

254



August 9, 1989

* human-subject experimentation, evidence was gathered to support the practical advantages of using the cloze
procedure for measuring software comprehension. Cloze tests were found to be easy to construct, administer,
and score and capable of discriminating between programs of varying comprehensibility. However, discrepancies
between multiple-choice comprehension quiz results and some cloze tests results for the same software suggested
that certain forms of software cloze tests may not be valid. A model of software cloze tests was developed to
identify a software cloze test characteristic that may produce invalid results. The test characteristic was con-

* cerned with the relative proportion of "program-dependent" and "program-independent" cloze items within a
test. The developed model was shown to be consistent with software cloze test results of another researcher and
led to suggestions for improving software cloze testing.

[Haip87] Abstract: Muse is a verification system which extends the collection of tools developed by SRI Inter-
national for their Hierarchical Development Methodology (HDM). It enhances the SRI system by providing a

* capability for proving invariants and constraints for the state machine described by a specification written in
SPECIAL (the specification language of HDM). In particular, it enables one to use the 1DM system to meet the
requirements for formal verification in a National Computer Security Center Al evaluation of a secure operating

system. In addition to the tools provided by SRI, Muse has a parser, a facility to handle multiple modules, a for-
mula generator, and a theorem prover. The theorem prover has a number of interesting features designed to facil-
itate human direction of the proving process. In concept, it is open-ended. We introduce the notion of a theorem

0 prover kernel as a device for ensuring the logical soundness of the prover in the face of continual improvements
to its functionality.

[Hais73b] Abstract: A technique for measuring simple structural properties of algorithms is described. Using
these measures, it is found that for a nontrivial class of algorithms there is a quantitative relationship between
operators and operands and their usage. Properities of "Full" and "Reduced" algorithms are then explored, and

* shown to predict the quantitative relationship observed.

[Hals77a] Abstract: This book contains the first systematic summarization of a branch of experimental and
theoretical science dealing with the human preparation of computer programs and other types of written
material. Application of the classical methods of the natural sciences demonstrates that even such relatively
intangible objects as written abstracts and computer programs are governed by natural laws, both in their

* preparation and in their ultimate form.
The work underlying each chapter of this monograph is firmly based on the methods and principles of

classical experimental science. Even so, the results in this area, or more specifically, the concept that significant
quantitative results are attainable in such an area, are sufficiently counterintuitive as to appear almost weird.

Intuition, however, is far from trustworthy, as demonstrated when that ancient scientist dropped the wood
and lead balls from the tower of Pisa. As he held the balls over the edge of the tower, surely the much greater pull
on the hand holding the lead ball should have convinced him that the experiment was unnecessary; that no two
bodies would behave the same. Even today, watching a feather and a lead shot fall through a vacuum is fascinat-
ing, because it is still "unexpected" or counterintuitive.

Perhaps it is this same sense of the unexpected that has fascinated those of use who are working in this
new area now called software science. The first experimental results were obtained nearly five years ago; since
that time the methods have been refined and extended in many unanticipated directions, but in each case further
investigation has increased rather than limited confidence in the results.

[Hame82] Abstract: Karl Popper has described the scientific method as "the method of bold conjectures and
ingenious and severe attempts to refute them." Software Science has made bold conjectures in postulating
specific relationships between various 'metrics' of software code and in ascribing psychological interpretations to
some of these metrics.

[Hami77a] Abstract: If finite input-output specifications are added to the syntax of programs, these specifica-
tions can be verified at compile time. Programs which carry adequate tests with them in this way should be

* 255



August 9, 1989

resistant to maintenance errors. If the specifications are independent of program details they are easy to give,
and unlikely to contain errors in common with the program. Furthermore, certain finite specifications are maxi-
mal in that they exercise the control and expression structure of a program as well as any tests can.

A testing system based on a compiler is described, in which compiled code is utilized under interactive
control, but "semantic" errors are reported in the style of conventional syntax errors. The implementation is
entirely in the high-level language on which the system is based, using some novel ideas for improving documen-
tation without sacrificing efficiency.

[Hami77b] Abstract: The techniques of compiler optimisation can be applied to aid a programmer in writing a
program which cannot be improved by these techniques. A finite, representative set of test data can be useful in
this process. This paper presents the theoretical basis for the (nonconstructive) existence of test sets which serve
as maximally effective standins for a unlimited number of input possibilities. It is argued that although the time
required by a compiler to fully exercise a program on a set of data may be large, The corresponding improvement
in the reliability of the program may also be large if the set meets the given theoretical requirements.

[Ham178a Abstract: A theory of program testing is presented, based on the idea of "reliable test set." Intui-
tively, a test is reliable if it exposes all errors that any test could find. To obtain a practical theory, two alterations
of this idea are suggested: (1) strengthen the form of specification in the test, (2) restrict the kind of errors that
the test must expose. Both of these changes have a natural application to program maintenance.

[Hami78cJ Abstract: This paper investigates the application of the execution time theory of software reliability
to operational computation center software. A brief review of software reliability concepts is provided. Studies
of individual operating system components are discussed, as well as a functional subsystem. This work is based
on data taken at a large operating computation center over a period of 15 months.

[Ham186] Abstract: Program testing for confidence requires a probabilistic method, because it is impossible for
finite tests to guarantee correctness except under very unrealistic restrictions. Existing sampling theory has not
been successfully applied to software because of two peculiar problems: (1) an "operational distribution" of
input data is seldom an appropriate description of program use, and (2) sample independence has a difficult
meaning for programs. Both problems arise because faults reside in the textual space of a program, but tests
probe this space only through the input domain.

A theory is presented in which tests establish a probability of correctness, as opposed to predicting future
behavior from past samples. The success of the theory depends on dividing the textual and input spaces into
units for which uniform sampling is appropriate. Preliminary work shows that far more test points are needed to
gain confidence in a program than predicted by the usual sampling theory.

[Hami87] Abstract: A theory of 'probable correctness' is proposed to assess the reliability of software through
testing. Current research in testing is not adequate for this assessment. Most testing methods are intended for
debugging, to find failures and connect them to program faults for repair. When these methods no longer expose
errors, no analysis has been done to find the confidence that may be placed in the software. (Preliminary results
here are that this confidence should be low.) Other work applies conventional decision theory to inputs as sam-
ples of a program's use. The application is suspect because the necessary independence and distribution assump-
tions may be violated; in any case, the results are intuitively incorrect. The proposed theory relies on a uniform
distribution of test samples, but relates these to textually occurring faults. Preliminary results include an analysis
of partition testing, and suggestions for textual sampling. It is crucial that any such confidence theory be plausi-
ble, so the foundations of program sampling are examined in detail.

[Ham188] Abstract: Partition testing, in which a program's input domain is divided according to some rule and
tests conducted within the subdomains, enjoys a good reputation. However, comparison between testing that
observes partition boundaries and random sampling that ignores the partitions gives the counterintuitive result
that partitions are of little value. In this paper we improve the negative results published about partition testing,

256



August 9, 1989

* and try to reconcile them with its intuitive value. Partition testing is shown to be more valuable than random test-
ing only when the partitions are narrowly based on expected faults and there is a good chance of failure. For gain-
ing confidence from successful tests, partition testing as usually practiced has little value.

[Hane72] Abbreviated Introduction: The largest challenge facing software engineers today is to find ways to
deliver large systems on schedule. How can we peer into the hazy contingency portion of a schedule and predict

* in greater detail where bugs will occur, who will be needed to fix them, elapsed time between internal releases,
etc.? Belady and Lehman suggest the need for a "micro-model" for system activities, i.e., a model based on
internal, structural aspects of a system. This is essentially the objective of this paper. In the following sections,
we will develop a very simple, but useful, technique for modeling the "stabilization" of a large system as a func-
tion of its internal structure.

The concrete result described in this paper is a simple matrix formula which serves as a useful model for
• the "rippling" effect of changes in a system. The real emphasis is on the use of the formula as a model; i.e., as an

aid to understanding. The formula can certainly be used to obtain numeric estimates for specific systems, but its
greater value is that it helps to explain, in terms of system structure and complexity, why the process of changing
a system is generally more involved than our intuition lead us to believe.

[Hanf7O] Introduction: The "syntax machine" discussed here automatically generates random test cases for any
0 suitably defined programming language. The test cases it produces are syntactically valid programs. But they are

not "meaningful," and if an attempt is made to execute them, the results are unpredictable and uncheckable. For
this reason, they are less valuable than handwritten test cases. However, as an inexhaustible source of new test
material, the syntax machine has showp itself to be a valuable tool.

In the following sections, we characterize the use of this tool in testing different types of language proces-
sors, introduce the concept of "dynamic grammar" of a programming language, outline the structure of the sys-
tem, and show what the syntax machine does by means of some examples.

[Hans73] Summary: A central problem in program design is to structure a large program such that it can be
tested systematically by the simplest possible techniques. This paper describes the method used to test the RC
4000 multiprogramming system. During testing, the system records all transitions of processes and messages
between various queues. The test mechanism consists of fifty machine instructions centralized in two pro-
cedures. By using this mechanism in a series of carefully selected test cases, the system was made virtually error
free within a few weeks. The test procedure is illustrated by examples.

[Hans78] Abbreviated Introduction: In a recent paper, McCabe introduced the cyclomatic number of a pro-
gram's flow graph as a measure of its complexity. Myers proposed an improved measure consisting of an interval
with the original measure as its upperbound. [The author] will argue that if two values are to be presented as a
measure it is preferable to couple a variation of the cyclomatic number with a measure of the program's expres-
sion complexity.

[Hans84] Abbreviated Preface: Software designers are dissatisfied with the present status of quality assurance
and control. Methods and tools are being developed that attempt to locate errors in systems or to demonstrate
the absence of such errors. Although many of these tools are still experimental and difficult to use, they have

0 been used successfully in a number of applications. Although additional research on validation is necessary, it is
likely that developers of systems could make good use of some of these tools provided they are robust and stable.

From the point of assuring quality throughout the entire life cycle, most of the existing methods and tools
are only suitable for specific phases and error classes. By suitable combinations of methods and tools, quality
assurance and control should become more effective. The required combination depends on the specific quality
requirements, on the current situation of a project, and last but not least, on the available resources.

The goals of this (book are] to review the current status of software validation technology, to provide an
in-depth look at the issues, and to project future developments, all in the light of the overall aim of achieving an
integrated framework for software validation.

* 257



August 9, 1989

[Hant76] Abstract: This paper explains, in an introductory fashion, the method of specifying the correct
behavior of a program by use of input/output assertions and describes one method of showing that the program is
correct with respect to those assertions. An initial assertion characterizes conditions expected to be true upon
entry to the program and a final assertion characterizes conditions expected to be true upon exit from the pro-
gram. When a program contains no branches, a technique known as symbolic executions can be used to show
that the truth of the initial assertion upon entry guarantees the truth of the final assertion upon exit. More gen-
erally, for a program with branches one can define a symbolic execution tree. If there is an upper bound on the
number of times each loop in such programs can be executed, a proof of correctness can be given by a simple
traversal of the (infinite) symbolic execution tree.

However, for most programs, no fixed bound of the number of times each loop is executed exists and the
corresponding symbolic execution trees are infinite. In order to prove the correctness of such programs, a more
general assertion structure must be provided. The symbolic execution tree of such programs must be traversed
inductively rather than explicitly. This leads naturally to the use of additional assertions which are called "induc-
tive assertions."

[Harrgla] Abbreviated Introduction: The calculation of the cyclomatic number proves to be an effective com-
plexity measure. However, because the cyclomatic measure only counts the number of basic paths, it is incapable
of recognizing the effects of two major complexity factors which can be intuitively seen to increase program com-
plexity. These two items are the complexity of the individual blocks within the program - which we shall refer to
as "program magnitude," and the program.

[HarrSlb] Conclusion: Two programs may be of the same length and possess equivalent properties in all
respects except for the control structure configuration. We have illustrated the variations in complexity which
may arise from such situations by using two topological measures, viz., McCabe's Cyclomatic Complexity
Number and the Scope Complexity Ratio. The Scope Measure is able to distinguish among programs which the
cyclomatic number measure considers to be equally complex.

[Harr82] Abbreviated Introduction: Over the past several years, computer scientists have devoted a great deal
of effort to measuring computer program "complexity," since many large software systems can be used for 10,
15, or even 20 years. A large part of that time involves maintenance activities, which include all changes made to
a piece of software after it has been delivered to and accepted by the final user. Consequently, maintenance is
most affected by program complexity.

Recent estimates suggest that about 40 to 70 percent of annual software expenditures involve maintenance
of existing systems. Clearly, if complexities could somehow be identified, then programmers could adjust
maintenance procedures accordingly. What is needed is some method of pinpointing the characteristics of a
computer program that are difficult to maintain and measuring the degree of their presence (or lack of it). Vari-
ous approaches may be taken in measuring complexity characteristics, such as Baird and Noma's approach, in
which scales of measurement are divided into the following four types:
1. Nominal scales.
2. Ordinal scales.
3. Interval scales.
4. Ratio scales.

We believe the ordinal scale to be the best choice for examining complexity metrics, and all measures dis-
cussed in this article are in that framework.

[Harr85] Summary: We have developed a Reduced Form which allows software complexity data to be shared
among researchers, and at the same time prevents the reconstruction of the actual source code, thus preserving
the confidentiality of the software. This is a major concern of many organizations considering participating in
metric research.

Some current metrics can be obtained from the Reduced Form. Additional work must be done to include
information needed for other metrics before this tool can be finalized. It is hoped that this paper will spark an

258



August 9, 1989

* interest in other complexity metric researchers who can contribute to the development of the Reduced Form.
Those interested should see the companion paper in this issue.

[Harr68b] Abbreviated Introduction: Over the past decade, numerous attempts have been made to develop
software complexity measurements. Formulating such measures would allow us to compare two programs and
see which was more complex. This article describes one very popular approach to measuring software complex-

* ity: software science.

[Harr88c] Abstract- There have been several efforts to use symbolic execution to test and analyze concurrent
programs. Recently proof systems have also emerged for concurrent programs and for the Ada language in par-
ticular. This paper focuses on using symbolic properties of Ada programs. It expands upon past efforts by incor-
porating tasking proof rules into the symbolic executor allowing Ada programs with tasking to be formally veri-

* fied.

[Hart7l] Abstract: The purpose of this paper is to outline the theory of computational complexity which has
emerged as a comprehensive theory during the last decade. This theory is concerned with the quantitative
aspects of computations and its central theme is the measuring of the difficulty of computing functions. The
paper concentrates on the study of computational complexity measures defined for all computable functions and

* makes no attempt to survey the whole field exhaustively nor to present the material in historical order. Rather it
presents the basic concepts, results, and techniques of computational complexity from a new point of view from
which the ideas are more easily understood and fit together as a coherent whole.

[Hart79] Abstract: The Advanced Interactive Debugging System (AIDS) is described. It is a powerful high-
level symbolic interactive debugging aid. AIDS is intended to be available in a program's environment without

* requiring debugging statements in the program's source code or inclusion of AIDS in the program's executable
module.

[Hass8O] Abstract: White and Cohen have proposed the domain testing method, which attempts to uncover
errors in a path domain by selecting test data on and near the boundary of the path domain. The goal of domain
testing is to demonstrate that the boundary is correct within an acceptable error bound. Domain testing is intui-

* tively appealing in that it provides a method for satisfying the often suggested guideline that boundary conditions
should be tested.

In addition to proposing the domain testing method, White and Cohen have developed a test data selec-
tion strategy, which attempts to satisfy this method. Further, they have described two error measures for evaluat-
ing domain testing strategies. This paper takes a close look at their strategy and their proposed error measures. It
is shown that inordinately large domain errors may remain undetected by the White and Cohen strategy. Two

* alternative domain testing strategies, which improve on the error bound, are then proposed and the complexity
of each of the three strategies is analyzed. Finally, several other issues that must be addressed by domain testing
are presented and the general applicability of this method is discussed.

[Hech75] Abstract A simple, iterative bit propagation algorithm for solving global data flow analysis problems
such as "available expressions" and "live variables" is presented and shown to be quite comparable in speed to

* the corresponding interval analysis algorithm. This comparison is facilitated by a result relating two parameters
of a reducible flow graph (rfg). Namely, if G is an rfg, d is the largest number of back edges found in any cycle-
free path in G, and k is the length of the interval derived sequence of G, then k>=d. (Intuitively, k is the max-
imum nesting depth of loops in a computer program, while d is a measure of the maximum loop-interconnected-
ness.) The node ordering employed by the simple algorithm is the reverse of the order in which a node is last
visited while growing any depth-first spanning tree of the flow graph. In addition, a dominator algorithm for an
rfg is presented which takes O(edges) bit vector steps.

[Hech77a] Abbreviated Preface: This book presents a theoretical foundation for the pre-execution analysis of

* 259



August 9, 1989

computer programs that is usually referred to as control flow analysis and data flow analysis. Flow analysis is a
fundamental prerequisite for many important types of code improvement. In general, control flow analysis pre-
cedes data flow analysis. Control flow analysis is the encoding of pertinent, possible program control flow struc-
ture or flow of control, usually in the form of one or more graphs. Data flow analysis is the process of ascertain-
ing and collecting information prior to program execution about the possible modification, preservation, and use
of certain entities (such as values or various attributes of variables) in a computer program.

The primary goal of this book is to teach people algorithms to incorporate in code improvers. However,
these algorithms do not perform various code improvements per se, but instead gather information prerequisite
to many code improvements. Thus, the subject of this book is not code improvement, but only one constituent
process used in many code improvers. The reader will be introduced to typical problems requiring flow analysis
algorithms and the theoretical foundation for these algorithms.

[Hech79] Abstract- Limitations in the current capabilities for verifying programs by formal proof or by exhaus-
tive testing have led to the investigation of fault-tolerance techniques for applications where the consequence of
failure is particularly severe. Two current approaches, N-version programming and the recovery block, are
described. A critical feature in the latter is the acceptance test, and a number of useful techniques for construct-
ing these are presented. A system reliability model for the recovery block is introduced, and conclusions derived
from this model that affect the design of fault-tolerant software are discussed.

[Hech80] Abstract- Many new uses of computers require extremely high reliability of the computing function as
a whole, and the software involved must conform to these requirements. In more conventional applications, the
attainment of higher software reliability will be of great economic benefit. A study of one scientific computing
center, in which a good deal of effort had been devoted to providing a highy dependable facility, showed 386 ser-
vice interruptions in one year. Of these, 227 (almost 60%) were due to software problems. In software generated
for the military services, quality assurance provisions are now being invoked which are motivated by the need for
higher reliability as well as for greater ease of maintenance.

[Hel72] Abstract: The computational work of a process is measured in terms of the information in a memory
for its table-lookup implementation. This measure is applied first to simple logical and arithmetic processes, and
then more complicated processes comprising organizations (called synergisms) of several subprocesses. The
computational advantages of Cartesian, compositional, and sequential synergisms are investigated and illus-
trated by means of the work measure. The relation between the work of a process and the work capacity of a
facility on which it is implemented is examined, and a concept of efficiency of implementations is formulated. A
few areas for further investigation are outlined.

[Hel87] Abstract: This document presents procedures to be followed by flight dynamics software development
projects that are monitored by the Software Engineering Laboratory (SEL) for collecting data in support of
software engineering research activities. An overview of data collection during the life cycle of a development
project is presented. This overview is followed by a discission of the manner in which the SEL measures the
structure and growth of the software product. Finally, detailed instructions for the completion and sub-mission of
SEL data collection forms are presented.

[Helm83] Abstract: A runtime monitoring system for detecting and describing tasking errors in Ada programs is
presented.

Basic concepts for classifying tasking errors, called deadness errors, are defined. These concepts indicate
which aspects of an Ada computation must be monitored in order to detect deadness errors resulting from
attempts to rendezvous or terminate. They also provide a basis for the definition and proof of correct detection.
Descriptions of deadness errors are given in terms of the basic concepts.

The monitoring systems has two parts: (1) a separately compiled runtime monitor that is added to any Ada
source text to be monitored, and (2) a pre-processor that transforms the Ada source text so that necessary
descriptive data is communicated to the monitor at runtime. Some basic preprocessing transformations and an

260



August 9, 1989

* abstract monitoring for a limited class of errors were previously presented. Here an Ada implementation of a
monitor and a more extensive set of pre-processing transformations are described. This system provides an
experimental automated tool for detecting deadness errors in Ada83 tasking and supplies useful diagnostics. The
use of the runtime monitor for debugging and programming evasive actions to avoid imminent errors is described
and examples of experiments are given.

[Helim4aJ Abstract- A new class of errors, not found in sequential languages, can result when the tasking con-
structs of Ada are used. These errors are called deadness errors and arise when task communication fails. Since
deadness errors often occur intermittently, they are particularly hard to detect and diagnose. Previous papers
describe the theory and implementation of runtime monitors to detect deadness errors in tasking programs. The
problems of detection and description of errors are different. Even when a dead state is detected, giving ade-
quate diagnostics that enable the programmer to locate its cause in the Ada text is difficult. This paper discusses

* the use of simple diagnostic descriptions based on Ada tasking concepts. These diagnostics are implemented in
an experimental runtime monitor. Similar facilities could be implemented in task debuggers in forthcoming Ada
support environments. Their usefulness and shortcomings are illustrated in an example experiment with the run-
time monitor. Possible future directions in task error monitoring and diagnosis based on formal specifications are
discussed.

[Helm85] Abstract: TSL is a language for specifying sequences of tasking events in Ada programs. TSL specifi-
cations are submitted with an Ada program and are monitored at runtime for consistency wih the actual tasking
events as they occur. This paper presents a preliminary design for TSL, an informal overview of its capabilities,
and an operational semantics.

[Hend75] Abstract: A technique is presented whereby a significant amount of program validation can be done
0 simply by exercising the program components in a model environment provided by a finite state machine, spe-

cially built to characterise the real environment of that component. The tools necessary to support such a tech-
nique are characterised and the merits and demerits of the technique are discussed.

[Henn76b] Abbreviated Introduction: In this note we introduce the concept of a Linear Code Sequence and
Jump (LCSAJ) triple. With the aid of these LCSAJs it is possible to analyze both the static and dynamic charac-
teristics of computer programs. In particular they have been extensively used in the analysis of numerical algo-
rthms in both FORTRAN IV and ALGOL 68.

[Henn7T] Abstract: This paper describes an experimental testbed facility designed to examine some of the prob-
lems which arise in the implementation of high quality numerical software libraries.

The testbed is used to measure the effectiveness of test programs. Effectiveness here is used in the sense
that these test programs should ensure that the routine implementation is error free rather than to examine the

nerical properties of the algorithm.
The testbed has been used in extensive investigations of the stringent test programs of the NAG numerical

algorithms library and continuation of this work is seen as a major application for the testbed.

•1enn84] Abstract: The roles and capabilities of LDRA software Testbeds and their appropriate environments
h tve been described in a number of papers. The way in which management uses the tools as elements of a con-
trolled software development environment is described. The principal benefits of such use are that management
has the assurance that software development standards are enforced, and has reliable information concerning
project status. The explicit standards enforced by use of these tools are described in detail [elsewhere]. One class
of these standards is that of test effectiveness, which is measured primarily through three test effectiveness
metrics reinforced by a code auditing capability.

This paper attempts to quantify the benefits of using such a software Testbed in providing assurance of the
absence of program errors. The attempt is made from two viewpoints, the theoretical and the experimental.

The theoretical aspect is important because the practical use of a tool may fail to demonstrate that the tool

* 261



August 9, 1989

can be a powerful detector of a class of errors simply because no errors of that type were present in the software
sample validated.

Finally the paper attempts to summarize some of the experiences gained through the use of the tools over
a twelve year period.

[HennXX] Abbreviated Introduction: The principal objective in functional testing is to verify that a software sys-
tem satisfies the requirements. This is achieved by constructing test data which in some way explores each of the
possibly many functions which the system is required to perform.

When the requirements are expressed in terms of functions, then it is possible to expand the detail until
the requirements are expressed in terms of Basic User Perceived functions. Termination criteria for this process
are difficult to specify-the point is that there should be no further fine structures as perceived by the users. One
task of functional testing is to take each of these Basic User Perceived functions and supply test data to exercise
them. In general, it is not sensible or even possible to test them individually, so they must be tested in various
combinations.

There is now a considerable body of functional tests which have been investigated by using structural test-
ing metrics. That is, after the functional tests have been completed, the software and test data are examined by
structural testing techniques to obtained the coverage metrics. The overall results of traditional functional tests
are not impressive in terms of exercising the software. However, it has not been clear what further improvements
should be made. It is the objective of this chapter to improve this position.

[HenrSla] Abstract: Automatable metrics of software quality appear to have numerous advantages in the
design, construction and maintenance of software systems. While numerous such metrics have been defined, and
several of them have been validated on actual systems, significant work remains to be done to establish the rela-
tionships among these metrics. This paper reports the results of correlation studies made among three complex-
ity metrics which were applied to the same software system. The three complexity metrics used were Halstead's
effort, McCabe's cyclomatic complexity and Henry and Kafura's information flow complexity. The common
software system was the UNIX operating system. The primary result of this study is that Halstead's and
McCabe's metrics are highly correlated while the information flow metric appears to be an independent measure
of complexity.

[Henr81b] Abstract: Structured design methodologies provide a disciplined and organized guide to the con-
struction of software systems. However, while the methodology structures and documents the points at which
design decisions are made, it does not provide a specific, quantitative basis for making these decisions. Typi-
cally, the designers' only guidelines are qualitative, perhaps even vague, principles such as "functionality," "data
transparency," or "clarity." This paper, like several recent publications, defines and validates a set of software
metrics which are appropriate for evaluating the structure of large-scale systems. These metrics are based on the
measurement of information flow between system components. Specific metrics are defined for procedure com-
plexity, module complexity, and module coupling. The validation, using the source code for the UNIX operating
system, shows that the complexity measures are strongly correlated with the occurrence of changes. Further, the
metrics for procedures and modules can be interpreted to reveal various types of structural flaws in the design
and implementation.

[Henr85] Abstract: This paper describes the development of a procedure for evaluating software engineering
methodologies. In formulating this evaluation procedure, the first question addressed is-What constitutes a
methodology? Using this discussion as a basis, we then establish a linkage of objectives, principles, and attri-
butes that are intrinsic to an "ideal" methodology and which reflects an assessment structured by the needs, pro-
cess, and product sequence for system development. This linkage is based on universally accepted software
engineering goals, and provides a comparative scale for assessing the relative "goodness" of a given methodology.
The final section of this paper discusses the application of this procedural evaluation approach to the Software
Cost Reduction (SCR) methodology currently used by the United States Navy. This example reveals the inherent
power of the procedural approach in evaluating software development methodologies.

262



August 9, 1989

* [HenrSgaJ Abstract: Maintenance of software makes up a large fraction of the time and money spent in the
software life cycle. By reducing the need for maintenance these costs can also be reduced. Predicting where
maintenance is likely to occur can help to reduce maintenance by prevention. This paper details a study of the
use of software quality metrics to determine high complexity components in a software system. By the use of a
history of maintenance done on a particular system, it is shown that a predictor equation can also be developed
to identify components which needed maintenance activities. This same equation can be used to determine

• which components are likely to need maintenance in the future. Through the use of these predictions and
software metric complexities it should be possible to reduce the complexity of that component through further
decomposition. Even though this is only one study, this methodology of developing maintenance predictors
could be applied in any environment.

[Henr8Sb] Abstract: In this paper we describe our initial work on a long-term project to develop and validate a
* reliability model and a new class of software complexity metrics which are related to this model. In contrast to

previous "black box" approaches, the reliability model is novel because it incorporates knowledge about the sys-
tem in the form of quantitative software complexity metrics. While the initial model uses existing software
metrics a parallel effort in this project is investigating new classes of metrics, interface and dynamic metrics,
which are useful in their own right but are also of particular relevance to the reliability model. The initial defini-
tion of both the model and the metrics are given along with a description of the next research milestones.

[HenrXX] Abstract- For many years the software engineering community has been attacking the software relia-
bility problem on two fronts. First via design methodologies, languages and tools as a precheck on quality and
second by measuring the quality of produced software as a postcheck. This research attempts to unify the
approach to creating reliable software by providing the ability to measure the quality of a design prior to its
implementation. A comparison of a graphical and a textual design language is presented in an effort to support

* research findings that the human brain works more effectively in images than in text.

[HetzM4] Abbreviated Preface: The quality of systems developed and maintained in most organizations is poorly
understood and below standard. This book explains how software can be tested effectively and how to manage
that effort within a project or organization. It demonstrates that good testing practices are the key to controlling
and improving software quality and explains how to develop and implement a balanced testing program to

* achieve significant quality improvements.
The book covers the discipline of software testing: what testing means, how to define it, how to measure

it, and how to ensure its effectiveness. The term software testing is used broadly to include the full scope of what
is sometimes referred to as test and evaluation or verificatici and validation activities. Software testing is viewed
as the continuous task of planning, designing, and constructing tests, and of using those tests to assess and evalu-
ate the quality of work performed at each step of the system development process. Both the why and how are

• considered. The why addresses the underlying principles, where the concepts came from, and why it is impor-
tant. The how is practical and explains the method and management practices so that they may be easily under-
stood and put into use.

[Hlbb82] Abstract: This paper reports on the status of a research project to develop compiler techniques to
optimize programs for execution on an asynchronous multiprocessor. We adopt a simplified model of a multipro-

0 cessor, consisting of several identical processors, all sharing access to a common memory. Synchronization must
be done explicitly, using two special operations that take a period of time comparable to the cost of data opera-
tions. Our treatment differs from other attempts to generate code for such machines because we treat the neces-
sary synchronization overhead as an integral part of the cost of a parallel code sequence. We are particularly
interested in heuristics that can be used to generate good code sequences, and local optimizations that can then
be applied to improve them. Our current efforts are concentrated on generating straight-line code for high-level,

* algebraic languages.
We compare the code generated by two heuristics, and observe how local optimization schemes can gradu-

ally improve its quality. We are implementing our techniques in an experimental compiler that will generate code

* 263



August 9, 1989

for Cm*, a real multiprocessor, having several characteristics of our model computer.

[E11831 Abstract: This note describes RED, a remotely executed debugger capable of generating a real-time
source level trace history of a high level language program executing on a microprocessor. The trace history con-
sists of a display of the source statements of each basic block executed, annotated by the time at which execution
of that block began. Basic blocks are traced rather than statements to reduce sampling bandwidth requirements
while still retaining the ability to record the essential logical flow of programs. RED is intended to assist in debug-
ging stand-alone high level language process control programs with real-time constraints.

We outline two possible implementation schemes for generating the real-time trace history. In both, a
"debugging co-processor" collects in a history buffer the values of the program counter (PC) and the correspond-
ing value of a clock as each basic block begins execution. The debugger, which runs on the processor hosting the
compiler and has access to the co-processor over a fast link, reconstructs a source level trace from the PC-time
pairs in the history buffer. In one scheme, the language compiler emits an extra instruction at the beginning of
each basic block in the program to output the value of the program counter to a parallel port connected to the
debug processor. The second method makes use of an extended target memory space to provide tag bits denoting
basic blocks. When an instruction is fetched, the debug processor detects the presence of the tag bits and buffers
up the value of the corresponding program counter and time. The first method is simpler to implement, requiring
only conventional, usually straightforward hardware additions to the target, but requires the execution overhead
of the extra instructions. In both cases the debugger itself runs on the host processor and has access to tables
generated during compile time of the source program.

[HiteSS] Abstract: Testing programs with tractable algorithms is one area in which software engineers have
made numerous advances over the past few decades. Testing rule-based expert systems, however, is a new area
in software engineering which requires new techniques.

For the most part, traditional software engineering testing strategies assume modular program develop-
ment. This assumption is impractical to make for expert system development, for the knowledge base of an
expert system is quite simply a huge non-modular program. It consists almost entirely of non-ordered, multi-
branching decision statements. In traditional programming, the module interfaces are limited and well defined.
For rule-based expert systems, the interaction among rules is combinatoric and highly data-driven. Thus the test-
ing of a completed expert system via traditional path analysis is impractical.

The design of a testing strategy for expert systems focuses on the generic phases of expert system develop-
ment. Briefly, these phases include system definition, incremental system implementation, and system mainte-
nance. Using the simplified breakdown of the expert system development process as a guide, certain testing tech-
niques can be generalized enough to work for any expert system application.

[Hoar69] Abstract: In this paper an attempt is made to explore the logical foundations of computer program-
ming by use of techniques which were first applied in the study of geometry and have later been extended to other
branches of mathematics. This involves the elucidation of sets of axioms and rules of inference which can be
Used in proofs of the properties of computer programs. Examples are given of such axioms and rules, and a for-
mal proof of a simple theorem is displayed. Finally, it is argued that important advantages, both theoretical and
practical, may follow from pursuance of these topics.

[Hoar7lb] Abstract: A proof is given of the correctness of the algorithm "Find." First, an informal description
is given of the purpose of the program and the method used. A systematic technique is described for construct-
ing the program proof during the process of coding it, in such a way as to prevent the intrusion of logical errors.
The proof of termination is treated as a separate exercise. Finally, some conclusions relating to general program-
ming methodology are drawn.

[Hoar72] Introduction: In the development of programs by stepwise refinement, the programmer is encouraged
to postpone the decision on the representation of his data until after he has designed his algorithm, and has
expressed it as an "abstract" program operating on "abstract" data. He then chooses for the abstract data some

264



August 9, 1989

* convenient and efficient concrete representation in the store of a computer; and finally programs the primitive
operations required by his abstract program in terms of this concrete representation. This paper suggests an
automatic method of accomplishing the transition between an abstract and a concrete program, and also a
method of proving its correctness; that is, of proving that the concrete representation exhibits all the properties
expected of it by the "abstract" program. A similar suggestion [has" been] made more formally in algebraic
terms, which gives a general definition of simulation. However, a more restricted definition may prove to be

* more useful in practical program proofs.
If the data representation is proved correct, the correctness of the final concrete program depends only on

the correctness of the original abstract program. Since abstract programs are usually very much shorter and
easier to prove correct, the total task of proof has been considerably lightened by factorising it in this way. Furth-
ermore, the two parts of the proof correspond to the successive stages in program development, thereby contri-
buting to a constructive approach to the correctness of programs. Finally, it must be recalled that in the case of

* larger and more complex programs the description given above in terms of two stages readily generalizes to mul-
tiple stages.

[Hoar74] Abstract: This paper develops Brinch-Hansen's concept of a monitor as a method of structuring an
operating system. It introduces a form of synchronization, describes a possible method of implementation in
terms of semaphores and gives a suitable proof rule. Illustrative examples include a single resource scheduler, a

* bounded buffer, an alarm clock, a buffer pool, a disk head optimizer, and a version of the problem of readers and
writers.

[Hoar75] Abbreviated Abstract: This paper distinguishes a number of ways of using parallelism, including dis-
joint processes, competition, cooperation, and communication. In each case an axiomatic proof rule is given.

• jRoar781 Abstract: This paper suggests that input and output are basic primitives of programming and that
parallel composition of communicating sequential processes is a fundamental program structuring method.
When combined with a development of Dijkstra's guarded command, these concepts are surprisingly versatile.
Their use is illustrated by sample solutions of a variety of familiar programming exercises.

[HoarS1] Abstract: A process communicates with its environment and with other processes by synchronized
* output and input on named channels. The current state of a process is defined by the sequences of messages

which have passed along each of the channels, and by the sets of messages that may next be passed on each chan-
nel. A process satisfies an assertion if the assertion is at all times true of all possible states of the process. The
author presents a calculus for proving that a process satisfies the assertion describing its intended behaviour. The
following constructs are axiomatised: output; input; simple recursion; disjoint parallelism; channel renaming,
connection and hiding; process chaining; nondeterminism; conditional; alternation; and mutual recursion. The

* calculus is illustrated by proof of a number of simple buffering protocols.

[Hoar87] Introduction: The code of a computer program is a formal text, describing precisely the actions of a
computer executing that program. As in other branches of engineering, the progress of its implementation as
well as its eventual quality can be promoted by additional design documents, formalized before starting to write
the final code. These preliminary documents may be expressed in a variety of notations suitable for different pur-
poses at different stages of a project, from capture of requirements through design and implementation, to
delivery and long-term maintenance. These notations are derived from mathematics, and include algebra, logic,
functions, and procedures. The connection between the notations is provided by mathematical calculation and
proof.

This article introduces and illustrates a selection of formal methods by means of a single recurring exam-
ple, the design of a program to compute the greatest common divisor of two positive numbers. It is hoped that

* some of the conclusions drawn from analysis of this simple example will apply with even greater force to software
engineering projects on a more realistic scale.

• 265



August 9, 1989

[Hodg76] Abbreviated Introduction: The production of consistently executable and dependable software
demands a thoughtful systematic implementation - with clear documentation at each production stage. Recog-
nizing this, the Data Systems Laboratory, at Marshall Space Flight Center, NASA, began a research effort to
help discover and institute sound engineering principles into a methodology for the production of software.

Achieving this end demanded, among other things, the development of a formal specifications language
that could traceably embody requirements, a high level programming language that could be generated easily and
faithfully from specifications and could promote a logical error-free code implementation, a language preproces-
sor to allow compatibility of the methodology with existing compilers and finally, automatic code analysis tools to
attain our original objective-reducing software test and verification effort.

Such a methodology, an integrated Software Specification and Evaluation System (SSES), is being
developed for NASA/MSFC. [This paper presents] the technical highlights and unification of the system.

[Holiz82] Abstract: This paper introduces a simple algebra for the validation of communication protocols in mes-
sage passing systems. The behavior of each process participating in a communication is first modeled in a finite
state machine. The symbol sequences that can be accepted by these machines are then expressed in "protocol
expressions," which are defined as regular expressions extended with two new operators: division and multipli-
cation. The interactions of the machines can be analyzed by combining protocol expressions via multiplication
and algebraically manipulating the terms.

The method allows for an arbitrary number of processes to participate in an interaction. In many cases an
analysis can be performed manually, in other cases the analysis can be automated. The method has been applied
to a number of realistic protocols with up to seven interacting processes.

An automated analyzer was written in the language C. The execution time of the automated analysis is in
most cases limited to a few minutes of CPU time on a PDP 11/70 computer.

[Hous77] Abstract. A tool for the systematic production of test cases for a compiler is first presented. The input
of the generator are formal grammers, derived from the definition of the reference language. This tool has been
applied to the generation of test programs for Algol 68. For each construction which the language possesses, the
syntactic structure of the corresponding test and the semantic verifications it contains are given. The test set has
begun to be employed on a specific implementation. Discovered errors related to Algol 68 constructions are
analyzed.

[Howd7$a] Abstract: A methodology for generating program test data is described. The methodology is a model
of the test data generation process and can be used to characterize the basic problems of test data generation. It
is well defined and can be used to build an automatic test data generation system.

The methodology decomposes a program into a finite set of classes of paths in such a way that an intui-
tively complete set of test cases would cause the execution of one path in each class. The test data generation
problem is theoretically unsolvable: there is no algorithm which, given any class of paths, will either generate a
test case that causes some path in that class to be followed or determine that no such data exist. The methodol-
ogy attempts to generate test data for as many of the classes of paths as possible. It operates by constructing
descriptions of the input data subsets which cause the classes of paths to be followed. It transforms these
descriptions into systems of predicates which it attempts to solve.

[Howd76c] Abstract: A set of test data T for a program P is reliable if it reveals that P contains an error when-
ever P is incorrect. If a set of tests T is reliable and P produces correct output for each element of T then P is a
correct program. Test data generation strategies are procedures for generating sets of test data. A testing strategy
is reliable for a program P if it produces a reliable set of test data for P. It is proved that an effective testing stra-
tegy which is reliable for all programs cannot be constructed. A description of the path analysis testing strategy is
presented. In the path analysis strategy data are generated which cause different paths in a program to be exe-
cuted. A method for analyzing the reliability of path testing is introduced. The method is used to characterize
certain classes of programs and program errors for which the path analysis strategy is reliable. Examples of pub-
lished incorrect programs are included.

266



August 9, 1989

(Howd76.] Abstract: Symbolic evaluation techniques can be used to determine the cumulative effects of a pro-
gram's calculations on the branching predicates and output variables in the program. If the evaluation techniques
are carefully and selectively applied, they can be used to generate revealing symbolic represe:.,ations of the com-
putations carried out by the paths in a program, and of the systems of predicates that describe the input data that
causes program paths to be executed. A symbolic evaluation system called DISSECT is described which can be
used to analyze FORTRAN programs. The system includes a sophisticated command language that allows the
user to selectively apply symbolic evaluation techniques to different program paths and subpaths. The command
language allows the user to carry out different levels of symbolic testing of a program and to construct systems of
predicates that can be used to automate the generation of numeric test data. Experiments with the system which
illustrate its advantages and limitations are included. DISSECT can be used to carry out a systematic, docu-
mented reliability analysis of a program. The paper concludes with a discussion of the potential use of systems
like DISSECT as the basic software certification tool in the software development process.

[Howd77a Abstracth The report is divided into two parts. The first part contains a study of the design of sym-
bolic evaluation systems. It also contains an estimate of the costs of using such a system to carry out symbolic
program testing. The second part contains a study of the effectiveness of symbolic testing. It contains an analysis
of the circumstances under which symbolic testing is reliable for discovering program bugs. The effectiveness of
symbolic testing is compared with other reliability analysis techniques. The analysis of the effectiveness of sym-
bolic testing which is contained in Part 2 is based on the study of six programs. Descriptions of the programs and
the details on the analyses are continued in the six Appendices.

[Howd77b] Abstract: Symbolic testing and a symbolic evaluation system called DISSECT are described. The
principle features of DISSECT are outlined. The results of two classes of experiments in the use of symbolic
evaluation are summarized. Several classes of program errors are defined and the reliability of symbolic testing in
finding bugs is related to the classes of errors. The relationship of symbolic evaluation systems like DISSECT to
classes of program errors and to other kinds of program testing and program analysis tools is also discussed.
Desirable improvements in DISSECT, whose importance was revealed by the experiments, are mentioned.

[Howd77c] Summary: The effectiveness in discovering errors of symbolic evaluation and of testing and static
program analysis are studied. The three techniques are applied to a diverse collection of programs and the results
compared. Symbolic evaluation is used to carry out symbolic testing and to generate symbolic systems of path
predicates. The use of the predicates for automated test data selection is analyzed. Several conventional types of
program testing strategies are evaluated. The strategies include branch testing, structured testing and testing on
input values having special properties. The static source analysis techniques that are studied include anomaly
analysis and interface analysis.

Examples are included which describe typical situations in which one technique is reliable but another
0 unreliable. The effectiveness of symbolic testing is compared with testing on actual data and with the use of an

integrated methodology that includes both testing and static source analysis. Situations in which symbolic testing
is difficult to apply or not effective are discussed. Different ways in which symbolic evaluation can be used for
generating test data are described. Those ways for which it is most effective are isolated. The paper concludes
with a discussion of the most effective uses to which symbolic evaluation can be put in an integrated system
which contains all three of the validation techniques that are studied.

[Howd7ga] Abstract: Two approaches to the study of program testing are described. One approach is theoretical
and the other empirical. In the theoretical approach situations are characterized in which it is possible to use
testing to formally prove the correctness of programs or the correctness of properties of programs. In the empiri-
cal approach statistics are collected which record the frequency with which different testing strategies reveal the
errors in a collection of programs. A summary of the results of two research projects which investigated these
approaches are presented. The difference between the two approaches are discussed and their relative advan-
tages and disadvantages are compared.

* 267



August 9, 1989

[Howd78b] Summar An approach to the study of program testing is introduced in which program testing is
treated as a special kind of equivalence problem. In this approach, classes of programs P* and associated classes
of test sets T* are defined which have the property that if two programs P and Q in P* agree on a set of tests from
T*, then P and Q are computationaily equivalent. The properties of a class P* and the associated class T* can be
thought of as defining a set of assumptions about a hypothetical correct version Q of a program P in P*. If the
assumptions are valid then it is possible to prove the correctness of P by testing. The main result of the paper is
an equivalence theorem for classes of programs which carry out sequences of computations involving the ele-
ments of arrays.

[Howd78c] Abstract: The use of traces proving properties of programs is investigated. Two kinds of traces are
studied. The first, called "value traces" contain intermediate values of program variables. A theorem is
presented which can be used to verify the computations which generate the values appearing in a value trace. The
second kind of trace, called a "symbolic trace" contains the unevaluated sequence of assignment statements and
branch predicates that occur along a program path. A special class of symbolic traces called "elementary traces"
is defined. A theorem is presented which proves that if the elementary symbolic traces of a program are correct
then all of its symbolic traces are correct. The correctness of the set of symbolic traces for a program implies the
correctness of the program.

[Howd78d] Abstract: This short paper summarizes the different approaches to a theory of program testing. The
goals of a theory of testing and several of the results which have been achieved are described.

[Howd78f] Abstract: In recent years a number of research projects have been completed which have attempted
to assess the effectiveness of different software validation methods. The results of those projects are summarized
and the effectiveness of the different methods compared.

[Howd8ra] Abstract: An approach to functional testing is described in which the design of a program is used to
generate functional test data. The approach depends on the use of design methods that model the abstract func-
tional structure of a program as well as the abstract structure of the data on which the program operates. An
example of the use of the method is given and a discussion of its effectiveness.

[Howd80b] Abstract: Error analysis involves the examination of a collection of programs whose errors are
known. Each error is analyzed and validation techniques which would discover the error are identified. The
errors that were present in version five of a package of Fortran scientific subroutines and then later corrected in
version six were analyzed. An integrated collection of static and dynamic analysis methods would have
discovered the errors in version five before its release. An integrated approach to validation and the effective-
ness of individual methods are discussed.

[HowdSOc] Abstract: An approach to functional testing is described in which the design of a program is viewed
as an integrated collection of functions. The selection of test data depends on the functions used in the design
and on the value spaces over which the functions are defined. The basic ideas in the method were developed dur-
ing the study of a collection of scientific programs containing errors. The method was the most reliable testing
technique for discovering the errors. It was found to be significantly more reliable than structural testing. The
two techniques are compared and their relative advantages and limitations are discussed.

[HowdSOd] Abstract: Program testing metrics are based on criteria for measuring the completeness of a set of
program tests. Branch testing measures the percentage of program branches that are traversed during a set of
tests. Mutation testing measures the ability of a set of tests to distinguish a program from similar programs. A cri-
terion for test completeness is introduced in this paper which measures the ability of a set of tests to distinguish
between functions which are implemented by parts of programs. The criterion is applied to functions which are
implemented by different kinds of programming language statements. It is more effective than branch testing and
incorporates some of the advantages of mutation testing. Its effectiveness can be discussed formally and it can be

268



August 9, 1989

* described as part of an integrated approach to testing. A tool can be used to implement the method.

[Howdglb] Abstract: The term "static analysis" has traditionally been used to refer to program analyes methods
that assist the user in verifying his program, but which do not require its execution. Static analysis includes tech-
niques which produce general information about a program, such as cross-reference tables, as well as techniques
which search for particular types of errors, such as uninitialized variables. This survey describes both traditional

* static analysis methods as well as other validation methods that do not require program execution. It includes
techniques that involve the analysis of system documents other than the program code, such as requirements and
design analysis. It also includes code analysis techniques such as symbolic evaluation.

[Howd8lc] Abstract: A scheme for classifying program testing methods is introduced. Program testing methods
are classified according to whether they involve the generation of test data which is based on the requirements

* specifications, the design specifications or the source code for a program. Detailed descriptions of functional
requirements and functional design based testing are included. Source code methods which are described
include branch testing, path testing, file testing and expression testing. Other dynamic analysis techniques, such
as dynamic assertions and recovery control blocks are also described.

[Howdg2a] Abstract: Different approaches to the generatiot, of test data are described. Error-based approaches
• depend on the definition L " classes of commonly occurring program errors. They generate tests which are specifi-

cally designed to determine if particular classes of errors occur in a program. An error-based method called weak
mutation testing is described. In this method, tests are constructed which are guaranteed to force program state-
ments which contain certain classes of errors to act incorrectly during the execution of the program over those
tests. The method is systematic, and a tool can be built to help the user apply the method. It is extensible in the
sense that it can be extended to cover additional classes of errors. Its relationship to other software testing

* methods is discussed. Examples are included.
Different approaches to testing involve different concepts of the adequacy or completeness of a set of

tests. A formalism for characterizing the completeness of test sets that are generated by error-based methods
such as weak mutation testing as well as the test sets generated by other testing methods is introduced. Error-
based, functional, and structural testing emphasize different approaches to the test data generation problem. The
formalism which is introduced in the pdper can be used to describe their common basis and their differences.

[Howd82b] Introduction: The software life cycle can be divided into requirements, design, programming, and
maintenance. Validation has also been considered a phase of the life cycle and is sometimes inserted between
programming and maintenance. Recent experience, however, indicates that validation should be integrated into
all phases rather than isolated in a separate stage that takes place long after requirements and design have been
completed. Studies show that the later validation is carried out, the more expensive it becomes to find errors
made early in the development process.

In the integrated approach described in this article, validation is a part of each phase of the life cycle. Two
validation activities-analysis and test data generation-take place during each phase. The programming and
maintenance phases also include actual examination of program tests. Analysis involves the direct examination
of specification and code for errors or erroneous properties. Test data generation involves the construction of
test sets that are based on the important functional properties of specification and code.

(Howd851 Introduction: Program testing consists of a scattered collection of rules of thumb, coverage measures
and testing philosophies. Several attempts have been made to construct theories to explain why testing works and
to isolate classes of faults that can be consistently remedied by certain methods.

In one approach to testing, called functional testing, a collection of methods are integrated that can be
described from the same point of view and whose effectiveness can be analyzed using a common theory.

The functional testing methods described here are suitable for module and integration testing at the
development stage. The focus is on functional faults - errors caused by a program that computes the wrong func-
tion - rather than timing or performance problems. Most of the ideas are not original, but show how it all fits

* 269



August 9, 1989

together. The discussion is informal and no attempt is made to present the theory in formal definitions and
theorems.

[HowdS6] Abstract: An integrated approach to testing is described which includes both static and dynamic
analysis methods and which is based on theoretical results that prove both its effectiveness and efficiency. Pro-
grams are viewed as consisting of collections of functions that are joined together using elementary functional
forms or complex functional structures.

Functional testing is identified as the input-output analysis of functional forms. Classes of faults are
defined for these forms and results presented which prove the fault revealing effectiveness of well defined sets of
tests.

Functional analysis is identified as the analysis of the sequences of operators, functions, and data type
transformations which occur in functional structures. Functional trace analysis involves the examination of the
sequences of function calls which occur in a program path; operator sequence analysis the examination of the
sequences of operators on variables, data structures, and devices; and data type transformation analysis the
examination of the sequences of transformations on data types. Theoretical results are presented which prove
that it is only necessary to look at interfaces between pairs of operators and data type transformations in order to
detect the presence of operator or data type sequencing errors. The results depend on the definition of normal
forms for operator and data type sequencing diagrams.

[HowdS7] Abbreviated Preface: This book presents an integrated approach to program testing and analysis
which has a sound mathematical basis. It describes both previous techniques, and how they fit together, as well as
new methods. It provides a general approach to testing and validation that incorporates all important software
life cycle products, including requirements and general and detailed designs. The results can be used to prove
that well-defined classes of faults and failures will b liscovered by specific techniques. Functional testing and
analysis is a general approach to verification and validation and not only integrates current techniques, but indi-
cates fruitful directions for continued research and development.

[Howd89a] Overview: This paper presents a brief overview of the author's recent and current work. The main
topics address the development of a general model of how software is constructed and of the reasoning errors
that humans make during this process, and flavor analysis.

[Howe84] Abstract: In the areas of software development, data processing management often focuses more on
coding techniques and system architecture than on how to manage the development. In recent years, "structured
programming" and "structured analysis" have received more attention than the techniques software managers
employ to manage. Moreover, these coding and architecture considerations are often advanced as the key to a
smooth running, well managed project.

This paper documents a philosophy for software development and the tools used to support it. Those
management techniques deal with quantifying such abstract terms as "productivity," "performance," and "pro-
gress," and with measuring these quantities and applying management controls to maximize them. The paper
also documents the applications of these techniques on a major software development effort.

[Hs1e89J Abstract: An approach to timing analysis of cyclic concurrent programs is presented. GR o path-
expressions are used to describe synchronization and concurrency of atomic operations in cyclic concurrent pro-
grams. The behavior of a cyclic concurrent program is represented as a partial order of atomic operations, and a
technique to derive this partial order from a GR o program is developed. Given the execution times of the indivi-
dual atomic operations of a GR o program and a set of timing constraints, our timing analysis technique uses the
partial order to determine whether the concurrent program, when executed, will satisfy the set of timing con-
straints. The timing analysis technique can be completely automated.

[Huan75] Abstract: One of the practical methods commonly used to detect the presence of errors in a computer
program is to test it for a set of test cases. The probability of discovering errors through testing can be increased

270



August 9, 1989

* by selecting test cases in such a way that each and every branch in the flowchart will be traversed at least once
during the test. This tutorial describes the problems involved and the methods that can be used to satisfy the test
requirement.

[Huan78] Introduction: It is well known that one cannot find all the errors in a program simply by testing it for a
set of input data. Nevertheless, program testing is the most commonly used technique for error detection in

* today's software industry. Consequently, the problem of finding a program test method with increased error-
detection capability has received considerable attention in the field of software research.

There appear to be two major approaches to this problem. One is to find better criteria for test-case selec-
tion. The other is to find a way to obtain additional information (i.e., information other than that provided by the
output of the program) that can be used to detect errors.

The technique of program instrumentation discussed in this article can be regarded as a major outgrowth
• of the second approach. The main idea is to insert additional statements (instruments) into the program to be

tested for the purpose of computing certain program attributes. By testing (executing) the instrumented program
for a properly chosen set of test cases, we will be able to obtain the values of the program attributes automati-
cally. The attribute values provide us with additional information for error detection. The following pages illus-
trate the utility of this technique and explore its potential as a tool for program validation.

* [Huan79] Abstract: A data flow anomaly in a program is an indication that a programming error might have
been committed. This paper describes a method for detecting such an anomaly by means of program instrumen-
tation. The method is conceptually simple, easy to use, easy to implement on a computer, and can be applied in
conjunction with a conventional program test to achieve increased error-detection capability.

[Hump88] Abbreviated Introduction: One SEI project is to provide the Defense Department with some way to
* characterize the capabilities of software-development organizations. The result is this software-process maturity

framework, which can be used by an software organization to assess its own capabilities and identify the most
important areas for improvement.

This software-development process-maturity model reasonably represents the actual ways in which
software-development organizations improve. It provides a framework for assessing these organizations and
identifying the priority areas for immediate improvement. It also helps identify those places where advanced

* technology can be most valuable in improving the software-development process.
The SEI is using this model as a foundation for a continuing program of assessments and software process

development. These assessment methods have been made public, and preliminary data is now available

[HutcS3] Abstract: This paper examines the use of cluster analysis as a tool for system modularization. Several
clustering techniques are discussed and used on two medium-size systems and a group of small projects. The

* small projects are presented because they provide examples (that will fit into a paper) of certain types of
phenomena. Data bindings between the routines of the system provide the basis for the bindings. It appears that
the clustering of data bindings provides a meaningful view of system modularization.

[IEEE83a] Forward: Software engineering is an emerging field. New terms are continually being generated, and
new meanings are being adopted for existing terms. The Glossary of Software Engineering Terminology was

* undertaken to document this vocabulary. Its purpose is to identify terms currently used in software engineering
.n,. to present the current meanings of these terms. It is intended to serve as a useful reference for software
engineers and for those in related fields and to promote clarity and consistency in the vocabulary of software
engineering. It is recognized that software engineering is a dynamic area; thus the standard will be subject to
appropriate change as becomes necessary.

[IEEE83b Purpose: The purpose of this standard is to describe a set of basic software test documents. A stand-
ardized test document can facilitate communication by providing a common frame of reference (for example, a
customer and a supplier have the same definition for a test plan). The content definition of a standardized test

* 271



August 9, 1989

document can serve as a completeness checklist for the associated testing process. A standardized set can also
provide a baseline for the evaluation of current test documentation practices. In many organizations, the use of
these documents significantly increases the manageability of testing. Increased manageability results from the
greatly increased visibility of each phase of the testing process.

This standard specifies the form and content of individual test documents. It does not specify the required
set of test documents. It is assumed that the required set of test documents will be specified when the standard is
applied. Appendix B contains an example of such a set specification.

[IEEE83c] Scope: This standard provides minimum requirements for preparation and content of Software Con-
figuration Management (SCM) Plans. SCM Plans document the methods to be used for identifying software pro-
duct items, controlling and implementing changes, and recording and reporting change implementation status.

This standard applies to the entire life cycle of critical software; for example, where failure could impact
safety or cause large financial or social losses. For noncritical software, or for software already developed, a sub-
set of the requirements may be applied.

This standard identifies those essential items that shall appear in all Software Configuration Management
Plans. In addition to those items, the users of this standard are encouraged to incorporate additional items into
the plan, as appropriate, to satisfy unique configuration management needs, or to modify the contents of specific
sections to fully describe the scope and magnitude of the software configuration management effort. Where this
standard is invoked for a project engaged in producing several software items, the applicability of the standard
shall be specified for each of the software product items encompassed by the project.

Examples are incorporated into the text of this standard to enhance clarity and to promote understanding.
Examples are either explicitly identified as such, or can be recognized by the use of the verb may. Examples shall
not be construed as mandatory implementations.

[IEEES4I The purpose of this standard is to provide uniform, minimum acceptable requirements for preparation
and content of Software Quality Assurance Plans (SQAP).

In considering adoption of this standard, regulatory bodies should bc aware that specific application of
this standard may already be covered by one or more IEEE or ANSI standards documents relating to quality
assurance, definitions, or other matters. It is not the purpose of IEEE Std 730 to supersede, revise or amend
existing standards directed to specific industries or applications.

This standard applies to the development and maintenance of critical software; for example, where failure
could impact safety or cause large financial or social losses. For non-critical software, or for software already
developed, a subset of the requirements of this standard may be applied.

The existence of this standard should not be construed to prohibit additional content in a Software Qual-
ity Assurance Plan. An assessment should be made for the specific software product item to assure adequacy of
coverage. Where this standard is invoked for a project engaged in producing several software items, the applica-
bility of the standard should be specified for each of the software product items encompassed by the project.

[IEEE88] Scope: This standard provides daethodology for establishing quality requirements ai.d identifying,
implementing, analyzing and validating software quality metrics. This methodology applies to all software at all
phases of the software life cycle. As a standard, this methodology is mandatory, thoughnot exhaustive in its
implementation details.

Software quality is the degree to which software possesses a desired combination of attributes. By defini-
tion, software quality is relative; it varies from system to system as requirements vary. Likewise, the set of appli-
cable metrics used to measure software quality varies from system to system. For this reason, this standard does
not prescribe specific metrics. However, the appendices include examples of metrics together with a complete
example of the use of this standard.

A software quality metric is a function whose inputs are software data and whose output is a single
(numerical) value that can be interpreted as the degree to which software possesses a given attribute that affects
its quality.

272



August 9, 1989

* [Iann4] Abstract: A set of criteria is proposed for the comparison of software reliability models. The intention
is to provide a logically organized basis for determining the superior models and for the presentation of model
characteristics. It is hoped that in the future, a software manager will be able to easily select the model most suit-
able for his requirements from among the preferred ones.

[Ibar82] Abstract: We consider a simple class of loop-free programs whose instruction repertoire consists of x
S<- O, x <-c, x <-cx, x <- x/c, x <-x + y, x <-x -y, skip 1, ifp(xy) then skip 1, and halt. (x and y are integer vari-

ables, c is a positive integer, x/c is integer division, I is a nonnegative integer, and p(xy) is a predicate of the form
x > y, x >- y, x - y, x !- y, x <- y, or x < y; skip I causes the (l+1)st instruction following the current instruction
to be executed next.) We show that the equivalence problem for this class is decidable in 2an2 time (N - sum of
the sizes of the programs and - is a fixed positive constant). The bound cannot be reduced to a polynomial in N
unless P-NP. In fact, we have the following rather surprising result: The equivalence problem for programs with

* one input variable (which also serves as the output variable) and one auxiliary var; ble using only instructions x
<- 2x, x <- x/2, and x <- x + y is NP-hard.

[Ing186] Abbreviated Introduction: Standard measures of software quality have been set up for AT&T Bell
Laboratories. These metrics allow a software project to be followed through its development, controlled intro-
duction, and release to customers. The metrics serve both project and corporate management needs. For project

* management, they allow more effective management of development effort, and they help ensure a fast and effec-
tive solution to problems that arise at any stage. For corporate management, they provide a vehicle for quantify-
ing the overall quality of software development, for setting quality improvement objectives, and for tracking
results. In particular, the metrics provide quantitative information on the number of faults, normalized so that
corporate results can be summarized and projects of different size can be compared; the responsiveness of sup-
port organizations in resolving problems; and the impact of fixes on customers.

[Isod87J Introduction: Debugging programs involves repeating several steps: executing test programs, detecting
errors, investigating their causes, correcting them, and recompiling. The most time-consuming, difficult step is
the detection and investigation of errors.

Several researchers have tried to find an effective way to represent execution behavior for program debug-
ging. Cargill's Blit debugger uses multiple windows that simultaneously show program execution output, interac-

* tion with the debugger, and program text. Myers' Incense debugger displays the variables' data structures, but
does not address the dynamic features of program execution. Reiss' Pecan debugger does propose dynamic
presentation of the control flow on a program flowchart, but it displays character-based data just like traditional
debugging tools. The Balsa and program visualization systems can represent data in figures that are appropriate
to their meaning. However, they do not have facilities to represent control flow of blocks or dataflow among vari-
ables.

* Therefore, these systems are insufficient for debugging programs because they represent only a part of
program execution behavior.

We have developed a visual debugger for Ada programs, the Visual and Interactive Programming Support.
VIPS uses graphics to show the static and dynamic behavior of program execution. It greatly reduces the time
and effort .i program debugging because it helps a programmer detect and localize program errors more easily
than with traditional tools.

[Itak82] Abstract: Estimation of the size and time required for software development is probably the most diffi-
cult aspect of any project. Up to now, most estimates have been done subjectively by experts. These estimates
are often inaccurate. In the midst of development, faulty estimates may contribute to delays and/or excess
expenses.

In the last several years, several estimation models have been proposed, most of which were models to
• estimate software development cost (manpower). These models used program size as a variable. However at the

beginning of development, when estimations are made, program sizes are usually uncertain and costs (man-
power) are equally uncertain.

* 273



August 9, 1989

The authors developed a program-size estimation model for batch programs in a banking system, and used
the model in an actual project. Using the adapted model, estimation errors amounted to only 7 percent. This is
much better than the accuracy of estimations made by experts in the field (usually about 10 percent accuracy),
and indicates that objective estimation methods can be derived for program-size.

In this paper, we introduce our estimation model and discuss the adaptation of that model for a specific
project.

[Ives83) Abstract: This paper critically reviews measures of user information satisfaction and selects one for
replication and extension. A survey of production managers is used to provide additional support for the instru-
ment, eliminate scales that are psychometrically unsound, and develop a standard short form for use when only
an overall assessment of information satisfaction is required and survey time is limited.

[Jach84] Abstractb The occurrence of a data flow anomaly is often an indication of the existence of a program-
ming error. The detection of such anomalies can be used for detecting errors and to upgrade software quality.
This paper introduces a new, efficient algorithm capable of detecting anomalous data flow patterns in a program
represented by a graph. The algorithm based on static analysis scans the paths entering and leaving each node of
the graph to reveal anomalous data action combinations. An algorithm implementing this type of approach was
proposed by Fosdick and Osterweil [Fosd76a]. Our approach presents a general framework which not only fills a
gap in the previous algorithm, but also provides time and space improvements.

[Jack7l] Introduction. In April 1966 work was initiated by Martin Marietta Corporation (MMC), Denver Divi-
sion, to extend the role of an airborne computer to include flight controls as well as guidance and navigation
computations. This project is one of several significant improvements for the Titan HIC space booster which
was funded by the Space and Missile Systems Organization of the Air Force. The new Digital Flight Control Sys-
tem (DFCS) has been successfully tested in four (4) Titan IC missions.

The purpose of this paper is to describe how a large hybrid computer simulation was used as an aid to
design and develop the DFCS and then used to validate the resulting DFCS airborne software.

The simulation was programmed in six degrees-of-freedom and included an airborne Univac 1824M Mis-
sile Guidance Computer (MGC) in the closed loop. Additional computing equipment used in the simulation
included three (3) EAI 8800 analog computers, an EAI 8400 digital computer and an SDS 930 digital computer.
Flight control hardware components such as rate gyros, body mounted accelerometers, and hydraulic actuators
were also used in the simulation.

[Jaha86] Abstract: Two important characteristics of time-critical systems are: the requirement to satisfy
stringent timing constraints, and the need to guard against an imperfect execution environment. In this paper, we
formalize the safety analysis of timing properties in real-time systems. Our analysis is based on a formal logic:
RTL (Real-Time Logic) which is especially suitable for reasoning about the timing behavior of systems. Given
the formal specification of a system and a safety assertion to be analyzed, our goal is to relate the safety assertion
to the systems specification. There are three distinct cases: 1) the safety assertion is a theorem derivable from
the systems specification, 2) the safety assertion is unsatisfiable with respect to the systems specification, or 3)
the negation of the safety assertion is satisfiable under certain conditions. A systematic method for performing
safety analysis will be presented.

[JaIo89] Abstract. Specifications are means to define formally the behavior of a system or a system component.
Completeness is a desirable property for specifications. In this paper, we describe a system that tests for the
completeness of axiomatic specifications of abstract data types. For testing, the system generates a set of test
cases and an implementation of the data type from the specifications. The generated implementation is such that
if the specifications are not complete, the implementation is not complete, and the behavior of all of the
sequences of valid operations on the data type is not defined. This implementation is tested with the generated
test cases to detect the incompleteness of specifications. The system is implemented on a VAX system running
Unix.

274



S

August 9, 1989

* [Jard83] Abstract- An approach to testing the consistency of specifications is explored, which is applicable to
the design validations of communication protocols and other cases of step-wise refinement. In this approach, ,
testing module compares a trace of interactions obtained from an execution of the refined specification (e.g. the
protocol specification) with the reference specification (e.g. the communication service specification).

Non-determinism in reference specifications presents certain problems. Using an extended finite state
transition model for the specifications, a strategy for limiting the amount of non-determinacy is presented.

* An automated method for constructing a testing module for a given reference specification is discussed.
Experience with the application of this testing approach to the design of a Transport protocol and a distributed
mutual exclusion algorithm is described.

[Jeff 5] Abstract: This paper reviews a study on programming productivity carried out to (i) confirm previous
published results, (ii) explore the impact of the changing programming environment on productivity, and (iii)

* examine the influence on productivity of organizational factors. Programming productivity data were collected
from 17 organizations and analyzed in the light of data collected some 4 years earlier. While significant technolog-
ical changes were observed to have occurred in the programming environment, the results of the later study were
in many respects almost identical to those obtained earlier, thus validating the previous study. The organizational
variables collected revealed a very strong relationship between a programmer's attitude to his supervisor and
programming productivity.

[Jeli72] Introduction and Summary: Software reliability study was initiated by Advanced Information Systems
subdivision of McDonnell Douglas Astronautics Company, Huntington Beach, California, to conduct research
into the nature of the software reliability problem including definitions, contributing factors and means for con-
trol.

Discrepancy reports which originated during the development of two large-scale real-time systems form
* two separate primary data sources for the reliability study. A mathematical model, descriptively entitled the

De-Eutrophication Process, was developed to describe the time pattern of the occurrence of discrepancies
(errors). This model has been employed to estimate the initial (or residual) error content in a software package
as well as to estimate the time between discrepancies at any phase of its development. A means of predicting mis-
sion success on the basis of errors which occur during testing are described.

Problems in categorizing software anomalies are described and the special area of the genesis of
discrepancies during the integration of modules is discussed. Management techniques which should reduce the
number of software anomalies are described.

[John75] Abstract: The report contains plans for a complete software reliability measurement program using
both manual and automatic data entry. The program is to be run in conjunction with SAMTEC at Vandenburg
AFB in an effort to establish measurement and evaluation criteria for the advanced systematic techniques for

* reliable operational software (ASTROS) project. An integral part of that project is the implementation and
evaluation of structured programming techniques.

Included in the report are all forms necessary to describe the software development environment, the
hierarchy and size of programming modules, and to capture any significant events that will affect programming
and test while they are in progress. Forms and instructions for their use for manual data collection are included,
as are descriptions of items that could be collected automatically.

[Jobn79] Summary: Designers and implementors of high-level language translators can, with relatively little
extra effort, greatly facilitate run-time symbolic debugging. Practical suggestions are presented, based on experi-
ences gained from interfacing several compilers with a run-time debugging system.

[Johng2b] Abstract: This glossary contains 291 definitions of terms dealing with the debugging of computer
software. The list includes numerous synonyms, as well as the proper names of debugging systems described in
the open literature. Terms and definitions have been obtained from various sources: the software-engineering
literature, other software-engineering glossaries, and individual contributions.

* 275



August 9, 1989

[John83] Abstract: This paper deals, with issues that have emerged as a result of a successful implementation of a
source level symbolic debugger for HP-1000 computer systems. By analyzing a user's thought processes during a
debugging session we created a powerful and easy to use tool for program analysis.

[John4] Abstract: This paper describes a program called PROUST which does online analysis and understand-
ing of Pascal programs written by novice programmers. PROUST takes as input a program and a non-algorithmic
description of the program requirements, and finds the most likely mapping between the requirements and the
code. This mapping is in essence a reconstruction of the design and implementation steps that the programmer
went through in writing the program. A knowledge base of programming plans and strategies, together with
common bugs associated with them, is used in constructing this mapping. Bugs are discovered in the process of
relating plans to the code; PROUST can therefore give deep explanations of program bugs by relating the buggy
code to its underlying intentions.

[Jone7$] Overview: Discussed is the unit-of-measure situation in programming. An analysis of common units of
measure for assessing program quality and programmer productivity reveals that some standard measures are int-
rinsically paradoxical. Lines of code per programmer-month and cost per defect are in this category. Presented
here are attempts to go beyond such paradoxical units as these. Also discussed is the usefulness of separating
quality measurements into measures of defect removal efficiency and defect prevention, and the usefulness of
separating productivity measurements into work units and cost units.

[JoneSl] Abstract: Programming productivity has become a significant topic for a number of the world's indus-
trial, commercial, governmental, and university communities. The decade from 1970 to 1980 witnessed an unpre-
cedented growth in computers and programming, that was accompanied by unprecedented problems with costs,
quality, schedules, and low productivity. Current research indicates that the greatest barrier to improved produc-
tivity lies in the enormous costs which are associated with programming defect removal and with paperwork.
Therefore the most direct strategy for improving productivity is to concentrate on methods that simplify com-
plexity, improve requirements and design, minimize paperwork, and reduce errors. However, attempts to move
toward these goals reveal underlying problems whose solutions will require the application of concepts from dis-
ciplines outside of programming, such as linguistics and perceptual psychology. Programming is becoming a
catalyst that has the potential of forming new and synergistic combinations of ideas.

By the mid 1980's, software is no longer an "outcast" technology regarded as inferior by older sciences.
Accurate metrics of software projects and the new engineering principles supporting reusable designs and reus-
able code are giving software a new professionalism. The advent of new human interface techniques derived
from object-oriented programming methods may be leading to a new plateau, in which human control and usage
of complex devices is more natural and intuitive than at any time in history.

This tutorial volume on productivity issues for the eighties attempts to place programming in context with
other disciplines, and addresses five major topics: (1) Programming measurements, (2) programming life-cycle
analysis, (3) programming requirements and design methods, (4) programming environments, and (5) the new
science of software.

[Joycg7a] Abstract: A computerized theraputic radiation machine has beer blamed in incidents that have led to
the deaths of two patients and serious injuries to several others. The deadly medical mystery used by the machine
was finally traced to a software bug, "Malfunction 54," named after the message displayed on the operator con-
sole. The affair is seen as epitomizing the software reliability crisis at its worst, and raises the thorny legal issue of
liability for personal injuries caused by defective programs. The pending lawsuits over the malfunctioning
machine may set a legal precedent that could affect all computer users and vendors. Ultimately, such cases call
into question our increasing dependence on computers for everything from banking to national defense.

[JoycS7b] Abstract: The monitoring of distributed systems involves the collection, interpretation, and display
of information concerning the interactions among concurrently executing processes. This information and its
display can support the debugging, testing, performance evaluation, and dynamic documentation of distributed

276



August 9, 1989

systems. General problems associated with monitoring are outlined in this paper, and the architecture of a gen-
eral purpose, extensible, distributed monitoring system is presented. Three approaches to the display of process
interactions are described: textual traces, animated graphical traces, and a combination of aspects of the textual
and graphical approaches. The roles that each of these approaches fulfill in monitoring and debugging distri-
buted systems are identified and compared. Monitoring tools for collecting communication, statistics, detecting
deadlock, controlling the non-deterministic execution of distributed systems, and for using protocol specifica-

* tions in monitoring are also described.
Our discussion is based on experience in the development and use of a monitoring system within a distri-

buted programming environment called Jade. Jade was developed within the Computer Science Department of
the University of Calgary and is now being used to support teaching and research at a number of university and
research organizations.

[Kafiul] Overview: We state a set of criteria that has guided the development of a metric system for measuring
the quality of a large-scale software product. This metric system uses the flow of information within the system as
an index of system interconnectivity. Based on this observed interconnectivity, a variety of software metrics can
be defined. The types of software quality features that can be measured by this approach are summarized. The
data-flow analysis techniques used to establish the paths of information flow are explained and illustrated.
Finally, a means of integrating various metrics and models into a comprehensive software development environ-

o ment is discussed. This possible integration is explained in terms of the Gandalf system currently under develop-
ment at Carnegie-Mellon University.

[Kafu85a] Abstract: In this paper are presented the results of a study in which several production software sys-
tems are analyzed using ten software metrics. The ten metrics include both measures of code details, measures of
structure, and combinations of the two. Historical data recording the number of errors and the coding time of

* each component are used as objective measures of resource expenditure of each component. The metrics are
validated by showing: (1) the metrics singly and in combination are useful indicators of those components which
require the most resources, (2) clear patterns between the metrics and the resources expended are visible when
both resources are accounted for, (3) measures of structure are as valuable in examining software systems as
measures of code details, and (4) the choice of which, or how many, software metrics to employ in practice is
suggested by measures of "yield" and "coverage".

[Kafug5b] Abstract: This paper reports on an effort to relate seven different software quality metrics to the
experience of maintenance activities performed on a medium size data base system. Three different versions of
the data base system that evolved over a period of three years were analyzed in this study. A major revision of the
data base system, while still in its design phase, was also analyzed.

The results of this study indicate: (1) that the growth in system complexity as determined by the software
metrics agree with the general character of the maintenance tasks performed in successive versions; (2) the
metrics were able to identify the improper integration of functional enhancements made to the system; (3) the
complexity values of the system components as indicated by the metrics, conform well to an intuitive understand-
ing of the system by people familiar with the system; and (4) an analysis of the redesigned version of the data base
system showed the efulness of software metrics in the (re)design phase by revealing a poorly structured com-
ponent of the syst

[Kafa#] Abstract: This paper reports the results of a study which examined the relationship between a collec-
tion of software metrics and the development data (such as errors and coding time) of three commercially pro-
duced software systems. The software metrics include both measures of system interconnectivity and measures
of system code. This study revealed strong relationships between the metrics and the development data when
individual components were aggregated by structure (into subsystems) or by similarity (into groups). The subsys-

6 tem and group results imply that research and application of metrics can guide the effective application of project
resources by identifying those groups which, for example, will contain a disproportionately large fraction of
errors. Finally, the study showed the overall utility of two interconnectivity metrics: Henry and Kafura's

• 277



August 9, 1989

information flow metric and McClure's invocation metric. This result is significant because interconnectivity
metrics can be applied early in the life cycle.

[Kahn77] Abstract- The concept of coroutine or process is useful in a large class of applications, usually involv-
ing incremental generation of transformation of data. We present a language based on a clear semantics of pro-
cess interaction, which facilitates well-structured programming of dynamically evolving networks of processes.
These networks exhibit the same input/output behavior whether they are executed sequentially or in parallel.
Sample program proofs are used to illustrate the benefits of the language's simple denotational semantics. The
language serves also to clarify the relationships between coroutines, call-by-need, dynamic data structures and
parallel computation.

[Kant80] Abstract: In this paper we consider the application of the recovery block concept to parallel programs
for ensuring increased reliability despite the presence of software bugs. The basic idea of this technique is to
include standby software components in the program which can be "switched on" in case the active component
fails. However, before this could be done, the system must be rolled back to a consistent state. One of the goals
in this rollback is to avoid undoing a large amount of computation. It is shown that the process interaction must
be severely constrained in order to achieve this goal. Sufficient conditions for limiting the rollback in a system of
processes communicating via monitors is also presented.

[KappS8] Abstract: IDA Paper P-2028 documents a tool that can facilitate the description of processes for the
Strategic Defense System (SDS) and Battle Management/Command, Control and Communications (BM/C3)
architectures. The process descriptions generated by this tool conform to the Strategic Defense Initiative Organ-
ization (SDI) Architecture Dataflow Modeling Technique (SADMT).

[Katz87] Abstract- Packages, subprograms, generics, and tasks are the building blocks of Ada systems. They
can combine to hide information, group information, isolate dependencies, and create reusable pieces. How-
ever, different people view them from different perspectives for different purposes. Therefore, people have dif-
ferent expectations when they discuss modules and modularity. In this paper, we describe four definitions that
divide systems into program blocks, or modules, using various structural criteria. We use this common terminol-
ogy to show how the different views on the system can help us better understand the modularity of the system.
Finally, we use programs from studies comparing design techniques and measuring maintainability to show how
these ideas may be applied.

[Kear86] Abbreviated Introduction: Inappropriate use of software complexity measures can have large, damag-
ing effects by rewarding poor programming practices and demoralizing good programmers. Software complexity
measures must be critically evaluated to determine the ways in which they can best be used.

[Kei187] Abstract: We suggest that users are interested solely in the quality of prediction which can be obtained
from software reliability models. Some ways of analyzing the quality of predictions are proposed and several
models and inference procedures are compared against software failure data sets. We conclude that some predic-
tions are extremely poor, notably those arising from ML analysis of the Jelinski-Moranda model. Others are
quite good. We suggest promising areas for future work.

[KeU76] Abstract: Two formal models ior parallel computation are presented: an abstract conceptual model and
a parallel-program model. The former model does not distinguish between control and data states. The latter
model includes the capability for the representation of an infinite set of control states by allowing there to be
arbitrarily many instruction pointers (or processes) executing the program. An induction principle is presented
which treats the control and data state sets on the same ground. Through the use of "place variables," it is
observed that certain correctness conditions can be expressed without enumeration of the set of all possible con-
trol states. Examples are presented in which the induction principle is used to demonstrate proofs of mutual
exclusion. It is shown that assertions-oriented proof methods are special cases of the induction principle. A

278



August 9, 1989

* special case of the assertions method, which is called parallel place assertions, is shown to be incomplete. A for-
malization of "deadlock" is then presented. The concept of a "norm" is introduced, which yields an extension,
to the deadlock problem, of Floyd's technique for proving termination. Also discussed is an extension of the
program model which allows each process to have its own local variables and permits shared global variables.
Correctness of certain forms of implementation is also discussed. An appendix is included which relates this
work to previous work on the satisfiability of certain logical formulas.

[KeU83] Abstract: In this paper the design diversity approach of fault-tolerant multi-version software as a com-
plement to fault avoidance is discussed and an experiment is described in which 32 programmers were employed.
It was found that formal specification languages, while showing promise for the future, are presently very difficult
to use and understand, and are severely limited in power. Software errors encountered in the experiment were
studied and classified. The increase in reliability seen in multi-version software over individual-version software

* was substantial; it was even possible to combine three faulty versions and produce a combination that was com-
pletely fault-tolerant.

[KeiIS5a] Abstract: ADAMAT, an Ada Measurement and Analysis Tool, provides immediate assistance for 1)
improving the quality of Ada software, and 2) training Ada programmers. The underlying metrics framework is
hierarchical based on the McCall metrics framework, tailored to the Ada language, and formally defined using

• Prolog. The automated data collection component is automatically generated using compiler generation tech-
niques, which include a descriptive technique for describing pattern matching in a well-defined language. The
quality analysis component, based on the formal definition of the metrics, provides users with interactive
analysis of the metric data, and allows users to step through the Ada metrics hierarchy to pinpoint problem
areas.

* [KeII85b] Abbreviated Introductlon: This paper discusses an approach to creating an automated metrics tool for
measuring the level of adherence to software quality guidelines in Ada source code. The tool provides managers
with the visibility needed to control the application of quality guidelines on software programs.

Software quality management is very difficult, because the quality of software is not transparent; its
assessment requires a thorough review of specifications and code. By formalizing software quality principles, we
can develop a tool that helps monitor their use.

[Kemm8O] Abstract: This paper gives an overview of the Formal Development Methodology (FDM) and the Ina
Jo formal specification language. FDM is an integrated methodology for the design, specification, implementa-
tion, and verification of software. It enforces rigorous connections between successive stages of development.
The components of the FDM are the Ina Jo formal specification l,-nguage, the specification processor, the
interactive theorem prover, and a verification condition generator.

• This paper gives an overview of each of the components and discusses how each fits into the overall verifi-
cation process. Examples of the different constructs in the specification language are presented as well as a sam-
ple two-level formal specification.

[Kemm85a] Abstract: Formal specification and verification techniques are now used to increase the reliability of
software systems. However, these approaches sometimes result in specifying systems that cannot be realized or

* that are not usable. This paper demonstrates why it is necessary to test specifications early in the software life
cycle to guarantee a system that meets its critical requirements and that also provides the desired functionality.
Definitions to provide the framework for classifying the validity of a functional requirement with respect to a for-
mal specification are also introduced. Finally, the design of two tools for testing formal specifications is dis-
cussed.

* [Kemm86l Abstract: This is the first volume of the final report of a verification assessment study that was begun
in November 1984 and lasted for approximately nine months. The final report consists of five volumes. This
volume contains an overview of the study, some conclusions that were formulated, and directions for future

• 279



August 9, 1989

research efforts in formal verification.
The main goal of this effort was a technology interchange among the developers of four established verifi-

cation systems. The systems investigated were i) Affirm (General Electric Company, Schenectady, New York),
ii) FDM (System Development Corporation- A Burroughs Company, Santa Monica, California) iii) Gypsy (the
University of Texas at Austin, Austin, Texas), and iv) Enhanced HDM (SRI International, Menlo Park, Califor-
nia).

There was some comparative work on examples, but the main idea was for the developers to learn the
details of each other's system as a basis for future development. It would have been interesting and informative
to look at other systems, but time did not allow for this.

It was not the goal of this study to rate the verification systems that were investigated. It was also not the
intent of the study to justify the need for formal specification and verification systems or to justify the necessity
for research in this area.

[Kern74a] Abbreviated Introduction: Good programming cannot be taught by preaching generalities. The way
to learn to program well is by seeing, over and over, how real programs can be improved by the application of a
few principles of good practice and a little common sense. Practice in critical reading leads to skill in rewriting,
which in turn leads to better writing.

This book is a study of a large number of "real" programs, each of which provides one or more lessons in
style. We discuss the shortcomings of each example, rewrite it in a better way, then draw a general rule from the
specific case. The approach is pragmatic and down-to-earth; we are more interested in improving current pro-
gramming practice than in setting up an elaborate theory of how programming should be done.

The examples we give are all in Fortran and PL/I, since these languages are widely used and are suffi-
ciently similar that a reading knowledge of one means that the other can also be read well enough. (We avoid
complicated constructions in either language and explain unavoidable idioms as we encounter them.) The princi-
ples of style, however, are applicable in all languages, including assembly codes.

[Kern74b] Abstract: Computer programs can be written many different ways and still achieve the same effect.
Until recently, programmers have had little reason to favor one method of expressing code over another. We have
come to learn, however, that functionally equivalent programs can have extremely important stylistic differences.

Good programming style cuts across application areas, technique and language. Programs written with
good style are easier to read and understand, and often smaller and more efficient, than those written badly. Yet
few programmers have ever been taught what style is, as we can see from even cursory inspection of their code.
Even the techniques of structured programming do not ensure that code will be good; "structured" progi ams can
be just as bad as their unstructured counterparts.

This paper is a survey of some aspects of programming style, primarily expression and structure, showing
by examples what happens when principles of style are violated, and what can be done to improve programs. To
add the ring of truth to our discussion, the examples are all taken verbatim from programming textbooks.

[KernSl] Table of Contents: Filters. Files. Sorting. Text Patterns. Editing. Formatting. Macro Processing.

[Kieb83] Abstract: Abstract data types, and in particular those that are designed to provide resources for use by
concurrently executable programs, are often designed to be used only in certain ways. The intended constraints
on use of an instance of such a type can be expressed in two principle ways: as assertions on the domain of the
values input to each operator, anc as constraints on the sequences in which the operators of the type can be
called by a customer process. These constraints must be enforced in the environment in which an instance of the
type is used. Nevertheless, they are very much a part of the type specification, for its definition is not complete,
nor can the consistency of its representation be proved, without them.

A notation is provided in which to express sequentia, constraints, which are here called access-right
expressions. It is suggested that these expressions should be declared in a programming language that supports
the definition of monitors or resource managers. Implications for the proof rules of monitors are discussed. and
suggestions are made for a programming language implementation.

280



August 9, 1989

* [Klng7a] Abatract- The current approach for testing a program is, in principle, quite primitive. Some small
sample of the data that a program is expected to handle is presented to the program. If the program produces
correct results for the sample, it is assumed to be correct. Much current work focuses on the question of how to
choose this sample. We propose that a program can be more effectively tested by executing it "symbolically."
Instead of supplying speciftc constants as input values to a program being tested, one supplies symbols. The nor-
mal computational definitions for the basic operations performed by a program can be expanded to accept sym-

* bolic inputs and produce symbolic formulae as output.
If the flow of control in the program is completely independent of its input parameters, then all output

values can be symbolically computed as formulae over the symbolic inputs and examined for correctness. When
the control flow of the program is input dependent, a case analysis can be performed producing output formulae
for each class of inputs determined by the control flow dependencies. Using these ideas, we have designed and
implemented an interactive debugging/testing system called EFFIGY.

[King761 Abstract- This paper describes the symbolic execution of programs. Instead of supplying the normal
inputs to a program (e.g. numbers) one supplies symbols representing arbitrary values. The execution proceeds
as in a normal execution except that values may be symbolic formulas over the input symbols. The difficult, yet
interesting issues arise during the symbolic execution of conditional branch type statements. A particular system
called EFFIGY which provides symbolic execution for program testing and debugging is also described. It inter-

* pretatively executes programs written in a simple PL/1 style programming language. It includes many standard
debugging features, the ability to manage and prove things about symbolic expressions, a simple program testing
manager, and a program verifier. A brief discussion of the relationship between symbolic execution and program
proving is also included.

[Kitc81] Abstract: The increasing cost of software development and maintenance has revealed the need to iden-
* tify methods that encourage the production of high quality software. This in turn has highlighted the need to be

able to quantify factors influencing the amount of effort needed to produce such software, such as program com-
plexity.

Two approaches to the problem of identifying complexity metrics have attracted interest in America; the
theoretical treatment of software science by Halstead of Purdue University and the graph-theoretical concept
developed by McCabe of the US Department of Defense. This paper reports an attempt to assess the ability of

* the measures of complexity proposed by these authors to provide objective indicators of the effort involved in
software production, when applied to selected subsystems of the ICL operating system VME/B. The proposed
metrics were computed for each of the modules comprising these subsystems, also counts of the numbers of
machine-level instructions (Primitive Level Instructions, 'PLI') and measures of the effort involved in bringing
the modules to an acceptable standard for field release. It was found that all the Ltmplexity metrics were corre-
lated positively with the measure of effort, those modules which had proved more difficult having large values for

* all these metrics. However, neither Halstead's nor McCabe's metrics offered any substantial improvement over
the simple 'PLI' count as predictors of effort.

[KnigS5a] Abstract: This paper describes an experiment in which simple syntactic alterations were introduced
into program text in order to evaluate the testing strategy known as error seeding. The experiment's goal was to
determine if randomly placed syntactic manipulations can produce failure characteristics similar to those of indi-

• genous errors found within unseeded programs. As a result of a separate experiment, several programs were
available, all of which were written to the same specifications and thus were intended to be functionally
equivalent programs allowed the influence of individual programmer styles to be removed as a variable from the
error seeding experiment. Each of six different syntactic manipulations were introduced into each program and
the mean times to failure for the seeded errors were observed. The seeded errors were found to have a broad
spectrum of mean times to failure independent of the syntactic alteration used. We conclude that it is possible to
seed errors using only simple syntactic techniques that are arbitrarily difficulty to locate. In addition, several
unexpected results indicate that some issues involved in error seeding have not been addressed previously

* 281



August 9, 1989

[Knlgg5b] Abstract: Symbolic execution is the execution of a computer program with symbolic rather than
actual values. It has been proposed as a method of proving that a program is correct but has only been applied
previously to sequential programs. The introduction of concurrency into programming languages provides many
new opportunities for programming errors, and, because of the nondeterminism, errors in concurrent programs
are often harder to find than errors in sequential programs. In this paper we discuss a system than symbolically
executes concurrent programs. Rather than deal with concurrency in general, the system described here deals
with the concurrent aspects of a specific programming language; namely Ada. We chose deliberately to investi-
gate all the detail of an actual programming language, and we chose Ada because of its modem design and
expected widespread use. Our goal was to attempt the symbolic execution of the concurrent features of Ada to
see whether useful diagnostic information about erroneous Ada programs could be generated. The system
described is partially implemented and correctly identifies errors that are not caught by compilers.

[Knigg6a] Abstract: N-version programming has been proposed as a method of incorporating fault-tolerance
into software. Multiple versions of a program (i.e., "N") are prepared and executed in parallel. Their outputs are
collected and examined by a voter, and, if they are not identical, it assumes that the majority is correct. This
method depends for its reliability improvement on the assumption that programs that have been developed
independently will fail independently. In this paper, an experiment is described in which the fundamenal axiom
is tested. A total of 27 versions of a program were prepared independently from the same specification at two
universities and then subjected to one million tests. The results of the tests revealed that the programs were indi-
vidually extremely reliable but that the number of tests in which more than one program failed was substantially
more than expected. The results of these tests are presented along with an analysis of some of the faults tmat were
found in the programs. Background information on the programmers used is also summarized. The conclusion
from this experience is that N-version programming must be used with care and that analysis of its reliability
must include the effect of dependent errors.

[Knut7l] Summary: A sample of programs, written in FORTRAN by a wide variety of people for a wide variety
of applications, was chosen 'at random' in an attempt to discover quantitatively 'what programmers really do.'
Statistical results of this survey are presented here, together with some of their apparent implications for future
work in compiler design. The principal conclusion which may be drawn is the importance of a program 'profile,'
namely a table of frequency counts which record how often each statement is performed in a typical run; there
are strong indications that profile-keeping should become a standard practice in all computer systems, for casual
users as well as system programmers. This paper is the report of a three month study undertaken by the author
and about a dozen students and representatives of the software industry during the summer of 1970. It is hoped
that a reader who studies this report will obtain a fairly clear conception of how FORTRAN is being used, and
what compilers can do about it.

[Knut73] Abstract: A procedure recently devised by A. Nahapetian, for reducing the number of measurements
needed to determine all the execution frequencies in a computer program, is shown to be optimal, by interpret-
ing the procedure in a new way.

[Kopp76] Abbreviated Introduction and Summary: The Process Design Engineering Program, under the direc-
tion of the Ballistic Missile Defense Advanced Technology Center, has as its objective the development of a uni-
fied software engineering discipline addressing all software development problems from receipt of software
requirements to delivery of the operational software system. During the first two years of this program, initial
process design engineering and management procedures were developed which led to the systematic top-down
development of real-time software processes. A prototype set of software tools to support these procedures was
designed and implemented as Process Design System I (PDS 1), and an experimental BMD baseline software pro-
cess was then designed and implemented using these techniques and tools.

This paper concentrates on some of the features of the Process Design System 2 and the manner in which
its components interact. Special emphasis is placed on the error detection capability of the system and the
characteristics of the Process Design Language (PDL). The current status of PDS and planned future efforts are

282



August 9, 1989

* discussed.

[Koregg] Abstract: A recently developed, experimental, integrated System for Testing And Debugging is
presented. Its testing part supports three data flow coverage criteria. The debugging part guides the programmer
in the localization of faults by generating and interactively verifying hypotheses about their location.

*O [KraugSJ Abstract: This paper describes how software testing using mutation analysis can be performed very
efficiently on an SIMD machine. Mutation analysis provides effective means of determining the reliability of
large software systems. However, the cost of conducting such a software test can be computationally expensive.
Current implementations [of] mutation tools are unacceptably slow and are only suitable for testing relatively
small programs.

Our research has shown that most of the general purpose machine architectures available commercially
0 can be utilized efficiently to carry out cost effective mutation analysis software testing. We have shown this to be

the case for vector-multiprocessors. In this paper, we develop a technique that permits unified scheduling of mul-
tiple mutant programs on a very large SIMD machine. We believe that, for the first time in the field of software
testing, supercomputers with novel architectures can be used to enhance software productivity by employing
techniques like the one proposed in this paper.

[Krie$0] Abstract: ANNA is a proposal to extend Ada to include facilities for formally specifying the intended
behavior of Ada programs (or portions thereof) at all stages of program development. ANNA programs are Ada
programs with formal comments. Formal comments in ANNA consist of virtual Ada text and annotations. The
syntax and semantics of different kinds of annotations are defined: declarative annotations (for variables, sub-
types, subprograms, and packages), statement annotations, exception annotations, and visibility annotations.
ANNA includes a small number of predefined attributes which may appear only in annotations, e.g., access type

* collections.
The lexical structure of ANNA is designed so that the extensions of Ada appear as Ada comments.

ANNA programs are therefore acceptable by Ada translators. The semantics of annotations are defined in terms
of Ada concepts, in particular many annotations are generalizations of the constraint concept. It is therefore a
simple step for the Ada programmer to use ANNA to give formal specifications of programs.

ANNA is intended to provide a formal framework within which different theories of formal specifications
may be applied to Ada. Our proposal omits tasking for the time being.

[Krieg3] Abstract: One of the major concerns in the design of the Ada programming language was software reli-
ability. Rigid rules are stated in the language definition that allow checking of program properties either statically
(i.e., during the compilation) or dynamically (i.e., during the execution). In fact, Ada compilers are required to
perform those checks and give error messages during compilation for static errors, and raise predefined excep-

* tions during execution for dynamic errors. If a dynamic error can be anticipated during compilation, a warning
may be given, but the respective exception must still be raised in case the program is submitted for execution.

[Krie86] Summary: The PROSPECTRA project aims to provide a rigorous methodology for developing correct
software and a comprehensive support system. It is sponsored by the Commission of the European Communi-
ties under the ESPRIT Programme, ref. 390.

The methodology integrates program construction and verification during the development process. User
and implementor start with a formal specification, the interface or "contract". This initial specification is then
gradually transformed into an optimized machine-oriented executable program. The final version is obtained by
stepwise application of transformation rules. These are carried out by the system, with interactive guidance by
the implementor, or automatically by compact transformation tools.

The final version is correct by construction; only the applicability of transformation rules needs to be veri-
fied at each step, assisted by the system. Transformation rules are proved correct, analogously to theorems.
They form the nucleus of an extendible knowledge base, the method bank, together with pre-fabricated program
components, previous program versions, and entire development histories that can be replayed.

* 283



August 9, 1989

The strict methodology of Program Development by Transformation (based on the CIP approach) is com-
pletely supported by the system, enabling the construction of "a priori" correct programs from formal specifica-
tions. However, the system also allows other program development styles where the user assumes responsibility
for unguarded development transitions. Moreover, it will be possible to integrate existing program components
based on their specification, and to develop them further.

The system comprises basic components for the application of individual transformation rules and of com-
pact development methods described as transformation scripts; these provide its real power. Any kind of system
activity is conceptually and technically regarded as a transformation of a "program" at one of the system layers.
This provides for a uniform user interface, reduces system complexity, and allows the construction of system
components in a highly generative way.

[Krugga] Abbreviated Introduction: Significant improvement in software reliability calls for innovative methods
for developing software, determining its readiness for release, and predicting field performance. This paper
focuses on three supporting strategies for improving software quality. First, there is a need for a metric or a set of
metrics to help make the decision of when to release the product for customer shipments. Second, accurately
estimating the duration of system testing, while not directly contributing to reliability, makes for a smoother
introduction of the product to the marketplace.

Finally, achieving significant improvement is easier given the ability to predict field failure rates, or
perhaps more realistically, to compare successive software products upon release. Although this third strategy
will be discussed in this paper, the emphasis will be on choosing the right software reliability metric and confi-
dently managing the testing effort with the aid of software reliability growth models.

[LamS4] Abstract: The method of projections is a new approach to reduce the complexity of analyzing non-
trivial communication protocol entities and communication channels. Protocol entities interact by exchanging
messages through channels; messages in transit may be lost, duplicated as well as reordered. Our method is
intended for protocols with several distinguishable functions. We show how to construct image protocols for
each function. An image protocol is specified just like a real protocol. An image protocol system is said to be
faithful if it preserves all safety and liveness properties of the original protocol system concerning the projected
function. An image protocol is smaller than the original protocol and can typically be more easily analyzed. Two
protocol examples are employed herein to illustrate our method. An application of this method to verify a ver-
sion of the high-level data link control (HDLC) protocol is described in a companion paper.

[Lamb78] Abstract: Increasing the communication between customer and contractor is seen as an effective way
of improving software quality. Experience with a variety of software methods has clearly focused on both the
need for communication and the means of accomplishing it. A methodology for defining software requirements
and design has been developed. It is based, in part, on a synergism of modeling techniques. Experiences with the
methodology have resulted in refinements. Elements of the methodology, experience with it, and current applica-
tions aimed at automating its use are described.

[Lamp77] Abstract: The inductive assertion method is generalized to permit formal, machine-verifiable proofs
of correctness for multiprocess programs. Individual processes are represented by ordinary flowcharts, and no
special synchronization mechanisms are assumed, so the method can be applied to a large class of multiprocess
programs. A correctness proof can be designed together with the program by hierarchical process of stepwise
refinement, making the method practical for larger programs. The resulting proofs tend to be natural formaliza-
tion of the informal proofs that are now used.

[Lamp78] Abstract: The concept of one event happening before another in a distributed system is examined,
and is shown to define a partial ordering of the events. A distributed algorithm is given for synchronizing a sys-
tem of logical clocks which can be used to totally order the events. The use of the total ordering is illustrated with
a method for solving synchronization problems. The algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of synchrony the clocks can become.

284



August 9, 1989

* [Lamp79a] Abstract: A nonassertional approach to proving multiprocess correctness is described by proving
the correctness of a new algorithm to solve the mutual exclusion problem. The algorithm is an improved version
of the bakery exclusion algorithm. It is specified and proved correct without being decomposed into indivisible
atomic operations. This allows two different implementations for a conventional, nondistributed system. More-
over, the approach provides a sufficiently general specification of the algorithm to allow nontrivial implementa-
tions for a distributed system as well.S
[Lamnp79b] Abstract: A formal specification is given for a simple calendar program, and the derivation and
proof of correctness of the program are sketched. The specification is easy to understand, and its correctness is
manifest to humans.

[LampSg] Abstract: Hoare's logical system for specifying and proving partial correctness properties of sequen-
* tial programs is generalized to concurrent programs. The basic idea is to define the assertion (P)S(Q) to mean

that if execution is begun anywhere in S with P true, then P will remain true until S terminates, and Q will be true
if and when S terminates. The predicates P and Q may depend upon program control locations as well as upon
the values of variables. A system of inference rules and axiom schemas is given, and a formal correctness proof
for a simple program is outlined. We show that by specifying certain requirements for the unimplemented parts,
correctness properties can be proved without completely implementing the program. The relation to Pnueli's

* temporal logic formalism is also discussed.

[LampS2] Abstract: Reliable computer systems must handle malfunctioning components that give conflicting
information to different parts of the system. This situation can be expressed abstractly in terms of a group of gen-
erals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger,
the generals must agree upon a common battle plan. However, one or more of them may be traitors who will try

* to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement.
It is shown that, using only oral messages, this problem is solvable if and only if more than two-thirds of the gen-
erals are loyal; so a single traitor can confound two loyal generals. With unforgetable written messages, the prob-
lem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable com-
puter systems are then discussed.

* [Lampg3J Abstract: A method for specifying program modules in a concurrent program is described. It is based
upon temporal logic, but uses new kinds of temporal assertions to make the specifications simpler and easier to
understand. The semantics of the specifications is described informally, and a sequence of examples are given
culminating in a specification of three modules comprising the alternating-bit communication protocol. A formal
semantics is given in the appendix.

* [Lamp$4] Abstract: Generalized Hoare Logic is a formal logical system for deriving invariance properties of
programs. It provides a uniform way to describe a variety of methods for reasoning about concurrent programs,
including noninterference, satisfaction, and cooperation proofs. We describe a simple meta-rule of the General-
ized Hoare Logic - the Decomposition Principle - and show how all these methods can be derived using it.

[Land77] Abstract.- Modeling of systems featuring hardware and software faults is studied as a means of evaluat-
ing the availability and reliability characteristics. The case of a non-redundant computer is studied and it is
shown that the unavailability presents an overshoot with respect to its asymptotic value whose height and length
are functions of the failure rates associated with the different design errors. Also, a fault-tolerant system is stu-
died that includes protective redundancies at the hardware and software levels.

[Land86] Abbreviated Introduction: The Naval Research Laboratory sponsored this workshop to invigorate
*5 research in both program verification and program testing through cross-fertilization, to document the state of

the art and practice in both areas, and to identify current assurance requirements and techniques for meeting
them. Tutorials characterizing the current state of testing and proving techniques and identifying industry and

* 285



August 9, 1989

government assurance requirements provided a common basis for five discussion groups. These groups
addressed (1) the role of specifications in testing and proving, (2) hybrid approaches of testing and proving, (3)
levels of assurance, (4) interactions between testing/proving and software engineering, and (5) cost effectiveness.

[Lapr84] Abstract: This paper deals with the evaluation of the dependability (considered as a generic term,
whose main measures are reliability, availability, and maintainability) of software systems during their opera-
tional life, in contrast to most of the work performed up to now, devoted mainly to development and validation
phases.

The failure process due to design faults, and the behavior of a software system up to the first failure and
during its life cycle are successively examined. An approximate model is derived which enables one to account
for the failures due to the design faults in a simple way when evaluating a system's dependability. This model is
then used for evaluating the dependability of 1) a software system tolerating design faults, and 2) a computing sys-
tem with respect to physical and design faults.

[Lask79] Summary: A real-environment interactive testing procedure is presented which is based upon a
hierarchical decomposition of a program into levels of abstraction. Such a decomposition is defined in terms of a
program model which involves both control and data flow. The testing strategy adopted is supposed to follow a
typical progress of a programmer which carries out a series of experiments with his program. Several semantical
and structural issues involved are discussed.

[Lask82] Abstract: A structural approach to testing employing properties of data flow in a program is proposed.
The basic notion introduced is that of data context of a program block. It represents the set of all tuples of defini-
tions of the block arguments that are simultaneously live when the control reaches the block. Two testing stra-
tegies have been proposed: block testing, exercising every block of all its elementary contexts and d-tree testing
exercising the definition tree rooted at an elementary contest of the stop/exit instruction.

[Lask83] Abstract- Some properties of a program's data flow can be used to guide program testing. The
presented approach aims to exercise use-definition chains that appear in the program. Two such data oriented
testing strategies are proposed; the first involves checking liveness of every definition of a variable at the point(s)
of its possible use; the second deals with liveness of vectors of variables treated as arguments to an instruction or
program block. Reliability of these strategies is discussed with respect to a program containing an error.

[Lask86] Abstract: A codefinition is a set of definitions in the program that simultaneously reach an instruction
in it. Codefinitions are used in data-based program testing. An intraprocedural iterative algorithm for the deriva-
tion of codefinitions is presented. It has been applied in a data-based testing tool recently implemented.

[LaskSSa] Abstract: A program design methodology is presented that advocates the synthesis of tests
hand-in-hand with the design at every stage of program development and uses them for early detection of design
flaws. It involves formal specifications of abstract programs and abstract data refinement that appear in the
design. Main findings: 1) Formalization facilitates black-box and design-based functional testing, 2) Abstract
data testing allows a more natural selection of tests than concrete data testing, 3) Black-box testing leads to signi-
ficant structural coverage, 4) The method can be combined with formal verification.

[Lass79] Abstract: Several examples of simple program schemes are used to study the influence of basic con-
structs on measures of Software Science. A minimal low level language is used in order to build examples which
contain large numbers of the constructs under study. The measures are expressed as functions depending on the
number of conceptually unique input-output operands. They may therefore be evaluated and compared to their
estimators analytically rather than statistically.

(Lass8l] Abstract: The claims that software science could provide an empirical basis for the rationalization of
all forms of algorithm description are shown to be invalid from a formal point of view. In particular, the

286



August 9, 1989

conjectured dichotomy between operators and operands is shown not to hold over a wide class of languages. An
experiment that investigated discrepancies between the level measure and its estimator is described to show that
its failure was due to shortcomings in the theory. One cannot obtain reliable results without tampering with both
measure and estimator definitions.

[Laue79] Summary. Debugging is efficient if it detects all program errors in a short time. This paper discusses
* several techniques for improving debugging efficiency. Attention is given both to the initial debugging and to

acceptance testing in the maintenance stage. A main decision is whether to use top-down or bottom-up debug-
ging, and it is suggested that top-down debugging is more efficient if combined with some of the other techniques.
All the techniques shown are independent of any particular language or debug software.

[LaveSS] Abstract: This paper is a discussion of issues related to the thesis entitled "The Explication of Process-
* Product Relationships in DoD-STD-2167 and DoD-STD-2168 via an Augmented Data Flow Diagram Model."

In particular, the major results of the above thesis are viewed in light of the draft standards DoD-
STD-2167A and DoD-STD-2168 (both dated 1 April 1987), and the issue of development objectives is explored.

The ideas presented in this paper represent the author's opinion and are speculative in nature due to the
fact that, at present, the revised DoD standards are in draft form, and the issue of development objectives has
not yet been thoroughly investigated.

[LawrIl] Abstract: Programming data involving 278 commercial-type programs were collected from 23
medium-to-large-scale organizations in order to explore the relationships among variables measuring program
type, the testing interface, programming technique, programmer experience, and productivity. Programming
technique and programmer experience after 1 year were found to have no impact on productivity, whereas
on-line testing was found to reduce productivity. A number of analyses of the data are presented, and their rela-

* tionship to other studies is discussed.

[L.Do85] Abstract: A trace database model for debugging concurrent Ada programs is presented. In this
approach, trace information is captured in an historical database and queried using Prolog. This model was used
to build a prototype debugger, called Your Own Ada Debugger (YODA). The design of YODA is described and
a trace analysis of a sample program exhibiting misuse of shared data is presented. Because the trace database

* model is flexible and general, it can aid diagnosis of a variety of runtime errors.

[LeacS7] Abstract: A major goal of software engineering research is the development of metrics which measure
the complexity and maintainability of programs, with a small portion of this effort directed specifically towards
programs written in Ada. This paper will focus on two main themes. The first theme will be the development of
metrics that specifically reflect the complexity of programs in Ada. The second theme will be an investigation of

• the theoretical limits of metrics as measures of program complexity in general.

[Lee88] Abstract: So(tware creation requires not only testing during the development cycle b) the development
staff, but also independent testing following the completion of the implementation. Howev.r in the latter case,
the amount of testing that can be carried out is often limited by time and resources. At the very most, indepen-
dent testing can be expected to provide 100% test coverage of the test requirements (or specifications) associated

* with the software element with the minimum of effort. This paper describes a methodology employing Integer
Programming by which the amount of testing required to provide the maximum possible test coverage of the
requirements (for the given test set) is assured while at the same time minimizing the total number of tests to be
included in a test suite. A collateral procedure provides recommendations on Which tests might be eliminated if
less than 100% test coverage of the test requirements is permitted. This latter procedure will be useful in deter-
mining the risk of not running the minimum set of tests for 100% test coverage. A third process selects from the
test matrix the set of tests to be applied to the system following maintenance modifications of any test require-
ments - that is, to provide a submatrix for regression testing. The potential benefits for applying the integer pro-
gramming technique in test data selection is also discussed.

* 287



August 9, 1989

liss8l] Abstract: A new approach for structuring distributed processing systems, called functionally accurate,
cooperative (FA/C), is proposed. The approach differs from conventional ones in its emphasis on handling dis-
tribution-causad uncertainty and errors as an integral part of the network problem-solving process. In this
approach nodes cooperatively problem-solve by exchanging partial tentative results (at various levels of abstrac-
tion) within the context of common goals. The approach is especially suited to applications in which the data
necessary to achieve a solution cannot be partitioned in such a way that a node can complete a task without see-
ing the intermediate state of task processing at other nodes. Much of the inspiration for the FAIC approach
comes from the mechanisms used in knowledge-based artificial intelligence (AI) systems for resolving uncer-
tainty caused by noisy input data and the use of approximate knowledge. The appropriateness of the FA/C
approach is explored in three application domains: distributed interpretation, distributed network traffic-light
control, and distributed planning. Additionally, the relationship between the approach and the structure of
mangement organizations is developed. Finally, a number of current research directions necessary to more fully
develop the FA/C approach are outlined. These research directions include distributed search, the integration of
implicit and explicit forms of control, and distributed planning and organizational self-design.

[Leun88] Abstract: Regression testing is a significant, but largely unexplored topic. In this report, the problem
of regression testing is analysed, and several important notions are introduced: the types of regression testing,
the test case classification according to changes and the regression number. Regression testing can be grouped
into corrective regression testing and progressive regression testing, depending on the stability of the specification.
The test cases can be grouped into five classes: reusable, testable, obsolete, changed and new test cases. A prob-
lem facing all retesters is the proper identification of test classes. The notion of regression number is introduced
as a measure of the number of test cases affected by a single instruction change. A program component called a
retestable unit is proposed to encapsulate the effect of changes on a program. The use of retestable unit may
reduce the effort in test selection for regression testing. An algorithm for computing a retestable unit is given,
and a preliminary experiment on retestable unit is reported. The regression testing problem can be decomposed
into two subproblems: the test selection problem and the test plan update problem. This report presents a solution
to the test plan update problem, which involves the use of a unique data structure for storing program informa-
tion during testing. The data structure allows an easy manipulation of these information for the purpose of classi-
fying the test cases.

[Leve83b] Abstract- With the increased use of software controls in critical real-time applications, a new dimen-
sion has been introduced into software reliability - the "cost" of errors. The problems of safety have become crit-
ical as these applications have increasingly included areas where the consequences of failure are serious and may
involve grave dangers to human life and property. This paper defines software safety and describes a technique
called software fault tree analysis which can be used to analyze a design as to its safety. The technique has been
applied to a program which controls the flight and telemetry for a University of California spacecraft. A critical
failure scenario was detected by the technique which had not been revealed during substantial testing of the pro-
gram. Parts of this analysis are presented as an example of the use of the technique and the results are discussed.

[Leve83c] Abstract: Software is increasingly being used in the control of potentially hazardous systems.
Software fault-tree analysis is a technique for analyzing the logic of software for any potential contribution to sys-
tem mishaps. The technique is described using Ada as an example real-time language. Special consideration is
given to the problems of concurrency and real-time constraints which are common in these types of applications.

[Leve86b] Abstract: Software safety issues become important when computers are used to control real-time,
safety-critical processes. This survey attempts to explain why there is a problem, what the problem is, and what is
known about how to solve it. Since this is a relatively new software research area, emphasis is placed on delineat-
ing the outstanding issues and research topics.

[Leve87] Abstract: The application of Time Petri net modeling and analysis techniques to safety-critical real-
time systems is explored and procedures described which allow analysis of safety, recoverability, and

288



August 9, 1989

* fault-tolerance.

[Lev178] Panel Oerview: Formal methods, i.e., use of mathematical rigor, have been employed by research
computer scientists in their attempt to develop general results for many aspects of computer science, e.g., com-
putational complexity, undecidability, numerical analysis, programming language semantics. Much of this work
has had little impact on those charged with producing working software systems. However, in recent years

* numerous researchers have suggested that by applying formal methods to the realization of systems, the quality
of such systems could be significantly improved. Such formal methods could be applied in the structuring,
specification, verification, and analysis of performance for systems. The position statements below explore the
use of these techniques in the production of systems. The general opinion is that formal methods will ultimately
assume a vital role, but for the present their use will be restricted to particular systems produced by skilled indivi-
duals. The use of the formal methods will gradually increase as the techniques are refined and applied to a larger

• variety of systems, as tools are developed to support their use, and as the general community becomes better
educated in formal methods.

[LeviS0 Abstract: This thesis presents proof rules for an extension of Hoar's Communicating Sequential
Processes (CSP). CSP is a notation for describing processes that interact through communication, which pro-
vides the sole means of synchronizing and passing information between processes. A sending process is delayed

* until some process is ready to receive the message; a receiving process is delayed until there is a message to be
received. It is this delay that provides synchronization.

A proof of a program is with respect to pre- and post-conditions. A proof of weak correctness shows that
execution of the program beginning in a state satisfying the pre-condition terminates in a state satisfying the post-
condition, providing deadlock does not occur. A proof of strong correctness, in addition, shows that deadlock
cannot occur.

* •A proof of weak correctness has three stages: a sequential proof, a satisfaction proof, and a non-interfer-
ence proof. A sequential proof reflects the efforts of a process running in isolation. A satisfaction proof com-
bines sequential proofs of processes, reflecting the message passing and synchronization aspects of communica-
tion. A non-interference proof shows that no process affects the validity of the proof of another process.

The introduction of the satisfaction proof and our symmetric treatment of send and receive are important
aspects of this thesis. By treating send and receive on an equal basis, we simplify our rules and allow the inclu-

* sion of send in guards.
A sufficient condition for freedom from deadlock is given that depends on the proof of weak correctness;

this is used to prove strong correctness. In general, freedom from deadlock can be very hard to check. There-
fore, we derive special cases in which we can reduce the work needed to verify that a program is free from
deadlock.

We also present an algorithm for globally synchronizing processes; that is, each process can recognize that
* all processes are simultaneously in a given state. It works by recognizing a special class of deadlock. Having this

algorithm allows us to modify programs that deadlock when the post-condition is established, so that they ter-
minate normally.

[Levi8l] Abstract: Proof rules are presented for an extension of Hoare's communicating sequential processes.
The rules deal with total correctness; all programs terminate in the absence of deadlock. The commands send

* and receive are treated symmetrically, simplifying the rules and allowing send to appear in guards. Also given are
sufficient conditions for showing that a program is deadlock free. An extended example illustrates the use of the
technique.

[Levy84] Abstract: A strategy for performing type checking on programs built out of separately compiled parts is
presented. This strategy is used in a programming environment that allows small components of a software sys-

* tem to be reconfigured in different ways. The strategy works by inferring type schemas for all of the undeclared
functions used by a component and then unifying each schema with a program library when a configuration is
built.

* 289



August 9, 1989

[LewS8] Abstract: The complexity of software often affects its reliability. In order to produce reliable software,
its complexity must be controlled by suitably decomposing the software system into smaller subsystems. In this
paper, a software complexity metric is developed which includes both the internal and external complexity of a
module. This allows auialysis of a software system during its development and provides a guide to system decom-
position. The basis of this complexity metric is in the development of an external complexity measure which
characterizes module interaction.

[Li87] Abstract: Software metrics are computed for the purpose of evaluating certain characteristics of the
software developed. A Fortran static source code analyzer, FORTRANL, was developed to study 31 metrics,
including a new hybrid metric introduced in this paper, and applied to a database of 255 programs, all of which
were student assignments. Comparisons among these metrics are performed. Their cross-correlation confirms
the internal consistency of some of these metrics which belong to the same class. To remedy the incompleteness
of most of these metrics, the proposed metric incorporates context sensitivity to structural attributes extracted
from a flow graph. It is also concluded that many volume metrics have similar performance while some control
metrics surprisingly correlate well with typical volume metrics in the test samples used. A flexible class of hybrid
metric can incorporate both volume and control attributes in assessing software complexity.

[Lind85] Abbreviated Introduction: This paper describes a specification and validation method that allows vali-
dation tests to be generated in a White-Box fashion and administered in a Black-Box fashion. The paper presents
a specification technique for CAIS that uses an Ada-based description of CAIS facilities. This Abstract
Machine approach to specifying CAIS is summarized. The paper addresses a two-phase approach to developing
validation test from The Abstract description of CAIS. In the first phase, existing testing technology is applied
to isolate needed test data points in terms of the inputs and expected outputs. The second phase converts the test
data points, using further analysis of the specification, into Ada tools that do not rely on data internal to the
Abstract description.

[Lnd88a] Abstract: This analysis tool produces I/O pairs that represent program execution paths. You can use
these pairs as hurdles for program testing and interface validation to overcome.

[Lind88d] Abbreviated Introduction: As the title suggests, this paper is a survey of computer support for formal
reasoning, but primarily from the point of view of software engineering applications. It makes no claim to being
an objective comparison of theorem proving systems per se, nor does it claim to present all the features of the
various systems. Instead, it is intended to be an introduction to existing systems and ongoing research, gathering
together information which has often only appeared before in narrowly distributed technical reports.

[Lnd89] Abstract: In this paper, we report the results of an experimental study of software metrics for a fairly
large software system used in a real-time application. We examine a number of issues, including the mutual rela-
tionship between various software metrics and, more importantly, the relationship between metrics and the
development effort. We report some interesting connections between metrics and the software development
effort.

(Ling79] Table of Contents: Precision Programming. Elements of logical expression. Elements of program
expression, syntax control structures, syntax data structures, syntax system structures, structured programs, pro-
gram execution, program functions, program structures. Reading structured programs. The correctness of struc-
tured programs, verifying structured programs, correctness of prime programs, techniques for proving program
correctness, examples, loop invariants in correctness proofs, formulas for correct structured programs. Writing
structured programs.

[Linn$S] Abstract: IDA Paper P-2035 presents the SDI Architecture Dataflow Modeling Technique (SADMT),
a uniform formal notation for the description of SDI system architectures and the Battle Management and Com-
mand, Control, and Communication (BM/C3) architectures. SADMT is a technique for thinking about and

290



August 9, 1989

* describing architectural processes and structures that use the typing and functional facilities of the Ada program-
ming language. The document defines SADMT and the programming interface to the SADMT Simulation Facil-
ity (SADMT/SF). The issues addressed here are those relevant to providing formal descriptions of system,
structure and behavior for interface consistency checking, system simulation, and system evaluation.

[Llsk75] Abstract: The main purposes in writing this paper are to discuss the importance of formal specifica-
* tions and to survey a number of promising specification techniques. The role of formal specifications both in

proofs of program correctness, and in programming methodologies leading to programs which are correct by
construction, is explained. Some criteria are established for evaluating the practical potential of specification
techniques. The importance of providing specifications at the right level of abstraction is discussed, and a partic-
ularly interesting class of specification techniques, those used to construct specifications of data abstractions, is
identified. A number of specification techniques for describing data abstractions are surveyed and evaluated with

* respect to the criteria. Finally, directions for future research are indicated.

[Lite76] Abstract: The paper provide data on Cobol error frequency for correction of errors in student-oriented
compilers, improvement of teaching, and changes in programming language. Cobol was studied because of
economic importance, widespread usage, possible error-inducing design, and lack of research. The types of
errors were identified in a pilot study; then, using the 132 error types found, 1,777 errors were classified in 1,400

• runs of 73 Cobol students. Error density was high: 20 percent of the types contained 80 percent of the total fre-
quency, which implies high potential effectiveness for software-based correction of Cobol. Surprisingly, only four
high-frequency errors were error-prone, which implies minimal error inducing design. 80 percent of Cobol
misspellings were classifiable in the four error categories of previous researchers, which implies that Cobol
misspellings are correctable by existent algorithms. Reserved word usage was not error-prone, which implies
minimal interference with usage of reserved words. Over 80 percent of error diagnosis was found to be inaccu-

* rate. Such feedback is not optimal for users, particularly for the learning user of Cobol.

[Litt73] Summary: A Bayesian reliability growth model is presented which includes special features designed to
reproduce special properties of the growth in reliability of an item of computer software (program). The model
treats the situation where the program is sufficiently complete to work for continuous time periods between
failures, and gives a repair rule for the action of the programmer at such failures. Analysis is based entirely upon

* the length of the periods of working between repairs and failures, and does not attempt to take account of the
internal structure of the program. Methods of inference about the parameters of the model are discussed.

[Litt7'] Abstract: A system is considered in which switching takes place between sub-systems according to a
continuous parameter Markov chain. Failures may occur in Poisson processes in the sub-systems, and in the
transitions between sub-systems. All failure processes are independent. The overall failure process is described

• exactly and asymptotically for highly reliable sub-systems. An application to process-control computer software
is suggested.

[Litt78] Abstract: This paper examines critically, with a view to stimulating a discussion, some concepts which
have been used in early work on software reliability measurement, and suggests improvements and areas of
potentially fruitful future research. It is proposed that hardware-motivated measures such as mttf, mtbf should

• not be used for software without justification, and it is shown that such justification may be lacking under quite
unexceptionable circumstances. Alternative methods of measuring software reliability are proposed. Emphasis
is placed upon differentiating between two concepts of software reliability which are often blurred in the work of
previous authors. These are, on the one hand, the reliability of the program-as-it-is (the number of bugs it con-
tains), on the other, the reliability of the program-as-it-performs (failure rate, distribution of time to next failure,
etc.). It is argued that the latter, here called operations reliability, is the one we should use. Measures of opera-

• tional reliability which avoid use of mttf, etc., are proposed. A case is made for software engineers adopting a
Bayesian stand-point: both in the interpretation of probability statements and in inference procedures. It is sug-
gested that reliability modeling solely in terms of failures (or number of bugs) is unnecessarily naive. Interest

• 291



August 9, 1989

really centers upon the consequences of failures as much as on their frequency. It is proposed that more effort be
devoted to the development of models which incorporate a cost (or utility) structure. Finally, brief consideration
is given to the question of program structure. The enormous success of hardware reliability theory, in combining
component reliabilities with knowledge of system structure, must be emulated for software. Unfortunately,
software structure does not easily lend itself to such an exercise. Some existing models are considered.

[Ltt79J Abstract: The paper treats a modular program in which transfers of control between modules follow a
semi-Markov process. Each module is failure prone, and the different failure processes are assumed to be Pois-
son. The transfers of control between modules (interfaces) are themselves subject to failure. The overall failure
process of the program is described, and an asymptotic Poisson approximation is given for the case when the
individual modules and interfaces are very reliable. A simple formula gives the failure rate of the overall pro-
grams (and hence mean time between failures) under this limiting condition. The remainder of the paper treats
the consequences of failures. Each failure results in a cost, represented by a random variable with a distribution
typical of the type of failure. The quantity of interest is the total cost of running the program for a time t, and a
simple approximation distribution is given for large t. The parameters of this limiting distribution are functions
only of the means and variances of the underlying distributions, and thus are readily estimable. A calculation of
program availability is given as an example of the cost process. There follows a brief discussion of methods of
estimating the parameters of the model, with suggestions of areas in which it might be useful.

[Litt80a] Introduction: It is instructive to look at some of the reasons advanced by software developers for their
reluctance to use software reliability measurement tools. Here are a few common ones:
1. "Software reliability models are statistical. Programs are deterministic. If certain input conditions cause a mal-
function today, then the same conditions are certain to cause a malfunction if they occur tomorrow. Where is
the randomness?"

2. "I am paid to write reliable programs. I use the best programming methodology to achieve this. Software relia-
bility estimation procedures would not help me to improve the reliability of my programs."

3. "We verify our software. When it leaves us it is correct."
4. "I ran your software reliability measurement program on some data from a current project of ours. It said
there was an infinite number of bugs left in the program. Who are you trying to kid?"

5. (same manager as D, but one week later) "We corrected a couple of bugs and ran the reliability measurement
program again. This time it said that there were over 200 bugs left. Infinity minus two equals two hundred? Is
this the new math?"

6. "We put a lot of effort into testing. The selection of test data is a systematic process designed to seek out bugs.
Reliability estimation based on such test data would be no guide to the performance of the program in a use
environment."

7. "We are writing an air traffic control program. Total system crash would be catastrophic. Other failures range
from serious to trivial. Reliability models do not distinguish between failures of differing severity."

Although [the author has] been involved in software reliability modeling for the past decade, and [has him-
self] perpetrated a few models, [he has ] a great deal of sympathy with some of the sentiments expressed above.
[The author has] a feeling that some of the early models have been oversold, that not enough emphasis has been
placed on the underlying modeling assumptions, and that by concentrating on a simple reliability analysis we
might be ignoring wider concerns. In this paper [the author] shall be looking at one common deficiency of early
models anu suggesting a way in which it can be overcome. [The author hopes] that, in passing, some new insight
into the wider issues will be gained.

[LittSOb] Abstract: An examination of the assumptions used in early bug counting models of software reliability
shows them to be deficient. Suggestions are made to improve modeling assumptions and examples are given of
mathematical implementations. Model verification via real-life data is discussed and minimum requirements are
presented. An example shows how these requirements may be satisfied in practice. It is suggested that current
theories are only the first step along what threatens to be a long road.

292



August 9, 1989

S[LitUSla] Abstract: An assumption commonly made in early models of software reliability is that the failure rate
of a program is a constant multiple of the (unknown) number of faults remaining. This implies that all faults con-
tribute the same amount to the overall failure rate of the program. The assumption is challenged and an alterna-
tive proposed. The suggested model results in earlier fault fixes having a greater effect than later ones (the faults
which make the greatest contribution to the overall failure rate tend to show themselves earlier, and so are fixed
earlier), and the DFR property between fault fixes (assurance about programs increases during periods of failure-

* free operation, as well as at fault fixes). The model is tractable and allows a variety of reliability measures to be
calculated. Predictions of total execution time to achieve a target reliability, and total number of fault fixes to tar-
get reliability, are obtained. The model might also apply to hardware reliability growth resulting from the elimina-
tion of design errors.

[Lohs84] Overview: The importance of the scientific investigations of software design principles is discussed,
* and an experimental investigation of the importance of the design principle of module coupling is described. One

important dimension of coupling, as promoted by the authors of the structured design methodology, is that of
global variable vs. parameterized methods of intermodule communications. It is shown that different proposed
software metrics provide conflicting conclusions as to the preferred method of intermodule communication. The
three experiments reported herein were performed in university software engineering courses taken by graduate
students and upper level undergraduate majors in computer science. They address the effect of global vs.

* parameterized interfaces on system modifiability. While the type of modification being performed significantly
influenced the modifiability of the system, there were no consistent effects due to the type of coupling present in
the system.

[Lond75] Abstract: One person's perspective of program verification and its relation to some aspects of reliable
software are presented. The main verification method of inductive assertions is illustrated with several variations

* of one detailed example; a second example shows a surprisingly simple inductive assertion proof of an iterative
tree traversal example. Briefly discussed also are the implicit assumptions of most verifications, proving termi-
nation, the creating of assertions, and languages in which to write assertions. An abstract overview is given of
existing program verification systems together with a sample list of verified programs. A short bibliography is
included.

* [Lond85] Abbreviated Introduction: The availability of today's powerful personal workstations with high-resolu-
tion bit-map displays and pointing devices makes possible the creation and display of drawings containing a wide
assortment of characters, fonts, icons, and figures, all of which can be continuously moved for realistic anima-
tion. We are currently involved in using such animation to visualize programs and algorithms by creating graphi-
cal snapshots and movies correlated with the programs' actions. Such a facility we hope will provide program-
mers or computer users in general with an understanding of what the programs do, how they work, and why they

* work. It also will give users visual feedback as a program and its parts are being executed. This animation system
will provide pictorial representations of those data structures, at the proper level of abstraction, which are used
by a program. Standard representations of internal data structures, such as linked lists or arrays with separate
index variables, are often insufficient because the viewer must mentally transcribe such representations to the
abstractions involved in the use of those structures. We use the type of diagrams or sketches a programmer draws
at a desk or wallboard, or the kinds of schematic figures found in a programming or data structures text; for-

• tunately, we do not need pictures with exquisite shadings that re-create photographs. Such figures change to
reflect the changes during the execution of the program. People's apparent tendency to understand by visualizing
spatially the abstractions that constitute the intention, or "meaning," of a program is exploited by the system.

[Long77] Abstract: The power industry is becoming increasingly interested in the use of digital computers
within nuclear plant protection of systems in order to satisfy increased safety requirements, provide greater

* operating flexibility, minimize spurious forced outages, and (in conjunction with multiplexing) to meet separation
requirements. However, the development and licensing of these digital safety systems has been hindered to date
by the difficulty of validing software.

293



August 9, 1989

This paper reviews the rationale for safety system software validation requirements. A survey of current
methodologies for the development of software for nuclear power plant safety protection system and their asso-
ciated limitations are provided.

A methodology is then proposed for the development and validation of nuclear power plant safety system
software which may permit a quantitative assessment of its correctness. The main features of the methodology
are: 1) formal specification and documentation procedures coupled with strict software development restric-
tions, and 2) comprehensive testing and program analysis used in conjunction with symbolic execution and
theorem proving techniques to establish correctness. Adoption of multiple specification and dual programming
teams in this methodology introduces a redundancy for easy detection of major design and programming errors.
The latter also significantly reduces the amount of testing effort.

[LonggS] Abbreviation: [This paper] presents a representation for concurrent systems, called a task interaction
graph, that facilitates analysis [of the reliability of concurrent systems]. Our representation is an extension of the
work of Taylor. We have been developing a model of interacting tasks that may considerably reduce the number
of states in concurrency graph representation. We call this representation a Task Interaction Concurrency Graph
(TICG), since it is derived from a Task Interaction Graph (TIG) instead of a control flow representation.

The TICG and TIG models have been designed to capture the rendezvous-like synchronization found in
languages like Ada, Distributed Processes, and CSP. Task interaction graphs represent tasks as sets of regions
and interactions between regions. To date we have developed rules for translating most of the constructs sup-
ported by Ada into the appropriate TIG representation. We have been investigating several kinds of analysis
techniques that can be applied to the TIG and TICG models. Deadlock detection and dangerous parallelism are
just two examples of the kinds of analysis that can be performed using a TICG representation. We are particu-
larly interested in investigating the extension of error sensitive testing techniques to concurrent, real-time sys-
tems.

[Love76] Abstract: Recent work in the field of Software Physics has produced several hypotheses relating the
nature of algorithms to measurable properties on computer programs. One hypothesis is that Halstead's meas-
ure of E, the number of elementary mental discriminations required to implement an algorithm is strongly
related to measurable properties of computer programs. Several experiments have shown a surprising high
correlation between E and such measurable properties of programs as number of bugs, coding times, etc. This
paper will present the results of an independent study to test this hypothesis.

[Love77b] Abstract: A within-subjects experimental design was used to test the effect of two variables on pro-
gram understanding. The independent variables were complexity of control flow and paragraphing of the source
code. Understanding was measured by having the subjects memorize the code for a fixed time and reconstruct
the code verbatim. Also some subjects were asked to describe the function of the program after completing their
reconstruction. The two groups of subjects for the experiment were students from an introductory programming
class and from a graduate class in programming languages.

The major findings were that paragraphing of the source had no effect for either group of sabjects but that
programs with simplified control flow were easier for the computer science students to understand as measured
by their ability to reconstruct the programs. The dependent variable, rated accuracy of their description of the
programs functions, did not differ as a function of either independent variable.

The paper is concluded with a description of the utility of this experimental approach relative to improv-
ing the reliability of software and a discussion of the importance of these findings.

[Luck77] Abstract: Emphasis is placed on the practical problems encounteied in designing automatic program
verifiers and using them as an aid to programming. The paper includes an on-line interactive demonstration of a
verifier and a short survey of the kinds of programs that have been verified so far.

[Luck79a] Abstract: A practical method is presented for automating in a uniform way the verification of Pascal
programs that operate on the standard Pascal data structures Array, Record, and Pointer. New assertion

294



0

August 9, 1989

* language primitives are introduced for describing computational effects of operations on these data structures.
Axioms deffiting the semantics of the new primitives are given. Proof rules for standard Pascal operations on
data structures are then defined using the extended assertion language. An axiomatic rule for the Pascal storage
allocation operation, NEW, is also given. These rules have been implemented in the Stanford Pascal program
verifier. Examples illustrating the verification of programs which operate on list structures implemented with
pointers and records are discussed. These include programs with side effects.

[LuckgOal Abstract: We present a method of formal specification of Ada programs containing packages. The
method suggests concepts and guidelines useful for giving adequate informal documentation of packages by
means of comments.

The method for depends on (1) the standard inductive assertion technique for subprograms, (2) the use of
history sequences in assertions specifying the declaration and use of packages, and (3) the addition of three

* categories of specifications to Ada package declarations: (a) visible specifications, (b) boundary specifications,
(c) internal specifications.

Axioms and proof rules for the Ada package constructs (declaration, instantiation, and function and pro-
cedure call) are given in terms of history sequence and package specifications. These enable us to construct for-
mal proofs of the correctness of Ada programs with packages. The axioms and proof rules are easy to imple-
ment in automated program checking systems. The use of history sequences in both informal documentation

* and formal specifications and proofs is illustrated by examples.

[Luck80b] Abstract.' A method of documenting exception propagation and handling in Ada programs is pro-
posed. Exception propagation declarations are introduced as a new component of Ada specifications, permitting
documentation of those exceptions that can be propagated by a subprogram. Exception handlers are docu-
mented by entry assertions. Axioms and proof rules for Ada exceptions are given. These rules are simple exten-

• sions of previous rules for Pascal and define an axiomatic semantics of Ada exceptions. As a result, Ada pro-
grams specified according to the method can be analyzed by formal proof techniques for consistency with their
specifications, even if they employ exception propagation and handling to achieve required results (i.e., nonerror
situations). Example verifications are given.

[Luck84a] Abstract: A specification language permits information about various aspects of a program to be
• expressed in a precise machine processable form. This information is not normally part of the program itself.

Specification languages are viewed as evolving from modern high level programming languages. This first
step in this evolution is cautious extensions of the programming language. Some of the features of Anna, a
specification language extending Ada, are discussed. The extensions include generalizations of constructs (such
as type constraints) that are already in Ada, and new constructs for specifying subprograms, packages, excep-
tions, and contexts.

* Anna has been designed in collaboration with B. Krieg-Brueckner and 0. Owe.

[Luck85] Abbreviated Introduction: ANNA is a proposal for a specification language, or rather a language in
which one might experiment with specification languages. The work was begun by Bernd Krieg-Brueckner and
myself, and subsequent collaborators have been 0. Owe from Oslo, who worked on the axiomatic semantics,
and Friedrich von Henke who worked on the language reference manual and redesigned some of the finer points

• of the language. S. Sankar, D. Rosenblum, R. Neff, and D. Bryan are currently implementing various prototype
tools for experimentation.

ANNA is an syntactic extension of ADA: it takes a subset of ADA productions and adds more. The
ANNA specifications appear as formal ADA comments. This means ANNA comments can be processed by a
standard ADA tool, which will simply ignore them, and also by special ANNA tools.

All proposed ANNA tools ue an extension of DIANA, and therefore can be interfaced easily with other
• tools in an ADA environment.

ANNA can be used for comparative testing. Comparative testing means comparing the ADA code
against its formal specifications for consistency. Self-checking programs are ones which leave the runtime checks

295



August 9, 1989

compiled from the formal specifications in the program permanently.

[Luck6a] Abstract: This report gives an overview of the current status and plans to construct a prototype
environment of advanced tools for software and hardware development based on the use of wide-spectrum
languages. The wide-spectrum languages include Anna (ANNotated Ada), and TSL (Task Sequencing
Language). The tools described here provide interactive aid at all stages in the system development process. Spe-
cial emphasis is placed on distributed computing, both in providing tools for handling parallelism in the subject
system, and in designing tools that utilize parallelism in the programming environment. Applications of these
tools include requirements analysis, formal specification, rapid prototyping, testing, formal verification and con-
struction of self-testing Ada software for multi-processor systems.

The report describes an existing environment of prototype tools supporting applications of Anna and TSL
to formal specification and testing of Ada software. The new environment tools will be based on component
tools already developed at Stanford and proven to be portable to various Ada environments. All tools are imple-
mented in Ada and are intended to interface with standard components of Ada programming environments.

[Luck87] Abstract: TSL-1 is a language for specifying sequences of tasking events occurring in the execution of
distributed Ada programs. Such specifications are intended primarily for testing and debugging of Ada tasking
programs, although they can also be applied in designing programs. TSL-1 specifications are included in an Ada
program as formal comments. They express constraints to be satisfied by the sequences of actual tasking events.
An Ada program is consistent with its TSL-1 specifications if its runtime behavior always satisfies them. This
paper presents an overview of TSL-1. The features of the language are described informally, and examples illus-
trating the use of TSL-1, both for debugging and specification of tasking programs, are given. A definition of
robust TSL-1 specifications that takes into account uncertainty in runtime observation of behavior of distributed
systems is given. A runtime monitor for checking consistency of an Ada program with TSL-1 specifications has
been implemented. In the future, constructs for defining abstract tasks will be added to TSL-1, forming a new
language, TSL-2, for the specification of distributed systems prior to their implementation in any particular pro-
gramming language.

[MIL85] Scope: This standard prescribes the requirements for the conduct of Technical Reviews and Audits on
Systems, Equipments, and Computer Software.

The following technical reviews and audits shall be selected by the program manager at the appropriate
phase of program development. Each review/audit is generally described in Section 3, Definitions, and more
specifically defined in a separate appendix.

System Requirements Review (SRR)
System Design Review (SDR)
Software Specification Review (SSR)
Preliminary Design Review (PDR)
Critical Design Review (CDR)
Test Readiness Review (TRR)
Functional Configuration Audit (FCA)
Physical Configuration Audit (PCA)
Formal Qualification Review (FQR)
Production Readiness Review (PRR)

Technical Reviews and Audits defined herein shall be conducted in accordance with this standard to the
extent specified in the contract clauses, Statement of Work (SOW), and the Contract Data Requirements List.
Guidance in applying this standard is provided in Appendix J. The contracting agency shall tailor this standard to
require only what is needed for each individual acquisition.

[MaJoS3] Abstract: In this paper an automated method for testing programs against a formal specification is
presented. The method is based on the view of a software system as a network of modules and data capsules
which are connected via data flows. Modules are specified in terms of their pre- and postconditions, data

296



August 9, 1989

* •capsules are specified in terms of their usage as input and output. For this purpose a special assertion language is
employed. The test procedures derived from the language serve to simulate data capsules and modules when test-
ing, generating arguments and validating results.

[MandSS] Abstract: Multitasking is one of the most novel aspects of Ada. However, the combination of
language primitives for concurrent execution of tasks, synchronization, termination, abortion, exception han-

* ding, etc. make Ada programs difficult to understand and analyze. This is partly due to the inherent complexity
of the language and partly due to the lack of a rigorous definition of its semantics. The Ada Reference Manual
describes semantics in informal English prose; as a result, it is often verbose and ambiguous.

The goal of this paper is not to provide a complete formal semantics of Ada multitasking. Rather, we illus-
trate the use of a semi-formal approach based on (timed) Petri nets which support a rigorous description of the
language. The approach is described by stepwise refinements and is used to describe several cases of task interac-

* tions, ranging from simple to complex ones. The proposed approach can easily be applied in the description of
other multitasking problems not covered in this paper.

[Mazm7O] Abstract: The problem of convergence, correctness, and equivalence of computer programs can be
formulated by means of the satisfiability or validity of certain first-order formulas. An algorithm is presented for
constructing such formulas for functional programs, i.e. programs defined by Lisp-like conditional recursive

* expressions.

[Mann74] Contents: The chapters of this book discuss the following topics. Computability: Finite automata;
Turing machines; Turing machines as acceptors; Turing machines as Generators; Turing machines as algo-
rithms. Predicate Calculus: Basic notions; Natural deduction; The resolution method. Verification of Programs:
Flowchart programs; Flowchart programs with arrays; Algol-like programs. Flowchart Schemas: Basic notions;

* •Decision problems; Formalization in predicate calculus; Translation problems. The Fixpoint Theory of Pro-
grams: Functions and functionals; Recursive programs; Verification methods.

[Mann78] Abstract: This paper explores a technique for proving the correctness and termination of programs
simultaneously. This approach, the intermittent assertion method, involves documenting the program with asser-
tions that must be true at some time when control passes through the corresponding point, but that need not be

* true every time. The method, introduced by Burstall, promises to provide a valuable complement to the more
conventional methods.

The intermittent-assertion method is presented with a number of examples of correctness and termination
proofs. Some of these proofs are markedly simpler than their conventional counterparts. On the other hand, it is
shown that a proof of correctness or termination by any of the conventional techniques can be rephrased directly
as a proof using intermittent assertions. Finally, it is shown how the intermittent-assertion method can be applied

* to prove the validity of program transformations and correctness of continuously operating programs.

[Mathg7a] Abstract: Several techniques have been developed in the past for improving the vectorization level of
a program for fast execution on a vector processor like the Cray X/MP, Cyber 205 or Alliant FX/8. Most of these
techniques are generally embedded in the language compilers of the vector machine, thereby making it easier for
the programmer to benefit from them.

[Math87b] Abstract: In [Math87a] a program transformation technique is presented that aids in inducing vectori-
zation in a given program P. This technique has applications in several areas including software testing using
mutation analysis and in scheduling computations in an arbitrary program on an SIMD machine.

In this paper we provide a formulation of this transformation technique. The technique itself can be used
to transform a given program P, desired to be executed on N data sets, to another program VP. Instead of execut-

* ing P sequentially over the N data sets, VP executes concurrently over all the N data sets. The transformation
rules are such that even though P may not yield well to vectorization, VP will.

297



August 9, 1989

[Mathg8a] Abstract: In this paper we describe a new methodology to merge a large number of program mutants
into a small set of highly vectorizable programs. Mutants are generated when using the mutation analysis software
testing method. Although mutation analysis is a simple and effective software testing methodology, it is computa-
tionally intensive. This becomes a major factor to be reckoned with when testing large programs.

The technique described in this paper enables a tester to exploit the architecture of vector processors, like
the Cray X-MP or the Alliant FX/8 for efficient execution of all the mutants.

An analysis of the technique is presented elsewhere. The analysis aids a tester is estimating in advance the
speed up that can be expected if program unification is employed. The speed up compares the time to execute a
unified set of mutants with the time to execute the same set of mutants serially.

[Maug85 Abstract.- In this paper, we present the main concepts used in our symbolic debugger for Ada.
Described also is a companion tool, the Ada Program VIEWer, which gives users full access to program source
while debugging. This debugger is one of the components of the Alsys tool set which aims at providing high-level
Ada-oriented tools, incorporating state-of-the-art techniques for software design, documentation, and develop-
ment.

[Mayf85] Abstract: The Second Workshop identified current issues in Ada Verification and focused on what is
needed to build the foundation of an Ada Verification Technology. IDA Workshops will continue to be a meeting
place for accessing the current state-of-the-art, identifying promising research areas, monitoring ongoing verifi-
cation work, promoting the use of the evolving technology, and ensuring that valuable outputs from one area are
fed into other areas. The desired product of these workshops will be recommendations to various bodies to coor-
dinate and sponsor certain R&D activities. Working groups on special topics were also established.

[Mayf86] Abstract: The Third IDA Workshop was conducted at the Research Triangle Institute, Research Tri-
angle Park, North Carolina on May 14-15, 1986. The theme of the workshop was "Reaching Verifiable Ada Sys-
tems by 1990" and addressed the following:
1. Advances in verification technology
2. Adaptation of current technology in Ada verification systems and methods
3. Broadening the base of support for work in Ada verification
4. Encouraging the participation by larger segments of both the Ada and the verification communities.

A detailed exposition of the Ada formal definition being developed by the European Economic Commun-
ity was presented. This exposition took the form of a series of tutorial presentations (enclosed in this document)
on various aspects of the dynamic and static semantics of the definition and its underlying formalisms. Dr. Har-
lan Mills from IBM's Federal Systems Division was the keynote speaker.

[McCa76] Abstract: This paper describes a graph-theoretic complexity measure and illustrates how it can be
used to manage and control program complexity. The paper first explains how the graph-theory concepts apply
and gives an intuitive explanation of the graph concepts in programming terms. The control graphs of several
actual Fortran program are then presented to illustrate the correlation between intuitive complexity and the
graph-theoretic complexity. Several properties of the graph-theoretic complexity are then proved which show, for
example, that complexity is independent of physical size (adding or subtracting functional statements leaves
complexity unchanged) and the complexity depends only on the decision structure of a program.

The issue of using nonstructured control graphs is given and a method of measuring the "structuredness"
of a program is developed. The relationship between structure and reducibility is illustrated with several exam-
ples.

The last section of this paper deal with a testing methodology used in conjunction with the complexity
measure; a testing strategy is defined that dictates that a program can either admit of a certain minimal testing
level or the program can be structurally reduced.

[McCa77a] Abbreviated Preface: The objective of the study was to establish a concept of software quality and
provide an Air Force acquisition manager with a mechanism to quantitatively specify and measure the desired

298



August 9, 1989

* level of quality in a software product. Software metrics provide the mechanism for the quantitative specification
and measurement of quality.

The first volume describes the process of developing our concept of software quality and what the underly-
ing software attributes are that provide the quality, and defines the metrics which provide a measure of the degree
to which the attributes exist.

The second volume describes the application of the metrics to software products and the validation of the
* metrics' relationship to software quality.

The third volume is a preliminary stand-alone reference document to be used by an acquisition manager to
implement the techniques established during the study.

[McCa79] Abbreviated Introduction: These high costs [for life cycle management of large-scale software sys-
tems] result from characteristics of software that do not necessary relate to the correctness of the implementa-

* tion of a function or how reliably the function operates, but instead relate to "how well" the software is designed,
coded, and documented with respect to maintaining, transferring, modifying, etc., the software. This "how well"
is a major aspect of software quality. This situation identifies a weakness in how the requirements of software sys-
tem developments are defined currently. Emphasis is placed on the functions that must be performed, the
schedule in which the system must be produced, and the cost of producing the system. Little or no attention is
given to identifying what qualities over the life cycle the software system should exemplify. There are two major

• reasons for this focus. First, the initial operation of the system, how correctly and reliably the system performs,
is always important to the sponsor of a development. It provides the first test of not only how well the developer
has done, but also how well the sponsor has done in specifying, monitoring, and controlling the development.
(Cost and schedule are obvious concerns since the system usually must be developed in a constrained period of
time and within a constrained budget.) Second, no standard definition or identification of what qualities the
acquisition manager should consider has been available. No mechanism has existed which would allow an

* acquisition manager to quantitatively specify the quality desired and then measure how well the development was
progressing toward the desired quality. The little consideration given quality to date generally has been very sub-
jective and not followed up by measurement or assurance activities.

The potential life cycle cost savings of standardized concept of software quality and a mechanism for
specifying and measuring software quality are substantial considering the large portion of life cycle costs attri-
buted to the qualities mentioned previously. The subject of this chapter and the next is a concept of software

* quality metrics and their application in a quality management program.

[MeCaBOal Abstract: Software metrics (or measurements) which predict software quality have been refined and
enhanced. Metrics were classified as anomaly-detecting metrics which identify deficiencies in documentation or
source code, predictive metrics which measure the logic of the design and implementation, and acceptance
metrics which are applied to the end product to assess compliance with requirements.

* A Software Quality Measurement Manual was produced which contained procedures and guidelines for
assisting software system developers in setting quality goals, applying metrics and making quality assessments.

(McCagOb] Abstract- Software metrics (or measurements) which predict software quality have been refined and
enhanced. Metrics were classified as anomaly-detecting metrics which identify deficiencies in documentation or
source code, predictive metrics which measure the logic of the design and implementation, and acceptance

• metrics which are applied to the end product to assess compliance with requirements.
A Software Quality Measurement Manual was produced which contained procedures and guidelines for

assisting software system developers in setting quality goals, applying metrics and making quality assessments.

[McCa82a] Abstract: This Guideline presents the various applications of the Structured Testing methodology.
The core of this technique is to avoid programs that are inherently untestable by first measuring and limiting pro-

* gram complexity. The definition and development of a program complexity measure is presented. The complexity
measure is then, in the second phase of the methodology, used to quantify and proceduralize the testing process.
How to apply the techniques to the maintenance process in order to identify the code that must be re-tested after

299



August 9, 1989

making a modification is illustrated.

[McCaS2b] Abstract: This paper deals with the use of Structured Analysis just prior to system acceptance test-
ing. Specifically, the drawing of Data Flow Diagrams (DFDs) was done after integration testing. The DFDs pro-
vided a picture of the logical flow through the integrated system for thorough system acceptance testing. System
test sets were derived from the flows in the DFDs. System test repeatability was enhanced by the matrix which
flowed from the test sets.

[McCa87a] Abstract: This report describes the results of a research and development effort to develop a metho-
dology for predicting and estimating software reliability. A Software Reliability Measurement Framework was
established which spans the life cycle of a software system and includes the specification, prediction, estimation,
and assessment of software reliability. Data from 59 systems, representing over 5 million lines of code, were
analyzed and generally applicable observations about software reliability were made. A detailed approach to the
collection and analysis of reliability data is also presented.

[McCa87b] Abstract: The Guidebook provides detailed procedures for the preparation of software reliability
predictions and estimations on DOD projects. In developing the Guidebook, 59 software systems were examined
and 19 key variables were identified that affected the software reliability of those systems. Procedures to measure
these variables were developed to account for the type of application, development, environment, various
software characteristics (such as modularity and complexity), test technique, test effort and test coverage. A
methodology was also provided to use these measures to predict software fault density and software failure rates.

The Guidebook could be applied by an Air Force acquisition office to help plan for adequate software
reliability early in a project's life, specify achievable software reliability goals in a RFP, evaluate progress toward
those goals at key project milestones and decide when to release the software. The Guidebook could also be used
by the technical staff to establish thresholds for critical measures such as complexity. In addition, the Guidebook
also contains Quality Review and Standards Review Checklists that can be used in conjunction with the software
reliability prediction and estimation methodology. The Quality Review Checklists are used to assess the quality of
the requirements and design representation of the software while the Standards Review Checklist would be
applied to software code. The checklists provide good guidance for ensuring that quality is built into the
software.

[McC178a] Introduction: A frequently stated objective of structured programming is to control program com-
plexity. However, since the notion of complexity is not well understood and the existing techniques for measuring
complexity are crude, it is difficult to determine if indeed structured programming can achieve this objective.
The purpose of this paper is two-fold:
1. to discuss the probable sources of complexity in a well-structured program
2. to present a methodology for measuring and controlling complexity in a well-structured program.

[McC178b] Abbreviated Preface: This book is intended for the programmer in the business community. Its pur-
pose is to present software methodologies and techniques to guide the programmer in developing well-structured
programs. In general, the methodologies discussed are applicable to any higher level programming language
(e.g., ALGOL 60, PL/1, COBOL) that provides the basic constructs required by structured programming.
Explaining how to code well-structured programs is only an ancillary purpose of the book. The primary intent is
to extend the structured programming approach to include the programming process as well as the program
structure. This is accomplished by:
1. Clarifying the meaning of basic software terms such as structured programming, top-down programming, and
bottom-up programming (see chapter 2)

2. Presenting guidelines for selecting and applying an appropriate design methodology for writing a well-struc-
tured program (see chapters 3 and 4)

3 Including program complexity analysis as an integral step in the programming process (see chapter 5).
A commonly stated objective of structured programming is to control program complexity-the issue being

300



August 9, 1989

* that the more complex a program, the more difficult it becomes to understand how the program works. Obvi-
ously, program complexity is a function of program size; but also it is a function of the number of possible pro-
gram execution paths and the control variables that direct path selection. The structured programming approach
attempts to control program complexity by restricting module invocation and, in general, by restricting the use of
control structures. It does not, however, limit the use of control variables other than to suggest that they be
accessed in as few program modules as possible.

* In this book, the complexity issue is confronted by providing a means of quantitatively measuring program
complexity and by inserting complexity control as a postdesign/preimplementation step in the programming pro-
cess. In this way, the programmer can more effectively analyze and control the quality of a program as it is being
developed.

(McGaS~b] Abstract: The availability and quality of computer resources during the software development pro-
* cess has been speculated to have measurable, significant impact on the efficiency of the development process and

the quality of the resulting product. Environmental components such as the types of tools, machine responsive-
ness, and quantity of direct access storage may play a major role in the effort to produce the product and in its
subsequent quality as measured by factors such as reliability and ease of maintenance.

During the past six years, the NASA Goddard Space Right Center has conducted experiments with
software projects in an attempt to better understand the impact of software development methodologies,

* environments, and general technologies on the software process and product. Data has been extracted and
examined from nearly 50 software development projects. The data collection and analysis has been performed
jointly by NASA, the Computer Science Department at the University of Maryland, and the Computer Science
Corp. The projects have varied in size from 3000 up to 130,000 lines of code with an average of 60,000 lines of
code. All have been related to the support of satellite flight dynamics ground-based computations. As a result of
changing situations and technology, the computer support environment has varied widely. Some projects

* enjoyed fast response time, archaic tool support, and limited terminal access to the development machine.
This study examined the relationship between computer resources and the software development process

and product as exemplified by the subject NASA data. Based upon the results, a number of computer resource-
related implications are provided.

[McMuS0] Abstract: A compiler-based specification and testing system for defining data types has been
* developed. The system, DAISTS (data abstraction implementation, specification, and testing system) includes

formal algebraic specifications and statement and expression test coverage monitors. This paper describes our
initial attempt to evaluate the effectiveness of the system in helping users produce software. In an exploratory
study, subjects without prior experience with DAISTS were encouraged by the system to develop effective sets of
test cases for their implementations. Furthermore, an analysis of the errors remaining in the implementations
provided valuable hints about additional useful testing metrics.

[McMu83] Abstract: This paper describes our experience in specifying, implementing, and validating a record-
oriented text editor. Algebraic axioms served as the specification notation; and the implementation was tested
with a compiler-based system that uses the axioms to test implementations with a finite collection of test cases.
Formal specifications were sometimes difficult to produce, but helped reveal errors during unit testing. Thorough
exercising of the implementations by the specifications resulted in few errors persisting until integration.

[MediSi] Abstract: This paper describes an incremental programming environment (IPE) based on compilation
technology, but providing facilities traditionally found only in interpretive systems. IPE provides a comfortable
environment for a single programmer working on a single program.

In IPE the programmer has a uniform view of the program in terms of the programming language. The
program is manipulated through a syntax-directed editor and its execution is controlled by a debugging facility,

• which is integrated with the editor. Other tools of the traditional tools cycle (translator, linker, loader) are
applied automatically and are not visible to the programmer. The only interface to the programmer is the user
interface of the editor.

301



August 9, 1989

[Menl2] Abstract: This paper describes the formal specification and proof methodology employed to demon-
strate that the SIFT computer meets its requirements. The hierarchy of design specifications is shown, from very
abstract descriptions of system function down to the implementation. The most abstract design specifications are
simple and easy to understand, almost all details of the realization having been abstracted out, and can be used to
ensure that the system functions reliably and as intended. A succession of lower level specifications refine these
specifications into more detailed and more complex views of the system design, culminating in the Pascal imple-
mentation. The paper describes the rigorous mechanical proof that the abstract specifications are satisfied by the
actual implementation.

[Meye67] Abbreviated Introduction: Anyone familiar with the theory of computability will be aware that practi-
cal conclusions from the theory must be drawn with caution. If a problem can theoretically be solved by compu-
tation, this does not mean that it is practical to do so. Conversely, if a problem is formally undecidable, this does
not mean that the subcases of primary interest are impervious to solution by algorithmic methods.

The question of detecting improvable programs will appear again later in this paper, but our main concern
will be with a related question: can one look at a program and determine an upper bound on its running time?
Again, a fundamental theorem in the theory of computability implies that this cannot be done. The Theorem
does not imply that one cannot bound the running time of broad categories of interesting programs, including
programs capable of computing all the arithmetic functions one is likely to encounter outside the theory of com-
putability itself.

In the next section we describe such a class of programs, called "Loop programs." Each Loop program
consists only of assignment statements and iteration (loop) statements. Although Loop programs cannot com-
pute all the computable functions, they can compute all the primitive recursive functions.

[MlarS3] Abstract: The consensus in the programming community is that indentation aids program comprehen-
sion, although many studies do not back this up. We tested program comprehension on a Pascal program. Two
styles of indentation were used - blocked and nonblocked - in addition to four possible levels of indentation
(0,2,4,6 spaces). Both experienced and novice subjects were used. Although the blocking style made no differ-
ence, the level of indentation had a significant effect on program comprehension. (2-4 spaces had the highest
mean score for program comprehension.) We recommend that a moderate level of indentation be used to
increase program comprehension and user satisfaction.

[Mill84] Abstract: Many program verification methods are known nowadays: Inductive Assertion Method, Sym-
bolic Execution Method, Subgoal Induction Method, Computational Induction Method, Structural Induction
Method, Fixpoint Theory of Programs. This paper presents a simple classification of them.

[Mll174a] Abstract: A structural basis for the formulation of testcases for given computer programs has been
found to be an effective and efficient strategy. An existing automated program validation system employs these
techniques with good success in minimizing the number of testcases required; this same system permits
automatic identification of testcases in a high proportion of instances. Research aimed at fully automating the
testcase generation process continues.

(MilT75a] Abstract: Structured programming has proved to be an important methodology for systematic program
design and development. Structured programs are identified as compound function expressions in the algebra of
functions. The algebraic properties of these function expressions permit the reformulation (expansion as well as
reduction) of a nested subexpression independently of its environment, thus modeling what is known as stepwise
program refinement as well as program execution. Finally, structured programming is characterized in terms of
the selection and solution of certain elementary equations defined in the algebra of functions. These solutions
can be given in general formulas, each involving a single parameter, which display the entire freedom available

[MlIl7$b] Abstract: Computer software production costs continue to increase-to the point where these costs are
overwhelmingly dominant in the majority of computer applications. At the same time, there is an increasing

302



0I

August 9, 1989

• sense of urgency about software reliability, which must be achieved without significant additional software cost
increases. Techniques for attaining suitable levels of implicit software quality and reliability range from program-
ming and managerial disciplines which seek to instill it from the onset of a software system development, to tech-
niques for systematically testing (exercising) software systems. Software testing is a viable technique for com-
pleted (or about-to-be-completed) software systems because: (1) it permits full "validation" of the software sys-
tem, (2) it can approximate a formal program proof of correctness, and (3) it is largely automatable and relatively

* inexpensive.
For very large software systems, or those in particularly crucial applications, it is possible to reduce the

verification, validation, and testing cost by avoiding certain difficult-to-test programming constructs. Some of
these potentially troublesome forms are identified, explanations of the way in which they unnecessarily increase
software testing costs are given, and engineering solutions which seek to avoid these difficulties are given.

* [Mii75c] Abstract: Software quality enhancement can be achieved in the near term through use of a systematic
program testing methodology. The methodology attempts to relate functional software testcases with formal
software specifications as a means to achieve correspondence between the software and its specification. To do
this requires generation of appropriate testcase data.

Automatic testcase generation is based on a priori knowledge of two forms of internal structure informa-
tion: a representation of the tree of subschema automatically identified from within each program text, and a

* representation of the iteration structure of each subschema. This partition of a large program allows for efficient
and effective automatic testcase generation using straightforward backtracking techniques.

During backtracking a number of simplifying, consolidating, and consistency analyses are applied. The
result is either (1) early recognition of the impossibility of a particular program flow, or (2) efficient generation of
input variable specifications which cause the testcase to traverse each portion of the required program flow.

A number of machine output examples of the backtracking facility are given, and the general effectiveness
* Dof the entire process is discussed. in creating correct structured programs. testing cost by avoiding certain diffi-

cult-to-test programming constructs.

[Mfl175d] Abstract: There is no foolproof way to ever know that you have found the last error in a program. So
the best way to acquire confidence that a program has no errors is never to find the first one, no matter how much
it is tested and used. It is an old myth that programming must be an error-prone, cut-and-try process of frustra-

• tion and anxiety. The new reality is that you can learn to consistently write programs which are error free in their
debugging and subsequent use. This new reality is founded in the ideas of structured programming and program
correctness, which not only provide a systematic approach to programming but also motivate a high degree of
concentration and precision in the coding subprocess.

[Ml177a] Abbreviated Introduction: The problems of providing quality assurance for computer software have
0' received a good deal of attention from the computing community. Such areas as program proving, automatic pro-

gramming, structured programming, and hierarchical design/development methodologies have all experienced
significant growth - largely as a result of the increased attention focused on them. Program testing, on the other
hand, has not enjoyed the same level of intensive investigation, even though it has a number of technical and
intuitive appeals.

Both art and theory operate in program testing today. The "art" of program testing suggests new theoreti-
• cal routes which drive the development of additional "theory" which, in turn, drives the accumulation of further

art.
This paper describes some recent efforts to build a bridge linking the theory of program testing with its

practice. Although building that bridge has been a desirable goal, only now has sufficient research insight and
actual testing experience been gained to even begin contemplating the form this practically oriented but strongly
founded bridge can take.

[MIfl77bI Abstract: Automated program testing tools can have significant utility in a formal program testing and
quality assurance activity. It is possible to characterize automated tools by the degree to which they require

303



August 9, 1989

modification of the source programs, and by the level of automation they achieve. Ten categories of automated
testing tools are described functionally and operationally. Commercially available examples of each class of tool
are given. When the data is available, indications of the relative effectiveness of the tool are also given.

[MUI79a] Abstract: The current state of the art in program testing technology is identified in terms of the philo-
sophical underpinnings of software, the theoretical foundations of the field, the tools and techniques that can be
brought to bear in a testing activity, the methods that exist for planning and measuring the testing activity, and the
methods of management and control that exist.

The future needs for program testing technology are identified in three major categories: theoretical foun-
dations, methodology, and automated tools. Over twenty needs for program testing targeted for the 1980s
timeframe are identified in detail.

[MiU79b] Abbreviated Introduction: It has been said that one of the biggest problems in the software quality
assurance community is that program proving techniques appear not to scale up, while systematic testing
methods don't appear to scale down! What's intended here is to observe that systematic testing methods attempt
to deal with "large" phenomena, while program proving techniques deal at a very fine level of detail. Naturally
enough, the outcomes of the two processes will be different.

The objective of this short piece is to present some statistics derived in a relatively large-scale systematic
testing activity and to suggest what some of the implications of those "numbers" might be.

[Mil79c] Abstract: The workshop's general and session chairmen offer their summaries of the challenges to the
software testing community identified at the December meeting.

[MDila] Abbreviated Preface: This is the second edition of Software Testing and Validation Techniques. This
edition updates and amends the set of papers included in the prior edition that was first organized in 1978.

Since that time, there have been several advances of significance in the software testing and validation
field; a number of new papers have been published, and in many ways the field has become more mature and
stable. In addition, the field has become deeper and richer, possibly as the result of increased emphasis on
software quality and on quality assurance. Each year, the number of published papers of significance to software
testing and validation has increased, as has the number of researchers actively involved in the field.

The papers we have added to this edition fall into the boundaries we have previously used to organize the
book: Theoretical Foundations, Static Analysis - Tools and Techniques, Dynamic Analysis - Tools and Tech-
niques, Effectiveness Assessment, Management and Planning, and Research and Development.

[MI181b] Abstract: Comparing the usefulness of methodologies for software development can be especially dif-
ficult when the services offered are based on different philosophies. Two systems, AFFIRM and HDM, were
compared for their application to operation system security analysis. The assessment technique was to specify
and analyze for security flaws on both systems a miniature example of a security kernel. The specification
languages are at the opposite poles of the range from algebraic axioms to transition specifications. The types of
security properties that could be verified with the tools available were access policy invariants and information
flows. One theorem prover was highly interactive and the other nearly automatic. We found that the example
could be specified satisfactorily and recognizably on both systems with a comparable amount of effort. The secu-
rity analyses, on the other hand, led to very different verification tasks and different results. The two results were
complementary rather than contradictory, and some additional experimentation, guided by theoretical suspi-
cions, showed the exact relationship between them.

[Mil84] Abstract: Writing distributed programs is difficult for at least two reasons. The first reason is that distri-
buted computing environments present new problems caused by asynchrony, independent time bases, and com-
munication delays. The second reason is that there is a lack of tools available to help the programmer understand
the program he/she has written. The tools we use for single machine environments do not easily generalize to a
distributed environment. There has been only limited success with previous systems that have tried to help the

304



August 9, 1989

* programmer in developing, debugging, and measuring distributed programs.
To better understand distributed programs we have: specified a model for distributed computations,

developed a measurement methodology from this model, constructed tools to implement the measurements, and
developed data analysis techniques to obtain useful results from the measurements. The most important feature
of the models, methodology, and tools is consistency between the programmers view, the computation model,
the measurement methodology and the analysis.

* This consistency has resulted in several benefits. The first is simplicity of structure throughout the meas-
urement and analysis tools. The second benefit is the ease of obtaining useful information about a programs
behavior.

The model of distributed programs defines the two basic actions of a program to be computation and com-
munication. Our research focuses on the communications performed by a program. The measurement model is
based on the monitoring of communications between the parts of a program. Given our definition of a program,

* monitoring communications completely encapsulates the behavior of a computation. From the measurement
model, we have constructed tools to measure distributed programs for two working operating systems, UNIX
and DEMOS/MP. These measurement tools provide data on the interactions between the parts of a distributed
program.

We have developed a number of analysis techniques to provide information from the data collected. We
can report communications statistics on message counts, queue lengths, and message waiting times. We can per-

• form more complex analyses such as measuring the amount of parallelism in the execution of a distributed pro-
gram. The analyses also include detecting paths of causality through the parts of a distributed program. The
measurement tools and analyses can be constructed so that the results can be fed back into the operating system
to help with scheduling decisions.

[M1118'] Abstract: A new method for estimating the present failure rate of a program is presented. A crude non-
* parametric estimate of the failure rate function is obtained from past failure times. This estimate is then

smoothed by fitting a completely monotonic function, which is the solution of a quadratic programming problem.
The value of the smoothed function at present time is used as the estimate of present failure rate. A Monte Carlo
study gives an indication of how well this method works.

[MillS7a] Introduction: Recent experience demonstrates that software can be engineered under statistical qual-
* ity control and that certified reliability statistics can be provided with delivered software. IBM's Cleanroom pro-

cess has uncovered a surprising synergy between mathematical verification and statistical testing of software, as
well as a major difference between mathematical fallibility and debugging fallibility in people.

With the Cleanroom process, you can engineer software under statistical quality control. As with clean-
room hardware development, the process's first priority is defect prevention rather than defect removal (of
course, any defects not prevented should be removed). This first priority is achieved by using human mathemati-

* cal verification in place of program debugging to prepare software for system test.
Its next priority is to provide valid, statistical certification of the software's quality through representative-

user testing at the system level. The measure of quality is the mean time to failure in appropriate units of time
(real or processor time) of the delivered product. The certification takes into account the growth of reliability
achieved during system testing before delivery.

To gain the benefits of quality control during development, Cleanroom software engineering requires a
* development cycle of concurrent fabrication and certification of product increments that accumulate into the

system to be delivered. This lets the fabrication process be altered on the basis of early certification results to
achieve the quality desired.

[MilhSMb] Abstract: The Interrogator is a Prolog program that searches for security vulnerabilities in network
protocols for automatic cryptographic key distribution. Given a formal specification of the protocol, it looks for

* message modification attacks that defeat the protocol objective. It is still under development, but it has been able
to rediscover a known vulnerability in a published protocol. It is implemented in LM-Prolog on a Lisp Machine,
with a graphical user interface.

305



August 9, 1989

[Misril] Abstract: We present a proof method for networks of processes in which component processes com-
municate exclusively through messages. We show how to construct proofs of invariant properties which hold at
all times during network computations, and terminal properties which hold upon termination of network compu-
tations, if network computation terminates. The proof method is based upon specifying a process by a pair of
assertions, analogous to pre- and post-conditions in sequential program proving. The correctness of network
specification is proven by applying inference rules to the specifications of component processes. Several exam-
ples are proved using this technique.

[Misr83] Abstract: Methods proposed for software reliability prediction are reviewed. A case study is then
presented of the analysis of failure data from a space shuttle software project to predict the number of failures
likely during a mission, and the subsequent verification of the predictions.

[MIya87] Abstract: The Deviation-value (D-value) is a new measure for software data involved during software
development. The D-value provides an alternative to software metrics based upon "per number of lines of code"
such as error rate (number of errors per thousand lines of code) and documentation rate (number of pages of
module design documentation per thousand lines of code). Using D-value, the data of software modules are
much more fairly evaluated than these conventional metrics.

This paper presents the derivation of the D-value using the theoretical background of a control chart
called u chart and weighted regression analysis. The advantage of using the D-value rather than metrics based
upon "per number of lines of code" is demonstrated through an analysis of the data of four projects. The
D-value is used to find the data items which actually relate to software quality, and we find that the quality of each
module measured by D-value becomes better as the documentation rate D-value increases. Finally, using the
theory behind the D-value, a new software acceptance guideline is discussed.

[MIyaXX] Abstract: Effective software reliability evaluation requires theories of software reliability which
define and deal with software reliability quantitatively, technologies for reliability data measurement and data
analysis, techniques to estimate or predict software reliability, and practical reliability evaluation methodologies
which effectively reflect the characteristics of software. This paper addresses the extents to which these require-
ments are currently met, and introduces improved approaches for an effective software reliability evaluation.
Introduced are the methodologies for software reliability evaluation and the software reliability evaluation-aid
tools.

[Mlzu83] Overview: In Japan, people are the key to software quality control. At NEC, members of a QC team
work together to achieve high standards, competing with other teams for awards.

[Moha79] Abstract: Several software quality assessment methods which span the software life cycle are dis-
cussed. The quality of a system design can be estimated by measuring the system entropy function or the system
work function. The quality improvement due to reconfiguration can be determined by calculating system entropy
loading measures. Software science and Zipf's law are shown to be useful for estimating program length and
implementation time. Deterministic and statistical methods are presented for predicting the number of errors.
Testing theory is useful in planning the program test process; as discussed in this paper, it includes measurement
of program structural characteristics to determine test effectiveness and test planning. Statistical models for
estimating software reliability are also discussed.

[Mora7S] Abstract: Estimates of future performance of a software package are obtained from debugging data in
essentially two ways. In one way the record in time of the occurrence of anomalies is used; in this paper three dif-
ferent mathematical models of failure rates are described, together wjW. illustrative predictions of MTTF and of
the total error content using actual trouble report data. A second estimate of performance of a program is by its
"operational reliability" which is obtained through variations of input data according to assumed probability
laws. With respect to this procedure, an outline is given of the goals of some research currently being done at
McDonnell Douglas Astronautics.

306



August 9, 1989

* [Mora78a] Introduction: [The author] found the review by Dennis Geller of the Glenford J. Myers' book,
Software Reliability: Principles and Practices (Computer, October 1977, pp. 117-118), provided excellent coverage
of the principal theme of the book, that being software, vis-a-vis reliability. While [the author concurs] with Mr.
Geller on all of the points which he makes, both favorable and unfavorable, [the authors] own reading of the
book focussed on the reliability aspects of the material presented.

From this perspective there are several comments on the book which [the author offers] for consideration.
• [The author feels] these comments are especially timely, since the Myers' interpretation of reliability, presented

in the first book on the subject, reinforces the erroneous concept that reliability "equates to" perfection.

[Mora78c] Introduction to Comment on "A Review and Evaluation of Software Science," by A. Fitzsimmons
and T. Love: This article raised two questions in my mind: whether the "effort" measure is a good measure of
complexity; and whether the correlation coefficient is a reliable tool for validating the conjectures of software

* science.

[MoraSO] Abstract: Two variations of the Jelinski/Moranda model are described. The first permits estimation
of the error content of the completed software package using data which is taken on only portions of the pack-
age. That model is applicable when the eventual size of the program is known at the outset.

The second model permits a similar analysis during the development of any software package which is
* homogeneous with respect to its complexity (error making/finding).

These models should assist analysts in the determination of error content early on. They should also elim-
inate the present practice of applying models to the wrong regime (decreasing failure rate models applied to
growing-in-size software).

[MoreS7/ A theory of fault-based program testing is defined and explained. Testing is fault-based when it seeks
* to demonstrate that prescribed faults are not in a program. It is assumed that a program can only be incorrect in

a limited fashion specified by associating alternate expressions with program expressions. Classes of alternate
expressions can be infinite. Substitution of an alternate expression for a program expression yields an alternate
program that is potentially correct. The goal of fault-based testing is to produce a test set that differentiates the
program from each of its alternates. A particular form of fault-based testing based on symbolic execution is
presented. In symbolic testing program expressions are replaced by symbolic alternatives that represent classes

* of alternate expressions. The output from the system is an expression in terms of the input and the symbolic
alternative. Equating this with the output from the original program yields a propagation equation whose solu-
tions determine those alternatives which are not differentiated by this test.

[MoreS8] Abstract: Testing is fault-based when its goal is to demonstrate the absence of prespecified faults. This
paper presents a framework that characterizes fault-based testing schemes based on how many prespecified

* faults are considered and on the contextual information used to deduce the absence of those faults. Established
methods of fault-based testing are placed within this framework. Most methods either are limited to finite fault
classes, or focus on local effects of faults rather than global effects. A new method of fault-based testing called
symbolic testing is presented by which infinitely many prespecified faults can be proven to be absent from a pro-
gram based upon the global effect the faults would have if they were present. Circumstances are discussed as to
when testing with a finite test set is sufficient to prove that infinitely many prespecified faults are not present in a

* program.

[Morg86] Abstract: This paper focuses on a reachability graph analyzer (RGA), a tool which provides mechan-
isms for proving general system properties (e.g., deadlock-freeness) as well as system-specific properties. The
tool is sufficiently general to allow a user to apply complex user-defined analysis algorithms to reachability
graphs. The alternating-bit protocol with a bounded channel is used to demonstrate the power of the tool and to

* point to future extensions.

[Morg87] The introduction of concurrency into programs has added to the complexity of the software design

307



August 9, 1989

process. This is most evident in the design of communications protocols where concurrency is inherent to the
behavior of the system. The complexity exhibited by such software systems makes more evidence the need for
computer-aided tools for automatically analyzing behavior.

The Distributed Systems project at UCI has been developing techniques and tools, based on Petri nets,
which support the design and evaluation of concurrent software systems. Techniques based on constructing
reachability graphs that represent projections and selections of complete state-spaces have been developed. This
paper focuses attention on the computer-aided analysis of these graphs for the purpose of proving correctness of
the modeled system. The application of the analysis technique to evaluating simulation results for correctness is
discussed. The tool which supports this analysis (the reachability graph analyzer, RGA) is also described. This
tool provides mechanisms for proving general system properties (e.g., deadlock-freeness) as well as system-
specific properties. The tool is sufficiently general to allow a user to apply complex user-defined analysis algo-
rithms to reachability graphs. The alternating-bit protocol, with a bounded channel, is used to demonstrate the
power of the tool and to point to future extensions.

[Mori83] Abstract: This paper describes techniques for the representation and refinement of visual specifica-
tions in the context of PegaSys (Programming Environment of the Graphical Analysis of SYStems), a system
that supports a visual paradigm for the development and explanation of interactions among the conceptual enti-
ties in a system design. Pictures have a computational meaning that is represented in a formal language, called
the form calculus. The form calculus is extensible in that it contains a core set of primitives which can be used to
build a variety of abstract design models. Complexity is managed by means of picture hierarchies, whose con-
struction is guided by a precise refinement methodology.

The representation and refinement techniques presented here have been implemented and all reasoning is
fully automatic and efficient. Determining the validity of a picture refinement, for example, involves either the
application of a simple graph algorithm or the proof of a formula whose predicates range over small, finite sets.
Excerpts from a sample session with PegaSys are used to illustrate a hierarchy of visual specifications.

[Morr7l] Abstract. An inductive method for proving things about recursively defined functions is described. It
has shown to be useful for proving partial functions equivalent and thus applicable in proofs about interpreters
for programming languages.

[Morr77] Abstract: A new proof method, subgoal induction, is presented as an alternative or supplement to the
commonly used inductive assertion method. Its major virtue is that it can often be used to prove a loop's correct-
ness directly from its input-output specification without the use of an invariant. The relation between subgoal
induction and other commonly used induction rules is explored and, in particular, it is shown that subgoal induc-
tion can be viewed as a specialized form of computation induction. Finally, a set of sufficient conditions are
presented which guarantee that an input-output specification is strong enough for the induction step of a proof by
subgoal induction to be valid.

[MunoS8] Abstract: An approach to software product testing is presented. The approach uses the following
techniques: automatic test case generation, self-checking test cases, black box test cases, random test cases,
sampling a form of exhaustive testing, correctness measurements, and the correction of defects in the test cases
instead of in the product (defect circumvention). The techniques have been cost effective and applied to very
large products.

[Muns89] Abstract: Software complexity metrics attempt to define the unique characteristics of computer pro-
grams in an analytical way. Many such metrics have been developed to explain various perceived differences
among programs. Many studies have been conducted to show the similarity among classes of these metrics. What
is lacking in this body of literature is a technique which will aid in the establishment of the true dimensionality of
the complexity problem space.

The objective of this paper is to examine some recent investigations in the area of software complexity
using factor analysis to begin an exploration of the actual dimensionality of the complexity metrics. This

308



August 9, 1989

* technique can expose the relationships of these many metrics, one to another. Some correlation coefficients
from recent empirical studies on software metrics were factor analyzed, showing the probable existence of five
complexity dimensions within thirty different complexity measures.

[Mura89] Abstract: This paper presents a method for detecting deadlocks in Ada tasking programs using struc-
tural and dynamic analysis of Petri nets. Algorithmic translation of the Ada programs into Petri nets that

* preserve control flow and message flow properties is described. Properties of these Petri nets are discussed, and
algorithms are given to analyze the nets to obtain information about static deadlocks that can occur in the origi-
nal programs. Petri net invariants are used by the algorithms to reduce the time and space complexities associ-
ated with dynamic Petri net analysis (i.e., reachability graph generation).

[Musa7S] Abstract: An approach to a theory of software reliability based on execution time is derived. This
* approach provides a model that is simple, intuitively appealing, and immediately useful.

The theory permits the estimation, in advance of a project, of the amount of testing in terms of execution
time required to achieve a specified reliability goal [stated as a mean time to failure (MTF)]. Execution time can
then be related to calendar time, permitting a schedule to be developed. Estimates of execution time and calen-
dar time remaining until the reliability goal is attained can be continually remade as testing proceeds, based only
on the length of the execution time intervals between failures. The current MTF and the number of errors

* remaining can also be estimated. Maximum likelihood estimation is employed, and confidence intervals are also
employed. The foregoing information is obviously very valuable in scheduling and monitoring the progress of
program testing. A program has been implemented to compute the foregoing quantities.

The reliability model that has been developed can be used in making system tradeoffs involving software
or software and hardware components. It also provides a soundly based unit of measure for the comparative
evaluation of various programming techniques that are expected to enhance reliability.

The model has been applied to four medium-sized software development projects, all of which have com-
pleted their life cycles. Measurements taken of MTTF during operation agree well with the predictions made at
the end of system test. As far as the author can determine, these are the first times that a software reliability
model has been used during software development projects. The paper reflects and incorporates the practical
experience gained.

* [Musa79a] Abstract: This paper investigates the validity of the execution-time theory of software reliability. The
theory is outlined, along with appropriate background, definitions, assumptions, and mathematical relation-
ships. Both the execution time and calendar time components are described. The important assumptions are dis-
cussed. Actual data are used to test the validity of most of the assumptions. Model and actual behavior are com-
pared. The development projects and operational computation center software from which the data have been
obtained are characterized to give the reader some basis for judging the breadth of applicability of the concepts.

[Musa79b] Introduction: Boehm, Brown, and Lipow have characterized the multi-dimensional nature of
software quality in terms of a hierarchy of attributes. One of the high-level attributes is reliability, which they
define qualitatively as the satisfactory performance of intended functions. This definition may be refined to the
quantitative statement "probability of failure-free operation in a specified environment for a specified time." A
"failure" is an unacceptable departure of program operation from program requirements, where, as in the case

* of hardware, "unacceptable" must ultimately be defined by the user. The term "fault" will be used to indicate the
program defect that causes the failure. Several trends have recently combined to escalate the importance of
quantitative software reliability measures:
1. The large and growing number of real-time and interactive systems has increased the operational and cost
impact of failure.

2. The increasing number, size, and complexity of computer networks and distributed processing systems have
* multiplied the risk and effects of failure.

3. The explosive growth of personal computing has created a demand for relatively foolproof software for unso-
phisticated users.

309



August 9, 1989

Measurement is seen to be important as soon as one recognizes that in software as in hardware there can
be too much as well as too little reliability. Improvement of reliability, of course, costs money, and usually
impacts development schedules and system performance (in the case of software, through increased memory,
processing time, and peripherals requirements). The system engineer and the manager have to make design
tradeoffs among the foregoing factors and it is best that this be done in quantitative terms. The need for a quanti-
tative reliability measure continues throughout the development process, particularly during test, since reliability
is a valuable indicator of system status. Finally, reliability or mean-time-to-failure (MTTF) is a useful metric for
characterizing system operation and for controlling change during the maintenance phase. This paper will focus
on the system engineering application, but it will also touch on monitoring the system test phase and controlling
change during maintenance.

[Musag0b] Abstract: The theme of this paper is the field of software reliability measurement and its application.
Needs for and potential uses of software reliability measurement are discussed. Software reliability and hardware
reliability are compared, and some basic software reliability concepts are outlined. A brief summary of the major
steps in the history and evolution of the field is presented. Two of the leading software reliability models are
described in some detail. The topics of combinations of software (and hardware) components and availability are
discussed briefly. The paper concludes with an analysis of the current state-of-the-art and a description of further
research needs.

[Musa4] Abstract: A new software reliability model is developed that predicts expected failures (and hence
related reliability quantities) as well or better than existing software reliability models, and is simpler than any of
the models that approach it in predictive validity. The model incorporates both execution time and calendar time
components, each of which is derived. The model is evaluated using actual models.

[Musa87] Table of Contents: Introduction to software reliability, selected models, applications. Practical Appli-
cation, system definition, parameter determination, project-specific techniques, application procedures, imple-
mentation planning. Theory, software reliability modeling, markovian models, description of specific models,
parameter estimation, comparison of software reliability models, calendar time modeling, failure time adjust-
ment for evolving programs.

[Musa89] Abbreviated Introduction: How do you validate that a piece of software loaded into a processor func-
tions correctly? One traditional answer is that you subject it to a rigorous system test. But there is a fundamental
problem: For any but the most trivial application, the number of distinct input combinations you would need to
verify is enormous - orders and orders of magnitude larger than any number that can be tested exhaustively.

Furthermore, because of the discrete nature of computer memory and processing, the difference of a sin-
gle input bit out of thousands may be all that separates an input combination that runs successfully from one that
doesn't.

How then do you validate software? In hard engineering terms, the answer is that up to now you really
haven't. There is a lot of lore about system testing, but it all boils down to guesswork. That is, it is guesswork
unless you can structure the problem and perform the testing so that you can apply mathematical statistics.

If you can do this, you can say something like "No, we cannot be absolutely certain that the software will
never fail, but relative to a theoretically sound and experimentally validated statistical model, we have done suffi-
cient testing to say with 95-percent confidence that the probability of 1,000 CPU hours of failure-free operation in
a probabilistically defined environment is at least 0.995."

When you do this, you are applying software-reliability measurement. In this situation, this is the best you
can do. For purists, this may not be a satisfactory answer to our initial question. But with software-reliability
measurement, you do not deal explicitly with the vastness, discreteness, and discontinuity of a program input
space - you sidestep these imponderables by using statistics to provide concrete, quantitative guidance.

In this article, we define the basic concepts of software-reliability measurement and show you how to use
them in software validation.

310



August 9, 1989

* [Muss79] Abstract: This paper describes the data type definition facilities of the AFFIRM system for program
specification and verification. Following an overview of the system, we review the rewrite rule concepts that form
the theoretical basis for its data type facilities. The main emphasis is on methods of ensuring convergence (finite
and unique termination) of sets of rewrite rules and on the relation of this property to the equational and induc-
tive proof theories of data types.

• [Myer77] Abstract: A recent paper has described a graph-theoretic measure of program complexity, where a
program's complexity is assumed to be only a factor of the program's decision structure. However, several
anomalies have been found where a higher complexity measure would be calculated for a program of lesser com-
plexity than for a more-complex program. This paper discusses these anomalies, describes a simple extension to
the measure to eliminate them, and applies the measure to several programs in the literature.

* [Myer78a] Abstract: This paper describes an experiment in program testing, employing 59 highly experienced
data processing professionals using seven methods to test a small PL/i program. The results show that the popu-
lar code walkthrough/inspection method was as effective as other computer-based methods in finding errors and
that the most effective methods (in terms of errors found and cost) employed pairs of subjects who tested the
program independently and then pooled their findings. The study also shows that there is a tremendous amount
of variability among subjects and that the ability to detect certain types of errors varies from method to method.

[Myer78b] Introduction: Moranda's remarks in The Open Channel in Computer, April 1978, on my book,
Software Reliability: Principles and Practices, fall into two general areas. First, he feels that the book "is not
about software reliability as it has come to be defined." Second, he seems defensive about my "low opinion" (his
words) of probability-based models, particularly his model.

* [Myer79] Table of Contents: A Self-Assessment Test. The Psychology and Economics of Program Testing. Pro-
gram Inspections, Walkthroughs, and Reviews. Test Case Design. Module Testing. Higher-Order Testing.
Debugging. Test Tools and Other Techniques.

[MyerS3] Abstract. Many modern computer languages allow the programmer to define and use a variety of data
types. Few programming systems, however, allow the programmer similar flexibility when displaying the data

* structures for debugging, monitoring and documenting programs. Incense is a working prototype system that
allows the programmer to interactively investigate data structures in actual programs. The desired displays can
be specified by the programmer or a default can be used. The default displays provided by Incense present the
standard form for literals of the basic types, the actual names for scalar types, stacked boxes for records and
arrays, and curved lines with arrowheads for pointers. In addition to displaying data structures, Incense also
allows the user to select, move, erase and redimension the resulting displays. These interactions are provided in

* a uniform, natural manner using a pointer device (mouse) and keyboard.

[Myhr68] Abstract: Some specific comparisons are made in this note between the use of the asymptotic Chi-
square distribution of the likelihood ratio and the asymptotic normality of the maximum likelihood estimates to
obtain confidence intervals for reliabilities of arbitrary systems when only failure data on the components is
known. In all the comparisons made, using moderate samples and systems of average complexity, the asymptotic

* Chi-square appears to give much more accurate confidence intervals. Although the asymptotic Chi-square
method requires more computation for most systems than does the method based on asymptotic normality, these
examples indicate the Chi-square method would yield superior results in most practical instances.

[NBS82sa] Abstract: Thirty techniques and tools for validation, verification, and testing (V,V&T) are described.
Each description includes the basic features of the technique or tool, the input, the output, an example, an

* assessment of the effectiveness and usability, applicability, an estimate of the learning time and training, an esti-
mate of needed resources, and references.

311

S t "



August 9, 1989

[NBSg2b] Abstract.- Thirty techniques and tools for validation, verification, and testing (V,V&T) are described.
Each description includes the basic features of the technique or tool, the input, the output, an example, an
assessment of the effectiveness and usability, applicability, an estimate of the learning time and training, an esti-
mate of needed resources, and references.

[Nage84] Abbreviated Summary: This report documents the second of two studies performed by Boeing Com-
puter Services on modeling the process of software error detection from the results of experiments specifically
designed to complement this activity. The experiments consist of simulations conducted on code prepared under
controlled conditions and executed with randomly selected inputs. Six codes were developed in the first study
and this study continues the experiment with six more. The code is initialized to an original state and flexed with
independently generated random inputs. Errors are corrected as they are encountered until a stopping rule is
satisfied. Replicati 3n is introduced by repeating the entire process from initialization.

The n- - - as study explored the effects of programmer and problem as experimental design factors on the
err, ..- .re. The current study enlarges this set of factors by varying the experience level of the programmer
and the relative frequency or usage of the program units. The use of FORTRAN is contrasted with the use of a
micro-based assembler language as another design factor. All of these factors, not surprisingly, affected perfor-
mance and some very tentative relational hypotheses are suggested.

An analytic framework for replicated and non-replicated (i.e., traditional) software experiments is ini-
tiated in this study in order to present the results in a meaningful context. A method of obtaining an upper bound
on the error rate of the next error is proposed. Two other forecasting methods are proposed. One based on a
crude approximation to the proportional hazards model. The other subtracted the observed error probability
and the program's success rate from one to estimate the remaining error rate.

[Naka89] Abstract: Many simple software errors are found in earlier software test phases. The ratio of complex
errors to simple errors gradually increases with continual testing. This paper describes a software reliability
model called the Error Complexity Model. In this model, errors are classified by error complexity which is a
measure of error detectability. The number of remaining software errors is estimated from the ratio of complex
to simple errors and the number of discovered errors. New criteria for error complexity classification are pro-
posed. The model is evaluated and compared with existing models using actual error data.

[Naur69] Abstract: The paper describes a programming discipline, aiming at the systematic construction of pro-
grams from given global requirements. The crucial step in the approach is the conversion of the global require-
ments into sets of action clusters (sequences of program statements), which are then used as building blocks for
the final program. The relation of the approach to proof techniques and to programming languages is discussed
briefly.

[Nels78] Abstract: Recent work on software reliability associates correct execution of a test case with a statisti-
cal inference that the program will execute correctly for a specified subset of inputs. Test cases can be designed
so that their associated subsets cover the entire input domain, allowing reliability estimates to be made for
expected operational use profiles.

[Ng78] Summary: This paper reports a FORTRAN post mortem dump system (PMD) for the ICL 1900 comput-
ers. The system, jointly implemented by Birmingham and Liverpool Universities, can perform a core/storage
dump in terms of the original FORTRAN source following the segment (subroutines, etc.) history of execution
when the program fails to terminate successfully The compilation overheads of the new system are very low and
the execution overheads practically none.

[Nico87] Abstract: In this paper we consider the queueing analysis of a fault-tolerant computer system. The
failure/repair behavior of the server is modeled by an irreducible continuous-time Markov chain. Jobs arrive in a
Poisson fashion to the system and are serviced according to FCFS discipline. A failure may cause the loss of the
work already done on the job in service, if any; in this case the interrupted job is repeated as soon as the server is

312



0

August 9, 1989

* ready to deliver service. In addition to the delays due to failures and repairs, jobs suffer delays due to queueiag.
We present an exact queueing analysis of the system and study the steady state behavior of the number of jobs in
the system. As a numerical example, we consider a system with two processors subject to failures and repairs.

[Noon75] Abstrau In the author's view structured programming consists of the use of the following: structure,
abstraction, and specification. The purpose of this paper is to develop formal specifications for a nontrivial pro-

* gram in order to facilitate a proof of correctness. It is shown how the specifications serve as an abstraction for
the program. A proof of correctness then consists of merely showing that the program at each level meets its for-
mal specifications. Under this methodology lower levels of the program can be changed without affecting higher
levels.

[Nta[79] Abstract: In this paper various path cover problems, arising in program testing, are discussed. Dil-
* worth's theorem for acyclic digraphs is generalized. Two methods for finding a minimum set of paths (minimum

path cover) that covers the vertices (or the edges) of a digraph are given. To model interactions among code seg-
ments, the notions of required pairs and required paths are introduced. It is shown that finding a minimum path
cover for a set of required pairs is NP-hard. An efficient algorithm is given for finding a minimum path cover for
a set of required paths. Other constrained path problems are considered and their complexities are discussed.

* [Ntafila] Abstract: In this paper, we introduce required element testing and report on an experimental com-
parison of this strategy with branch and random testing. The required element testing strategy studied here uses
data flow information to generate a set of required elements for a program. The comparison with branch and ran-
dom testing is performed using mutation analysis as a measure of test set adequacy.

[NtafSlb Abstract: Certain graph theoretic problems dealing with the testing of structured programs are
* treated. A structured digraph is a digraph that represents a structured program. A labeling procedure which

characterizes structured digraphs is described. An efficient algorithm for finding a minimum path cover for the
vertices of digraphs that belong to an important family of structured digraphs is given. To model interactions
among code segments the notions of "required pairs" and "must pairs" are introduced and the corresponding
constrained path cover problems are shown to be NP-complete even for acyclic structured digraphs.

* [Ntat82] Abstract: Two classes of program testing strategies are introduced that consist of specifying a set of
required elements for the program and then covering those elements with appropriate test inputs. In general, a
required element has a structural and a functional component and is covered by a test case if the test case causes
the features specified in the structural component to be executed under the conditions specified in the functional
component. Data flow analysis is used to specify the structural component, and data flow interactions are used as
a basis for developing the functional component. The strategies are illustrated with examples and some experi-

• mental evaluations of their effectiveness are presented.

[NtafS5] Abstract: In this paper we compare a number of structural testing strategies in terms of their relative
coverage of the program's structure and also in terms of the number of test cases needed to satisfy each strategy.
We also discuss some of the deficiencies of such comparisons.

* [Offu87] Abstract: Mutation analysis is a powerful technique for testing software systems. In the Mothra pro-
ject, conducted at Georgia Tech's Software Engineering Research Center, mutation analysis is used as a basis for
building an integrated software testing environment. Mutation analysis requires the execution of many slightly
differing versions of the same program to evaluate the quality of the data used to test the program. In the current
version of the Mothra system, a program to be tested is translated to intermediate code, where it and its mutated
versions are executed by an interpreter.

* In this paper, we discuss some of the unique requirements of an interpreter used in a mutation-based test-
ing environment. We then describe how these requirements affected the design and implementation of the For-
tran 77 version of the Mothra interpreter. Other topics covered include the architecture of the interpreter and

313



August 9, 1989

many of the design elements that it incorporates. We also describe the intermediate language used by Mothra and
the features of the interpreter that are needed for software testing.

[Ohba84 Abstract: This paper discusses improvements to conventional software reliability analysis models by
making the assumptions on which they are based more realistic. In an actual project environment, sometimes no
more information is available than reliability data obtained from a test report. The models described here are
designed to resolve the problems caused by this constraint on the availability of reliability data. By utilizing the
technical knowledge about a program, a test, and test data, we can select an appropriate software reliability
analysis model for accurate quality assessment. The delayed S-shaped growth model, the inflection S-shaped
model, and the hyperexponential model are proposed.

[Ohba89] Abstract- This paper discusses the improvement of conventional software reliability growth models
by elimination of the unreasonable assumption that errors or faults in a program can be perfectly removed when
they are detected. The results show that exponential-type software reliability growth models that deal with error-
counting data could be used even if the perfect debugging assumption were not held, in which case the interpreta-
tion of the model parameters should be changed. An analysis of real project data is presented.

[Okad82] Abstract: In order to obtain a usable effort estimation for a small scale project, an earlier phase of
CAD/CAM system software development was carefully studied. Upon analysis of data obtained, three addi-
tional attributes other than the number of source statements were taken into account as a basis for the effort esti-
mation. They were 1) complexity, 2) personnel skill and 3) specification volatility. Subsequently, a set of models
for the small project effort estimation was derived. Program size-effort correlations obtained were higher than
0.972. The models were then applied to the consecutive phases of the same project. The fitness between the
estimated effort and the actual effort was satisfactory in a practical sense.

[Olde77] AbstractL Software science techniques have been used to provide a framework for evaluation of prob-
lem solving systems. In that effort, two methods for calculating the level of a language (L and L) were used; it
was suspected that L, while adequate in that application, might be inferior to L. By using a set of hypothetical
languages, each with different intrinsic data structures and operators, it is shown here that when an inappropriate
language is applied to some problems, L may reflect an inaccurately large value for language level, and can some-
times be made to yield an arbitrary value. Since L is often as easily applied as L, and does not exhibit this
anomalous behavior, it is suggested that its general use is to be preferred.

[OldeS3] Abstract: This paper describes a technique for predicting the execution behavior of a source program
or a software design specification. As a by-product of syntactic analysis, a program graph is constructed which
can subsequently be treated as the graph of a finite automaton. The expression for execution behavior is the regu-
lar expression of the graph. Several simplification techniques for these expressions are discussed and exempli-
fied. In particular, the substitution of known values for program segments followed by constant folding cannot be
done indiscriminately; the allowable situations are characterized. Applications include the prediction of execu-
tion time for a program or a software design, other forms of language analysis, and program restructuring.

[Olen86] Abstract: This paper presents a flexible and general mechanism for specifying problems relating to the
sequencing of events and mechanically translating them into dataflow analysis algorithms capable of solving
those problems. Dataflow analysis has been used for quite some time in compiler code optimization. It has
recently gained increasing attention as a way of statically checking for the presence or absence of errors and as a
way of guiding the test selection process. Most static analyzers, however, have been custom-built to search for
the fixed, and often quite limited, classes of dataflow conditions. We show that the range of sequences for which
it is interesting and worthwhile to search is actually quite broad and diverse. We create a formalism for specifying
this diversity of conditions. We then show that these conditions can be modeled essentially as dataflow analysis
problems for which effective solution are known and further show how these solution can be exploited to serve as
the basis for mechanical creation of analyzers for these conditions.

314



S

August 9, 1989

* [Oste76J] Summary: This paper describes DAVE, a system for analyzing Fortran programs. DAVE is capable of
detecting the symptoms of a wide variety of errors in programs, as well as assuring the absence of these errors. In
addition, DAVE exposes and documents subtle data relations and flows within programs. The central analytic
procedure used is a depth first search. DAVE itself is written in Fortran. Its implementation at the University of
Colorado and some early experience are described.

* [Oste76b] Abstract: This paper describes DAVE, an automatic program testing aid which performs a static
analysis of Fortran programs. DAVE analyzes the data flows both within and across subprogram boundaries of
Fortran programs, and is able to detect occurrences of uninitialized and dead variables in such programs. The
paper shows how this capability facilitates the detection of a wide variety of errors, many of which are often quite
subtle. The central analytic mechanism in DAVE is a depth-first search procedure which enables DAVE to exe-
cute efficiently. Some experiences with DAVE are described and evaluated and some future work is projected.

[Oste77] Abstract: An unfortunate characteristic of current static analysis algorithms is their apparent inability
to distinguish between executable and unexecutable program paths. The definitive determination of executability
of a given path has long been known to be unachievable. This paper presents some heuristics for detecting cer-
tain classes of unexecutable paths and preliminary findings tending to indicate that the heuristics can be expected
to be rather effective. The heuristics are based upon the application of existing static data flow analysis algo-

• rithms and hence offer hope of coexisting with and guiding diagnostic and optimization scans which also use data
flow analysis.

[OsteSO] Abstrac* This paper presents an approach to integrating four techniques for testing, analysis and verif-
ication into one overall strategy for incrementally raising the confidence in software in a cost-effective way. The
paper summarizes the strengths, weaknesses, and operational characteristics of dynamic testing, static analysis,

• symbolic execution and formal verification. It uses a detailed example as an illustration. Next the integrated stra-
tegy is presented. Finally, there is a discussion of how this strategy can be used to raise confidence in software
requirements and design specifications as well.

[OsteS3] Abstract: This paper discusses the goals and methods of the Toolpack project and in this context
discusses the architecture and design of the software system being produced as the focus of the project. Toolpack

*5 is presented as an experimental activity in which a large software tool environment is being created for the pur-
pose of general distribution and then careful study and analysis. The paper begins by explaining the motivation
for building integrated tool sets. It then proceeds to explain the basic requirements that an integrated system of
tools must satisfy in order to be successful and to remain useful both in practice and as an experimental object.
The paper then summarizes the tool capabilities that will be incorporated into the environment. It then goes on
to present a careful description of the actual architecture of the Toolpack integrated tool system. Finally the

* Toolpack project experimental plan is presented, and future plans and directions are summarized.

(Oste4] Abstract: This paper presents a view of how various testing, analysis and debugging techniques can be
integrated into a tool supported methodology. The paper is composed of two major components. In the first, the
techniques are described in detail, compared and contrasted. An integrating methodology is proposed. The
second component of the paper deals with Toolpack, a specific ensemble of tools having goals similar to those

* described in the first component, and IST, the Integrated System of Tools, an integration strategy for these tools.
This second part of the paper indicates how Toolpack/IST could be configured into a system capable of imple-
menting the integrated strategy of the first section in an efficient, effective way.

[OsteS] Abbreviated Introduetion: In this paper we have suggested that the notion of a "process program"
-namely an object which has been created by a development process, and which is itself a software process

• description-should become a key focus of software engineering research and practice. We believe that the
essence of software engineering is the study of effective ways of developing process programs and of maintaining
their effectiveness in the face of the need to make changes.

315



August 9, 1989

The main suggestions presented here revolve around the notion that process programs must be defined in
a precise, powerful and rigorous formalism, and that once this has been done, the key activities of development
and evolution of both process programs themselves and applications programs can and should be carried out in a
more or less uniform way.

This strongly suggests the importance of devising a process programming language and a software environ-
ment capable of compiling and interpreting process programs written in that language. Such an environment
would become a vehicle for the organization of tools for facilitating development and maintenance of both the
specified process, and the process program itself. It would also provide a much needed mechanism for providing
substantive support for software measurement and management.

[Ostr0] Overview: Testing is the most common way of gaining confidence in the correctness of software.
Despite a long history of practical testing experience, it is only during the last five years that researchers have
attempted to formulate a theoretical foundation for testing.

The initial steps in this direction where taken by Goodenough and Gerhart, who formulated an ambitious
theory which described the conditions under which a program can be determined to be correct by testing.

The problems of a theory based on the concept of ideal tests are of three types: formal unsolvability,
impracticality, and unrealistic assumptions. As we shall see, theories with less ambitious goals as well as various
methodologies used in practice, must also face these problems.

[OstrS4] Abstract: A study has been made of the software errors committed during development of an interac-
tive special-purpose editor system. This product, developed for commercial production use, has been followed
during nine months of coding, unit testing, function testing, and system testing. Detected problems and their
fixes have been described by testers and debuggers. A new fault categorization scheme was developed from these
descriptions and used to classify the 173 faults that resulted from the project's errors. For each error, we asked
the programmers to select its most likely cause, report the stages of the software development cycle in which the
error was committed and the problem first noted, and the circumstances of the problem's detection and isola-
tion, including time required, techniques tried, and successful techniques. The results collected in this study are
compared to results from earlier studies, and similarities and differences are noted.

[Ostr$6] Abstract: The overall goal of software testing is to expose errors that exist in program code. The
specific goal of specification-based or black-box test case design is to create a series of test cases that fully exer-
cise the functionality of the software. To achieve this goal, it is necessary to insure a systematic and comprehen-
sive treatment of the specification. Such a treatment is particularly difficult when the specification is a large,
evolving document, written in a natural language, and test case design is to be performed by a multi-person team.
Even if only some of these factors are present, a strategy is needed to assure that the specification has been com-
pletely considered. As the size of the specification and the test team grows, the need for a tool to manage the
process becomes more pressing. This paper describes a strategy for managing specification-based testing, pro-
poses such a tool, and describes its use.

[OstrSS] Abbreviated Introduction: A method for creating functional test suites has been developed in which a
test engineer analyzes the system specification, writes a series of formal test specifications, and then uses a gen-
erator tool to produce test descriptions from which test scripts are written. The advantages of this method are
that the tester can easily modify the test specification when necessary, and can control the complexity and
number of the tests by annotating the test specifications with constraints.

[Otte79] Abstract: A major portion of the problems associated with software development might be blamed on
the lack of appropriate tools to aid in the planning and testing phases of software projects. As one step towards
solving this problem, this paper presents a model to estimate the number of bugs remaining in the system at the
beginning of the testing and integration phases of development. The model, based on software science metrics,
was tested using data currently available in the literature. Extensions to the model are also presented which can
be used to obtain such estimates as the expected amount of personnel and computer time required for project

316



August 9, 1989

* validation.

[Otte81] Abstract: An earlier paper presented a model based on software science metrics to give quantitative
estimate of the number of bugs in a programming project at the time validation of the project begins. In this
paper, we report the results from an attempt to expand the model to estimate the total number of bugs expected
during the total project development. This new hypothesis has been tested using the data currently available in

• the literature along with data from student projects. The model fits the published data reasonably well, however,
the results obtained using the student data are not conclusive.

[Owic75] Abstract: A language for parallel programming, with a primitive construct for synchronization and
mutual exclusion, is presented. Hoare's deductive system for proving partial correctness of sequential programs
is extended to include the parallelism described by the language. The proof method lends insight into how one

* should understand and present parallel programs. Examples are given using several of the standard problems in
the literature. Methods for proving termination and the absence of deadlock are also given.

[Owic76] Abstract: An axiomatic method for proving a number of properties of parallel programs is presented.
Hoare has given a set of axioms for partial correctness, but they are not strong enough in most cases. This paper
defines a more powerful deductive system which is in some sense complete for partial correctness. A crucial

• axiom provides for the use of auxiliary variables, which are added to a parallel program as an aid to proving it
correct. The information in a partial correctness proof can be used to prove such properties as mutual exclusion,
freedom from deadlock, and program termination. Techniques for verifying these properties are presented and
illustrated by application to the dining philosophers problem.

[Owic82] Abstract: A liveness property asserts that program execution eventually reaches some desirable state.
• While termination has been studied extensively, many other liveness properties are important for concurrent pro-

grams. A formal proof method, based on temporal logic, for deriving liveness properties is presented. It allows a
rigorous formulation of simple informal arguments. How to reason with temporal logic and how to use safety
(invariance) properties in proving liveness is shown. The method is illustrated using, first, a simple programming
language without synchronization primitives, then one with semaphores. However, it is applicable to any pro-
gramming language.

[Palg72] Abbreviated Introduction: In this paper, we present a technique for applying some fundamental flow
graph concepts to computer programs to yield some quantitative measurement of software complexity. Due to
the lack of any complete testing facility, it is important to order or rank the priorities in which subroutines or por-
tions of subroutines should be tested. In this manner, since all subroutines cannot be completely checked out, at
least the more critical segments can be flagged for testing.

[Palg75] Abstract: Current interests in software engineering have posed serious questions about the evolution of
programs and languages. Computer programs are not simply collections of statements; they involve specific
structural relationships between the program elements. Program structure has been discussed as being an impor-
tant influence on the ease with which programs can be constructed, verified, understood, and changed. The dis-
cipline of "structured programming" has been developed because computer scientists have sought to better con-

• trol and understand the programming process.
Program graphs have been used as a vehicle to focus attention on the structure of a program. In this paper

a systematic methodology for partitioning a program graph (digraph) to highlight the relationships between pro-
gram elements is introduced along with an attendant notation. This notation is described in purely mathematical
terms in the first section, and then the programming-related implications of this approach are addressed in the
second section.

[Palg77b] Abstract: In recent years, applications of graph theory to computer software have given fruitful
results and attracted more and more attention. A program graph is a graph structural model of a program

317

S I



August 9, 1989

exhibiting the flow relation of connection among the elements (statements) in the program.
One particular aspect of graph analysis which is extremely useful for software is that of partitioning, since

it both reduces the complexity of the system and highlights the actual system composition.
The purpose of this paper is to review and discuss given approaches to partitioning graphs. These tech-

niques are best identified by the names of the units into which the program is grouped: segments, DD-paths,
intervals, classes, and level-i paths. The objective here is to review these techniques on a fundamental level
without exhausting all the uses and users of each approach.

[Palg7Sa] Abstract: This paper describes a quantitative software testing methodology for non-structured and
structured programs. The paper first treats some of the recent work by McCabe and Paige which has developed
the groundwork for a quantitative analysis of software testing. This perspective has set the stage for use of a pro-
gram-graph basis as the thread for the software testing effort. A basis is a set of paths such that any other path in
the graph can be expressed as a combination of paths in the basis. A technique for generating a unique, practical
basis for a program-graph is introduced. The strategy for testing programs using this basis is discussed. The final
section treats the simplifying effect of structured programs on this testing approach.

[Paig81] Abstract: A complete software testing process must concentrate on examination of the software
characteristics as they may impact reliability. Software testing has largely been concerned with structural tests,
that is, test of program logic flow. In this paper, a comparison software test technique for the program data
called data space testing is described.

An approach to data space analysis is introduced with an associated notation. The concept is to identify
the sensitivity of the software to a change in a specific data item. The collective information on the sensitivity of
the program to all data items is used as a basis for test selection and generation of input values.

(Panz76] Abstract: A test procedure is a formal specification of test cases to be applied to one or more target
program modules. Test procedures are executable. A process called the VERIFIER applies a test procedure to
its target modules and produces an exception report indicating which test cases, if any, failed.

Test procedures facilitate thorough software testing by allowing individual modules or arbitrary groups of
modules to be thoroughly tested outside the environment in which they will eventually reside. Test procedures
are complete, self-contained, self-validating and execute automatically. Test procedures are a deliverable product
of the software development process and are used for both initial checkout and subsequent regression testing of
target program modifications.

Test procedures are coded in a new language called TPL (Test Procedure Language). The paper analyzes
current testing practices, describes the structure and design of test procedures and introduces the Fortran Test
Procedure Language.

[Panz78a] Abstract: Typical testing activities may involve many hundreds of tests. An automatic software test
driver assists the tester by managing all of the test data, and automatically running the tests. Savings during
regression testing can be significant.

[Panz78b] Abbreviated Introduction: The execution of software test cases and the verification of test results
may be performed automatically by a new type of program called an automatic software test driver. When using
an automatic test driver, a formal test procedure is coded in a special test language. The test procedure takes the
place of the test data and test setup instructions of conventional testing, and control the automatic test driver. An
automatic test driver applies one test procedure to all or part of a target program, executes all of the test cases
specified in the test procedure, and verifies that the results of each test case are correct. This paper describes the
Fortran Test Procedure Language (TPL/F) which was developed at General Electric and is used for specifying
test procedures for Fortran software.

The specific goals of the TPL/F automatic test driver are as follows. The need for writing drivers and stubs
for module and subsystem testing is eliminated since the TPL/F system can test any combination of one or more
modules independently of the rest of the target program. The TPL/F test language provides a standard format for

318



August 9, 1989

* specifying software tests and the test procedure processor provides a standard test execution setup. Since the
formal test procedures specify the correct outcomes of test cases, the test procedure processor automates the
verification of test execution results.

[Pansz7t] An automatic software test driver is a new type of software tool which controls and monitors the exe-
cution of software tests. An automatic test driver is controlled by a formal test procedure coded in a special

• software test language. The test procedure replaces the test data and test setup instructions of conventional test-
ing. The specific goals of automatic test drivers are to eliminate the need for writing drivers and stubs for module
and subsystem testing, to provide a standard format and language for specifying software tests, to provide a stan-
dard execution setup for software tests, and to automate the verification of test execution results.

A test procedure contains input data to be supplied to the program under test and model outputs against
which actual outputs of the target program are verified. lypically, ninety percent or more of the text of a test pro-

* cedure consists of model outputs which must be revised each time the target program is modified. The TPL/2.0
automatic software test driver described in this paper automates both the initial generation and subsequent revi-
sion of test procedure model outputs.

[Parn72a] Introduction: In two earlier reports, we have suggested some techniques to be used producing
software with many programmers. The techniques were especially suitable for software which would exist in

• many versions due to modifications in methods or applications. These techniques have been taught in an under-
graduate course and used in an experimental project in that course. The purpose of this report is to describe the
results that have been obtained and to discuss some conclusions which we have reached. The experiment was
completely uncontrolled, the programmers generally inexperienced and poor, and the programming system used
was not designed for the task. The numerical data presented below have no real value. We include them primarily
as an illustration of the type of result that can be obtained by use of the techniques described in the earlier

* •reports. We consider these results a drastic improvement over the state of the art. Major changes in a system can
be confined to well-defined, small, subsystems. No intellectual effort is required in the final assembly or "integra-
tion" phase.

[Parn72b] This paper discusses modularization as a mechanism for improving the flexibility and comprehensibil-
ity of a system while allowing the shortening of its development time. The effectiveness of a "modularization" is

* dependent upon the criteria used in dividing the system into modules. A system design problem is presented and
both a conventional and unconventional decomposition are described. It is shown that the unconventional
decompositions have distinct advantages for the goals outlined. The criteria used in arriving at the decomposi-
tion, if implemented with the conventional assumption that a module consists of one or more subroutines, will be
less efficient in most cases. An alternative approach to implementation which does not have this effect is
sketched.

[Parn72c] Abstract: This paper presents an approach to writing specifications for parts of software systems. The
main goal is to provide specifications sufficiently precise and complete that other pieces of software can be writ-
ten to interact with the piece specified without additional information. The secondary goal is to include in the
specification no more information than necessary to meet the first goal. The technique is illustrated by means of
a variety of examples from a tutorial system.

[Parn74] Abstract: This paper discusses the use of the term "hierarchically structured" to describe the design of
operating systems. Although the various uses of this term are often considered to be closely related, close exami-
nation of the use of the term shows that it has a number of quite different meanings. For example, one can find
two different senses of "hierarchy" in a single operating system. An understanding of the different meanings of
the term is essential, if a designer wishes to apply recent work in Software Engineering and Design Methodology.

* This paper attempts to provide such an understanding.

[Parn77] This paper discusses the role of formal and precise specifications in the methodical development of

319



August 9, 1989

software which we know to be correct. The differences between the general use of the work "specification" and
the engineering use of that term are discussed. The software development tasks that we are undertaking require a
"divide and conquer" approach that can only succeed if we have a precise way of describing the subproblems. It
is shown how predicate transformers and abstract specifications can be used when design decisions are made.
Two examples of the use of abstract specifications are described and detailed specifications are included.

[Parn7g] Designing software to be extensible and easily contracted is discussed as a special case of design for
change. A number of ways that extension and contraction problems manifest themselves in current software are
explained. Four steps in the design of software that is more flexible are then discussed. The most critical step is
the design of a software structure called the "uses" relation. Some criteria for design decisions are given and
illustrated using a small example. It is shown that the identification of minimal subsets and minimal extensions
can lead to software that can be tailored to the needs of a broad variety of users.

[Parn79J [The author has] have been asked to discuss the chapter "An Appraisal of Program Specifications," by
Liskov and Berzins. Since it would appear that the authors and [the author] are in fundamental agreement on the
purpose of program specifications, [the author] will say little about our common position and focus on the areas
where [the authors] perception of the role of specifications seems to differ somewhat from that of the authors.
Most of [the authors] comments are based on [his] experience in using both formal and informal program specifi-
cations in a variety of programming projects since 1970.

Interest in the topic of program specifications derives from the design of a software
system is a large and complex task. It is important that the designers be able to record the intermediate design
decisions also useful to be able to evaluate the design decisions using

estabis.-ed criteria. All of the concepts mentioned in the Liskov-Berzins - are tools for these
purposes. My view of the way that formal design decisions can be used during the program develop-
ment process - in [1.

[Parn85] Abbreviated Introduction: This report comprises eight short papers that were completed while [the
author] was a member of the Panel on Computing in Support of Battle Management, convened by the Strategic
Defense Initiative Organization (SDIO). SDIO is part of the Office of the US Secretary of Defense. The panel
was asked to identify the computer science problems that would have to be solved before an effective antiballistic
missile (ABM) system could be deployed. It is clear to everyone that computers must play a critical role in the
systems that SDIO is considering. The essays that constitute this report were written to organize [the author's]
thoughts on these topics and were submitted to SDIO with [the author's] resignation from the panel.

[ParnS] Abbreviated Introduction: Under AIECB Projects No. 2.127.1 and No. 2.127.2 members of the Depart-
ment of Computing and Information Science of Queen's University [the authors] were asked to review the
software being prepared to control the two shutdown systems for the nuclear reactors at the Darlington generat-
ing station. New Canadian nuclear generating stations have two shutdown systems, each independent of the
other and both independent of the reactivity and process control system. Although earlier Ontario Hydro gen-
erating stations used computers for reactivity control, the shutdown systems had been kept as simple as possible
and were built using hardwired logic. In the Darlington plant both shutdown systems (SDS-1 and SDS-2) will be
controlled by computer systems. A significant factor in the reliability and safety of those systems will be the relia-
bility and trustworthiness of the software.

[The authors] were asked to examine the software and software documentation for SDS-1 and SDS-2 to
determine whether they meet appropriate standards and whether they could be certified to be sufficiently depend-
able for such a critical application. (i.e., whether the documentation would enable a detailed safety evaluation of
the software to be carried out in a later project phase).

(ParrS0] Abstractb A new model of the software development process is presented and used to derive the form
of the resource consumption curve of a project over its life cycle. The function obtained differs in detail from the
Rayleigh curve previously used in fitting actual project data. The main advantage of the new model is that it

320



August 9, 1989

* relates the rate of progress which can be achieved in developing software to the structure of the system being
developed. This leads to a more testable theory, and it also becomes possible to predict how the use of structured
programming methods may alter patterns of life cycle resource consumption.

[Pate89] Abstract: A key factor in the acceptance of high level programming languages has been the develop-
ment of a comprehensive set of tools to support the user. If formal languages for specification are to achieve the

* same level of acceptance, they too will require extensive automated support. This paper describes a set of proto-
type tools which are designed to assist the developer in the use of formal specification techniques.

[PaytS2] Abstract: This paper describes a system of automated tools for program generation. These tools
translate formal specifications of desigi into efficient programs to perform the stated task. Compiler generation
techniques are applied to create a general system that is applicable to the development of a wide range of

• software products. Usage of this system formalizes the software development process thus promoting a decrease
in software design and development costs and easing the maintenance process. The software process is not
bound to a particular implementation language thus software portability is enhanced.

[Pear84] Abbreviated Preface: This book is about heuristics, popularly known as rules of thumb, educated
guesses, intuitive judgments or simply common sense. In more precise terms, heuristics stand for strategies using

• readily accessible though loosely applicable information to control problem-solving processes in human beings
and machine. This book presents an analysis of the nature and the power of typical heuristic methods, primarily
those used in artificial intelligence (AI) and operations research (OR) to solve problems of search, reasoning,
planning and optimization on digital machines.

The discussions in this book follow a three-phase pattern: Presentation, characterization, and evaluation.
We first present a set of general-purpose problem-solving strategies guided by heuristic information, then

* highlight the general principles and properties that characterize this set and, finally, we present mathematical
analyses of the performances of these strategies in several well-structured domains. Some psychological aspects
of how people discover and use heuristics are discussed briefly.

[Perk86] Abstract: Metrics researchers are currently in the early stages of validating the relationship between
metrics and the quality problems encountered by users and developers of software. In order to establish these

* relationships, large amounts of data defined for validating specific metrics must be collected. Before performing
such costly validation, we believe the metrics should be evaluated with respect to whether they reflect our current
understanding of quality principles. Our preliminary attempt at validation focuses on a human vs. automated
approach to analyzing an existing Ada program. The program consists of fourteen packages and approximately
150 procedures and functions. Segments of this code were selected and analyzed with respect to the software
quality sub-criteria of flow simplicity, limited visibility, and error prevention and detection. The study focuses on

* disagreements between human and automated analysis, and attempts to explain those discrepancies and suggest
possible ways to improve both measurement techniques and the quality of the software program analyzed.

[Perk87] Abstract: Our investigation applies an automated, hierarchical, Ada-specific software metrics frame-
work to Navy-supplied Ada software to determine the effectiveness of such a framework as an aid to improving
the quality of Ada software.

* The metrics framework measures six software criteria and consists of approximately 150 software metric
elements, where each metric element relates a software quality principle to the use of specific fea~u:es of the Ada
language.

The investigation involves: 1) analysis of the metric scores for the Navy-supplied Ada code, 2) modifica-
tions of the Ada code to correct the quality problems indicated by the metric scores, resulting in two improved
versions of the code (the first incorporates only statement-by-statement changes and the second incorporates
changes to the overall organization of the code), and 3) comparison of metric scores for the three versions of the
Ada code.

321



August 9, 1989

[Pert83] Table of Contents: Establishing a test methodology. Establishing a system test policy, life cycle testing
approach. Testing an application system test plan. Developing an application system test plan, testing tech-
niques, testing tools, requirements phase testing, design phase testing, program phase testing, test phase testing,
installation phase testing, maintenance phase testing, testing documentation. Assessing test performance.
Evaluating the effectiveness of testing. Testing tools. Testing metrics. Bibliography.

[Perr86] Table of Contents: Will the computer do what I want to do? What can go wrong with computerized
applications, and what to do about it, testing business fit, testing system fit, testing people fit. Does the software
work correctly? Developing a test plan, creating testing conditions, verifying the correctness of the software
functions. So now the software is in operation! Validation computer-produced output. Glossary. Golden rules.
Index.

[PesciS] Abstract: For the validation of the kernel system calls of a family of UNIX systems a knowledge based
test environment was conceived. A prototype version is currently implemented in Prolog. The knowledge base
consists essentially of three parts:
" test case specifications of the various system calls.
" a test suite generator with predicates including information about UNIX system properties and sound test

practices, and
" a test protocol archive including utilities to extract and prepare reports about the test results.

All information in the knowledge base is stored as Horn clauses, i.e. facts and rules immediately to be consulted
and executed by a Prolog interpreter.

[Pete77] Abstract: Over the last decade, the Petri net has gained increased usage and acceptance as a basic
model of systems of asynchronous concurrent computation. This paper surveys the basic concepts and uses of
Petri nets. The structure of Petri nets, their markings and execution, several examples of Petri net models of
computer hardware and software, and research into the analysis of Petri nets are presented, as are the use of the
reachability tree and the decidability and complexity of some Petri net problems. Petri net languages, models of
computation related to Petri nets, and some extensions and subclasses of the Petri net model are also briefly dis-
cussed.

[Pets85] Introduction: Selecting test cases for system testing of the PICS/DCPR database application poses a
fundamental problem. Due to the size of the system, methodologies described in the literature do not apply.
Their formulations of "thorough testing" require so many test cases that they are not practical for system testing.

To deal with this problem, we have adopted an approach to test case selection that uses a simple set of
priority rules to judge which test cases are more important than others. These priority rules derive from the char-
ter of the system test group in the PICS/DCPR project, observations about developer testing, and the conse-
quences of different types of software defects on users.

These practical priority rules are believed to constitute a more realistic approach to system-testing large
database applications than current theory does.

[Pimo75] Abstract: This paper deals with the problem of assessing the reliability of programs written using struc-
tured programming techniques and having undergone a certain amount of testing. A program is said to be veri-
fied if, for a given set of tests it can be shown that every case of interest has been tested. As this end is, however,
unattainable, we will consider, in the following, that a program is verified if one can prove that all the logic paths
in the program flow graph have been traversed. Therefore, we will consider that a certain degree of verification is
attained with a given set of tests, according to the number of paths actually traversed. This degree of verification,
which is a non-decreasing function of the number of tests can be considered as an assessment of program relia-
bility. The degree of verification attained through experiments can then be deduced from the images of experi-
ments in the program flow graph. This paper defines a practical procedure to perform such an evaluation.

(Plpp78J Abbreviated Introduction: Many complex systems such as those found in a computer or a telephone

322



0

August 9, 1989

* exchange are constructed by interconnecting a large number of simple components. The complexity of these sys-
tems arises from the number of components and the intricacy of their interconnections, rather than from any
great complexity of the components themselves. The systems formed in this fashion are somehow much greater
than the sum of their parts.

It is natural to assume that every component in a complex system is there for a reason, but although it may
be true that the removal of any component would cause the system to malfunction, it is also possible that an

* overall reorganization would lead to a working system with many fewer components.
Complexity theory seeks to determine the minimum number of components needed for these systems. It

pursues this goal in two ways: by finding new designs that call for fewer components and by showing that a certain
number of components will be needed no matter what design is followed. Finding new designs for a system has
an obvious practical significance: it can increase the efficiency of the system and reduce its cost. The second type
of investigation, which sets limits beyond which further attempts at improvement are futile, is equally necessary

• for a complete understanding of a particular system and is often much harder to accomplish.

[PiwoS2] Abstract: Two well-publicized program complexity measures are software science and cyclomatic
complexity. Three areas where these measures do not always follow our intuitive notions of complexity are: struc-
tured vs unstructured programs, nested vs sequential predicates, and the use of case statements. This paper
defines a nesting level complexity measure that punishes unstructuredness, and the nesting of predicates, and

* rewards the use of case statements. Examples are given where the nesting level complexity agrees with intuitive
rankings of program structures where software science, cyclomatic complexity, and their suggested refinements
do not.

[Pooc74l Abstract. Decomposition and conversion algorithms for translating decision tables are surveyed and
contrasted under two broad categories: the mask rule technique and the network technique. Also, decision table

* structure is briefly covered, including checks for redundancy, contradiction, and completeness; decision table
notation and terminology; and decision table types and applications. Extensive literature citations are provided.

[Popk7g] Abstract: This report discusses the use of flowchart graphs, adjacency matrices, and zero-one linear
programming to find the minimum number of tests necessary to execute every segment of a computer program at
least once. The methods of Lipow are used as the basis for determining the maximum incomparable set, i.e., the

• largest set of program segments through which one and only one test case should pass. The size of the maximum
incomparable set gives the minimum number of tests necessary to execute each segment at least once, while the
elements of this set give the paths of each test. The report develops methods for finding the maximum incompar-
able set for loopless and some elementary looping flowcharts.

[Post87] Introduction: In 1984, L&N authorized a software engineering project to create a real-time, process-
• monitoring program that would be embedded in a large process-control system. This undertaking was named the

Process Information Management Subsystem (PIMS) Trending Project. Before undertaking the Trending Pro-
ject, L&N was reporting failure-density factors near 1.3. The subsequent drop to 0.072 represented a 95-percent
improvement in software quality.

As well as quality improvements, we measured productivity increases on the Trending project compared
to earlier L&N projects.

• When the Trending Project software was delivered, the engineers had produced 29 lines of source code
per staff-day. Even allowing for a substantial error margin in the estimates for productivity factors, the gain was
more than 200 percent.

How were these quality and productivity improvements achieved? The PEI Testing Methodology - an
integrated set of policies, techniques, metrics, and standards - was added to the L&N quality-assurance pro-
gram. The methodology concentrates on five improvement techniques: (1) defining requirements for testability,

* (2) designing software for testability, (3) designing tests for most-probable errors (see Software Standards in
May, July, and this issue), (4) designing tests before code is designed, and (5) performing reviews (inspections
and walkthroughs).

323



August 9, 1989

In recent years, all the techniques included in the methodology have been studied one by one. Based on
these studies, software researchers predicted that when all these techniques or modem programming practices
were used together, software productivity increases as high as 50 percent were possible. This case study shows
that the synergistic effect of combining techniques can be even more beneficial than anticipated.

[Pout8T] This paper presents two Ada testing tools that have been developed in Nokia Information Systems,
Softplan. Their main properties are described. It will be shown that these tools have a considerable potential in
increasing the efficiency of testing (which is separate from debugging). These tools have been written in Ada and
they are fully independent of the Ada compilation system and the operatoring system where they are used. This
paper reveals also some of the basic idea how this kind of portability has been reached as well as some experi-
ences in this respect.

[PratSO] Abstract: A vigorous approach to evaluating computer models is presented. With a concise, 21 ques-
tion worksheet as a basis, logical criteria are developed for determining whether a model is: (1) safe for opera-
tional use by managers, (2) in need of further validation, or (3) of value only in providing valuable lessons for
future modeling work. A numeric figure of merit reflecting significant aspects of the cost/benefit picture of the
model is then developed as a guide for determining which models should be further developed or implemented.

[Prat87] Abstract: A new software testing strategy is described. The strategy is "adaptive" in that previous test
paths (inputs) are used as a guide in the selection of subsequent paths (inputs). Preliminary implementations
have successfully exploited the method's inherent user-interactive capability. The method ensures branch cover-
age, requires only "order n" tests (n being the number of decision nodes in the program flowgraph), and offers
considerable advantages over existing strategies in its computational requirements.

[Press83] Abstract: Software metrics (or measurements) which predict software quality were extended from
previous research to include two additional quality factors: interoperability and reusability. Aspects of require-
ments, design, and source language programs which could affect these two quality factors were identified and
metrics to measure them were defined. These aspects were identified by theoretical analysis, literature search,
interviews with project managers and software engineers, and personal experience.

A guidebook for software quality measurement was produced to assist in setting quality goals, applying
metrics and making quality assessments.

[Prob82c] Abstract: A standard technique for monitoring software testing activities is to instrument the module
under test with counters or probes before testing begins; then, during testing, data generated by these probes can
be used to identify portions of as yet unexercised code. In this paper the effect of of the disciplined use of
language features for explicitly delimiting control flow constructs is investigated with respect to the correspond-
ing ease of software instrumentation. In particular, assuming all control constructs are explicitly delimited, for
example, by END IF or equivalent statements, an easily programmed method is given for inserting a minimum
number of probes for monitoring statement and branch execution counts without disrupting source code struc-
ture or paragraphing. The use of these probes, called statement probes, is contrasted with the use of standard
(branch) probes for execution monitoring. It is observed that the results apply to well-delimited modules written
in a wide variety of programming languages, in particular, Ada.

[Prob$4] Abstract: A testing-based approach for constructing and refining very high-level software functionality
representations such as intentions, natural language assertions, and formal specifications is presented and
applied to a standard line-editing problem as an illustration. The approach involves the use of specification-based
(black-box) testcase generation strategies, high-level specification formalisms, redundant or parallel develop-
ment and cross validation, and a logic programming support environment. Test-case reference sets are used as
software functionality representations for the purposes of cross validating two distinct high-level representations,
and identifying ambiguities and omissions in those representations. In fact, we propose the use of successive
refinements of such test reference sets as the authoritative specification throughout the software development

324



August 9, 1989

• process. Potential benefits of the approach include improvements in user/designer communication over all life
cycle phases, and an increase in the quality of specifications and designs.

[Prot88] Abstract: This study presents results of a software reliability experiment that investigates the feasibility
of a new error detection method. The method can be used as an acceptance test and is solely based on empirical
data about the behavior of internal states of a program. The experimental design uses the existing environment of

* multi-version experiment previously conducted at the NASA Langley Research Center, in which the 'launch
interceptor' problem is used as a model problem. This allows the controlled experimental investigation of ver-
sions with well-known single and multiple faults, and the availability of an oracle permits the de" rmination of
the error detection performance of the test. Fault-interaction phenomena are observed that have an amplifying
effect on the number of error occurrences. Preliminary results indicate that all faults examined so far are
detected by the acceptance test. This shows promise for further investigations, and for the employment of this

* test method in other applications.

[Purd72 Abstract. A fast algorithm is given to produce a small set of short sentences from a context free gram-
mar such that each production of the grammar is used at least once. The sentences are useful for testing parsing
programs and for debugging grammars (finding errors in a grammar which causes it to specify some language
other than the one intended). Some experimental results from using the sentences to test some automatically

• generated simple LR(1) parsers are also given.

[Puta78] Abstract: Application software development has been an area of organizational effort that has not
been amenable to the normal managerial and cost controls. Instances of actual costs of several times the initial
budgeted cost, and a time to initial operational capability sometimes twice as long as planned are more often the
case than not.

• A macromethodology to support management needs has now been developed that will produce accurate
estimates of manpower, costs, and times to reach critical milestones of software projects. There are four param-
eters in the basic system and these are in terms managers are comfortable working with -effort, development
time, elapsed time, and a state-of-technology parameter.

The system provides managers sufficient information to assess the financial risk and investment value of a
new software development project before it is undertaken and provides techniques to update estimates from the

* actual data stream once the project is underway. Using the technique developed in the paper, adequate analysis
for decisions can be made in an hour or two using only a few quick reference tables and a scientific pocket calcu-
lator.

[Putn79] Overview: Few managers are able to predict the time and resources needed to develop large-scale
software systems. Progress is often measured by the rate of expenditure of resources rather than by some count

• of accomplishments. Unrealistic estimates often result in last minute efforts to get code written quickly, resulting
in cost overruns and poor quality software.

Software development can be brought under control. It requires an understanding of how application
software behaves, what factors management can control and what factors are limited by the process itself.

The basis of effective management is the fact that the software development process exhibits a charac-
teristic behavior, which can be exploited, so that the expensive results of unrealistic approaches can be avoided.

[QuIrS5J Preface: Real-time software poses serious problems. It fails too often and the failures can be both
extremely troublesome and sometimes dangerous.

In this report, the techniques available for validation and verification of real-time systems software are
reviewed. Material, which is at present scattered through conference proceedings, research notes and journal
papers, is gathered together and presented in the context of practical usefulness. More detailed references are

* included wherever possible.

[RADC76a] Abstract: A study of software errors is presented. Techniques for categorizing errors according to

325



August 9, 1989

type, identifying their source, and detecting then are discussed. Various techniques used in analyzing empirical
error data collected from four large software systems are discussed and results of analysis are presented. Use of
results to indicate improvements in the error prevention and detection processes through use of tools and tech-
niques is also discussed.

A survey of software reliability models is included, and recent work on TRW's Mathematical Theory of
Software Reliability (MTSR) is presented.

Finally, lessons learned in conjunction with collecting software data are outlined, with recommendations
for improving the data collection process.

[Rabi77] Abstract. The framework for research in the theory of complexity of computations is described,
emphasizing the interrelation between seemingly diverse problems and methods. Illustrative examples of practi-
cal and theoretical significance are given. Directions for new research are suggested.

[Rama75a] Abstract: In the past few years, research has been actively carried out in an attempt to improve the
quality and reliability of large-scale software systems. Although progress has been made on the formal proof of
program correctness, proving large-scale software systems correct by formal proof is still many years away.
Automated software tools have been found to be valuable in improving software reliability and attacking the high
cost of software systems. This paper attempts to describe some main features of automated software tools and
some software evaluation systems that are currently available.

[Rama76] Abstract. Software validation through testing will continue to be a very important tool for ensuring
correctness of large scale software systems. Automation of testing tools can greatly enhance their power and
reduce testing cost. In this paper, techniques for automated test data generation are discussed. Given a program
graph, a set of paths are identified to satisfy some given testing criteria. When a path or program segment is
specified, symbolic execution is used for generating input constraints which define a set of inputs for executing
this path or segment. Problems encountered in symbolic execution are discussed. A new approach for resolving
array references ambiguities and a procedure for generating test inputs satisfying input constraints are proposed.
References to arrays are recorded in a table during symbolic execution and ambiguities are resolved when test
data are generated to evaluate the subscript expressions. The implementation of a test data generator for Fortran
programs incorporating these techniques is also described.

[Rama8l] Abstract- This paper discusses the necessity of a good methodology for the development of reliable
software, especially with respect to the final software validation and testing activities. A formal specification
development and validation methodology is proposed. This methodology has been applied to the development
and validation of a pilot software, incorporating typical features of critical software for nuclear power plant
safety protection. The main features of the approach include the use of a formal specification language and the
independent development of two sets of specifications. Analyses on the specification consists of three parts: vali-
dation against the functional requirements, consistency and integrity of the specifications, and dual specification
comparison based on a high-level symbolic execution technique. Dual design, implementation, and testing activi-
ties are developed to support the methodology. These include the symbolic executor and test data generator/dual
program monitor system. The experiences of applying the methodology to the pilot software are discussed, and
the impact on the quality of the software is assessed.

[R&ma821 Abstract: It is essential to assess the reliability of digital computer systems used for critical real-time
control applications (e.g., nuclear power safety control systems). This involves the assessment of the design
correctness of the combined hardware/software system as well as the reliability of the hardware. In this paper we
survey methods of determining the design correctness of systems as applied to computer programs.

Automated program proving techniques are still not practical for realistic programs. Manual proofs are
lengthy, tedious, and error-prone. Software reliability provides a measure of confidence in the operational
correctness of the software. Since the early 1970's several software reliability models have been proposed. We
classify and discuss these models using the concepts of residual error size and the testing process used. We also

326



August 9, 1989

* discuss methods of estimating the correctness of the program and adequacy of the set of tests used.
These methods are directly applicable to assessing the design correctness of the total integrated

hardware/software system which ultimately could include large complex distributed processing systems.

(Rand75 Abstracc- This paper presents and discusses the rationale behind a method for structuring complex
computing systems by the use of what we term "recovery blocks," "conversations," and "fault tolerant inter-

• faces." The aim is to facilitate the provision of dependable error detection and recovery facilities which can cope
with errors caused by residual design inadequacies, particularly in the system software, rather than merely the
occasional malfunctioning of hardware components.

[RappSO] Abstract: This paper examines a family of program test data selection criteria derived from data flow
analysis techniques similar to those used in compiler optimization. It is argued that currently used path selection

• criteria which examine only the control flow of a program are inadequate. Our procedure associates with each
point in a program at which a variable is defined, those points at which the value is used. Several related path cri-
teria, which differ in the number of these associations needed to adequately test the program, are defined and
compared.

[Redw83] Abstract: A systematic approach to test data design is presented based on both practical translation
* of theory and organization of professional [XXX]. The approach is organized around five domains and achieving

coverage (exercise) of them by the test data. The domains are processing functions, input, output, interaction
among functions, and the code itself. Checklists are used to generate data for processing functions. Separate
checklists have been constructed for eight common business data processing functions such as editing, updating,
sorting, and reporting. Checklists or specific concrete directions also exist for input, output, interaction, and
code coverage. Two global heuristics concerning all test data are also used. A limited discussion on documenting

• test input data, expected results, and actual results is included.
Use, applicability, and possible expansions are covered briefly. Introduction of the method has similar dif-

ficulties to those experienced when introducing any disciplined technique into an area where discipline was previ-
ously lacking. The approach is felt to be easily modifiable and usable for types of systems other than the tradi-
tional business data processing ones for which it was originally developed.

• [Reit75] Abstract: Recent investigations on the use of automation to realize the twin objectives of cost reduc-
tion and reliability improvement for computer programs developed for the U.S. Air Force are reported. The
concepts of reliability and automation as they pertain to software are explained. Then, over twenty automated
tools and techniques (aids) identified in this investigation are described and categorized. Based on the informa-
tion reviewed, an assessment of the state of the technology is made. Finally, specific recommendations which try
to give direction to future efforts are offered.

[ReIf79a] Abstract: This concept paper discusses the possible use of failure modes and effects analysis (FMEA)
as a means to produce more reliable software. FMEA is a fault avoidance technique whose objective is to iden-
tify hazards in requirements that have the potential to either endanger mission success or significantly impact
life-cycle costs. FMEA techniques can be profitably applied during the analysis stage to identify potential
hazards in requirements and design. As hazards are identified, software defenses can be developed using fault

• tolerant or self-checking techniques to reduce the probability of their occurrence once the program is imple-
mented. Critical design features can also be demonstrated a priori analytically using proof of correctness tech-
niques prior to their implementation if warranted by cost and criticality.

[Relf79b] Abstract: Software tools can serve as powerful aids in the design, development, test, and maintenance
of computer software. So, in light of the recent growth in cost of software relative to total system cost, it should

• come as no surprise that the subject of software tools has sparked a good deal of interest throughout the com-
puter industry. In response to that interest, this paper provides a comprehensive listing of the software tools and
techniques currently available.

327

0



August 9, 1989

We first describe the typical software life cycle and its three major stages: (1) conceptual and require-
ments; (2) development; and (3) operations and maintenance. Next we describe the six categories of software
tools (simulation, development, test and evaluation, operations and maintenance, performance measurement,
and programming support). Table 1 relates the life cycle areas to the various categories of software tools.

[Reyn87] Abbreviated Introduction: The Partial Metrics System [to support the metrics-driven] implementation
of individual modules in a large-scale programming project design is explained, with an emphasis on the refine-
ment process. A model, with its three phases, shows that the pseudocode refinement process can be monitored
in partial metric terms.

[Reyn89] Abstract: This paper describes a software tool, the partial metrics system (PMS), that supports the
metrics-driven design of pseudocode program modules. Although this is a generic approach that is language
independent, we illustrate its application using Ada as the target language. Each new refinement of a pseu-
docode program is assessed in terms of a set of partial metrics. These metrics are extensions of Halstead's
Software Science, McCabe's Cyclomatic Complexity, and others.

It is then demonstrated how these metrics can drive the design process for an individual module. Heuris-
tics are suggested that can allow the programmer to make use of these metrics in order to produce improved
designs.

[Rlch8laj Abstract: A major drawback of most program testing methods is that they ignore program specifica-
tions, and instead base their analysis solely on the information provided in the implementation. This paper
describes the partition analysis method, which assists in program testing and verification by evaluating informa-
tion from both a specification and an implementation. This method employs symbolic evaluation techniques to
partition the set of input data into procedure subdomains so that the elements of each subdomain are treated uni-
formly by the specification and processed uniformly by the implementation. The ptrtition divides the procedure
domain into more manageable units. Information related to each subdomain is used to guide in the selection of
test data and to verify consistency between the specification and the implementation. Moreover, the test data
selection process, called partition analysis testing, and the verification process, called partition analysis verifica-
tion, are used to enhance each other, and thus increase program reliability.

[Rich82] Abstract: The partition analysis method compares a procedure's implementation to its specification. In
addition to verifying consistency between the two, this comparison is used to derive test data. Unlike most test
data selection strategies, which consider only the implementation, partition analysis selects test data that charac-
terize the procedure in terms of its intended behavior as well as the stiucture of its implementation. To accom-
plish this, partition analysis divides or "partitions" the procedure's domain into subdomains in which all ele-
ments of each subdomain are treated uniformly by the specification and processed uniformly by the implementa-
tion. Initial experimentation has shown that through the integration of testing and verification, as well as through
the use of information derived from both the implementation and the specification, the partition analysis method
is effective for determining program reliability. This paper provides an overview of the partition analysis method
and reports the results obtained from preliminary evaluation of its effectiveness.

[Rlch85a] Abbreviated Introduction: Several of the validation tools being developed employ a method called
symbolic evaluation, which creates a symbolic representation of the program. This chapter describes symbolic
evaluation and surveys some of the testing applications of this method.

Symbolic evaluation monitors the manipulations performed on the input data. Computations and their
applicable domain are represented algebraically over the input domain, thereby describing the relationship
between the input data and the resulting values. Normal execution computes numerical values but loses informa-
tion about the way in which these numerical values were derived, whereas symbolic evaluation preserves this
information. When further analyzed, this information provides the basis for several testing techniques.

For the most part, current testing research is directed at either the problem of determining the paths (the
particular sequences of statements) that must be tested or the problem of selecting revealing test data for the

328



August 9, 1989

* selected paths. For the path selection problem, techniques such as program coverage, data flow testing, and per-
turbation testing have been proposed. For the test data selection problem, a number of informal guidelines have
been put forth. Recently there has been considerable work on developing more systematic test data selection
techniques that can either eliminate certain classes of errors or provide a quantifiable error bound. Many of the
current path selection and test data selection techniques base their analyses on the information provided by sym-
bolic evaluation.

* The above testing techniques are referred to as structural techniques, since they base their analysis solely
on the information provided by a given implementation. There are two drawbacks to such an approach. First, it
ignores the information that may be available from a specification. Second, it delays testing until the implementa-
tion is complete, thereby not detecting errors in the most timely and cost-effective manner. Research efforts that
use symbolic evaluation to assist in solving both these problems are currently underway. Specification-guided
program testing techniques use the information provided by symbolic evaluation of a specification to guide in the

• testing of its implementation, while specification testing techniques employ symbolic evaluation to actually test a
specification.

The next section of this chapter provides a brief overview of symbolic evaluation, with an example to
demonstrate the method. The third section describes a number of ways in which symbolic evaluation of a pro-
gram aids the path selection and test data selection aspects of testing. The fourth section describes the use of
symbolic evaluation for specification-guided program testing and specification testing.

[RchSSb] Abstract: The partition analysis method compares a procedure's implementation to its specification,
both to verify consistency between the two and to derive test data. Unlike most verifiation methods, partition
analysis is applicable to a number of different types of specification languages, including both procedural and
nonprocedural languages. It is thus applicable to high-level descriptions as well as to low-level designs. Partition
analysis also improves upon existing testing criteria. These criteria usually consider only the implementation, but

* • partition analysis selects test data that exercise both a procedure's intended behavior (as described in the specifi-
cations) and the structure of its implementation. To accomplish these goals, partition analysis divides or pari-
dions a procedure's domain into subdomains in which all elements of each subdomain are treated uniformly by
the specification and processed uniformly by the implementation. This partition divides the procedure domain
into more manageable units. Information related to each subdomain is used to guide in the selection of test data
and to verify consistency between the specification and the implementation. Moreover, the testing and verifica-

* tion processes are designed to enhance each other. Initial experimentation has shown that through the integra-
tion of testing and verification, as well as through the use of information derived form both the implementation
and the specification, the partition analysis method is effective for evaluating program reliability. This paper
describes the partition analysis method and reports the results obtained from an evaluation of its effectiveness.

[Rlch87a] Abstract: RELAY, a model for error detection, defines revealing conditions that guarantee that a fault
* originates an error during execution and that the error transfers through computations and data flow until it is

revealed. This model of error detection provides a fault-based criterion for test data selection. The model is
applied by choosing a fault classification, instantiating the conditions for the classes of faults, and applying them
to the program being tested. Such an application guarantees the detection of errors caused by any fault of the
chosen classes. As a formal model of error detection, RELAY provides the basis for an automated testing tool.
This paper presents the concepts behind RELAY, describes why it is better than other fault-based testing cri-

• teria, and discusses how RELAY could be used as the foundation for a testing system.

[RlchSSa] Abbreviated Introduction: This paper reports on a new model of error detection called RELAY,
which provides a fault-based criterion for test data selection. The RELAY model builds upon the testing theory
introduced by Morell, where an error is "created" when an correct state is introduced at some fault location, and
it is "propagated" if it persists to the output. We refine this theory by more precisely defining the notion of when

• an error is introduced and by differentiating between the persistence of an error through computations and its
persistence through data flow operations. We introduce similar concepts, origination and transfer, as the first
erroneous evaluation and the persistence of that erroneous evaluation, respectively.

329



August 9, 1989

[RI1dd75 Abstract: A modeling scheme is presented which provides a medium for the rigorous, formal, and
abstract specification of large-scale software system components. The scheme allows the description of com-
ponent behavior without revealing or requiring the description of a component's internal operation. Both collec-
tions of sequential processes and the data objects which they share may be described. The scheme is of particu-
lar value during the early stages of software system design, when the system's modules are being delineated and
their interactions designed, and when rigorous, well-defined specification of undesigned components allows for-
mal and informal arguments concerning the design's correctness to be formulated.

[RoacS0] Abstract: Software cost estimation techniques reported in recent literature are compared. Six cost
estimation techniques are described in a common notation. An example is worked through all the techniques to
illustrate similarities and differences.

[RobySS] Abbreviated Forward: These Proceedings of the First Workshop on Formal Specification and Verifica-
tion of Ada, held at the Institute for Defense Analyses, are composed in part of papers and slides supplied by
the speakers, and in part of summaries of the talks and discussions edited from recordings made of the
Workshop.

The purpose of this initial two-and-a-half day Workshop was to identify current issues in Ada verification
and to decide what could be done to improve current understanding and practice of Ada software verifcation.
Since verification impacts not only coding activities but all development activities, it is desirable that many
groups be kept informed about the progress of these Workshops.

[Roen7J Abstract: Several inequalities are derived for use in certifying function subroutines by means of black
box testing. It is assumed that a function is approximated by means of a polynomial of limited degree on a closed
interval. These inequalities give upper bounds on the error measured over a finite sample and known properties
of the function.

[Romb84] Abstract: This paper describes results of a study to develop maintenance metrics based on structural
software design characteristics. The intent of the study was to define a characteristic metric set, suited to explain
and predict software maintenance behavior. The maintenance aspects investigated in this study are stability and
modifiability. While stability addresses the average number of modules affected per change cause, modifiability
characterizes the ease with which changes can be made within each of these modules. Additional interest is dedi-
cated to the difference between characteristic design and implementation metric sets, and to the difference
between change behavior during development and maintenance. This study examines the development of six
software systems and controlled maintenance experiments using these systems.

[RombS7a] Abstract: This paper describes a study on the impact of software structure on maintainability aspects
such as comprehensibility, locality, modifiability, and reusability in a distributed system environment. The study
was part of a project at the University of Kaiserslautern, West Germany, to design and implement LADY, a
LAnguage for Distributed sYstems. The study addressed the impact of software structure from two perspectives.
The language designer's perspective was to evaluate the general impact of the set of structural concepts chosen
for LADY on the maintainability of software systems implemented in LADY. The language user's perspective
was to derive structural criteria (metrics), measurable from LADY systems, that allow the explanation or predic-
tion of the software maintenance behavior. A controlled maintenance experiment was conducted involving
twelve medium-size distributed software systems; six of these systems were implemented in LADY, the other six
systems in an extended version of sequential Pascal. The benefits of the structural LADY concepts were judged
based on a comparison of the average maintenance behavior of the LADY systems and the Pascal systems; the
maintenance metrics were derived by analyzing the interdependence between structure and maintenance
behavior of each individual LADY system.

[Rose"] Abstract: This paper describes a methodology for the design of a class of Ada software tools which
perform source-to-source transformation of Ada programs. The tools perform the transformations on the

330



0

August 9, 1989

* DIANA representation of an input source program using a package of templates which are the DIANA
representation of source program textual insertions.

Following a brief overview of DIANA, the environment required by these tools is described; a typical
environment consists of an implementation of DIANA and a set of utility programs. Next, the paper describes a
"skeleton" program which is used to implement a tool; the tool skeleton is a recursive DIANA tree traversal
program which is expanded incrementally with code to perform a set of specific transformations. The next por-

* tion of the paper gives a detailed description of the design methodology; the methodology provides for mapping a
source-level specification of a transformation tool to a DIANA-level specification, which serves as an implemen-
tation guide for the tool. Finally, a description is given of an application of the design methodology, a preproces-
sor for the task monitoring system described by Helmbold and Luckham.

To conclude the paper, a summary of the advantages and suggested applications of the design methodology
is presented. The major advantage of the methodology is that it allows the transformations performed by a tool

• to be implemented and tested incrementally, making debugging less complex and implementation more efficient.

[RoseSSa] Abbreviated Introduction: This article describes a methodology for the design of Ada transformation
tools using the DIANA representation of Ada source program input. The methodology was tested on the imple-
mentation of the task monitor preprocessor of Helmbold and Luckham and proved quite an effective way to
implement an Ada tool. A tools designed according to the methodology requires an environment of support pro-

• grams and packages for maintaining DIANA trees. Each tool is an expanded version of a very simple program
called a tool skeleton, which is nothing more than a case statement that recursively traverses a DIANA tree.

[Rose8$b] Abstract: Computer systems have become an integral part of most organizations. The need to pro-
vide continuous, correct service is becoming more critical. However, decentralization of computing, inexperi-
enced users, and larger more complex systems make for operational environments that make it difficult to pro-

• vide continuous, correct service. This document is intended for the computer system manager (or user) responsi-
ble for the specification, measurement, evaluation, selection or management of a computer system.

This report addresses the concepts and concerns associated with computer system reliability. Its main pur-
pose is to assist system managers in acquiring a basic understanding of computer system reliability and to suggest
actions and procedures which can help them establish and maintain a reliability program. The report presents
discussions on quantifying reliability and assessing the quality of the computer system. Design and implementa-

• tion techniques that may be used to improve the reliability of the system are also discussed. Emphasis is placed
on understanding the need for reliability and the elements and activities that are involved in implementing a relia-
bility program.

[Ross88] Abstract: This report discusses the role of Management Indicators in validating the predictive capabil-
ity of the bottom-up evaluation process, which is defined by the Procedural Approach to the Evaluation of

* Software Development Methodologies. The bottom-up evaluation process provides a framework for determining
the extent to which software engineering objectives, e.g., reliability and maintainability, are present in a software
product from a design perspective of the code and supporting documentation. The bottom-up evaluation process
is observed to be a predictor of the extent to which the objectives are realized in the post-developed product.

Employment of the bottom-up evaluation process to determine the extent to which the objectives are
present in the product is accomplished by the utilization of Design Indicators. Management Indicators are pro-

* posed as a counterpart to Design Indicators and enable one to measure the extent to which the objectives are
realized in a developed product. While Design Indicators focus on design structure characteristics of the pro-
duct, Management Indicators focus on the acquisitional, behavioral, and maintenance characteristics. To
accomplish the validation of the predictive capability, the correlation between the values obtained by utilizing
Design Indicators and those obtained by utilizing Management Indicators must be investigated. The author has
chosen to study and present the software engineering objectives of reliability and maintainability as they related

• to a future validation effort.

(RowlSla] Abstract: The element z is called a transcendental for the class F if functions in F can be uniquely

331



August 9, 1989

identified by their values at z. Conditions for the existence of transcendentals are discussed for certain classes of
polynomials, and rational functions. Of particular interest are those transcendentals having an exact representa-
tion in computer arithmetic. Algorithms are presented for reconstruction of the coefficients of a polynomial
from its value at a transcendental. The theory is illustrated by application to polynomials, quadratic forms, and
quadrature formulas.

[RowIlS] Abstract: This paper describes techniques for the automatic generation of large artificial software sys-
tems which can be used for laboratory studies of testing and integration strategies, reliability models, and so
forth. A prototype generator is described which produces code for such systems by constructing a large number
of nearly identical modules. This generator has been used to construct a family of systems which in theory can be
made arbitrarily large. Several experiments were conducted to explore the sensitivity of the Jelinski-Moranda
model to violations of the assumption that all defects have equal probability of being discovered.

[Rube75] Abstract: This paper discusses the need for quantitative descriptions of software errors and methods
for gathering such data. The software development cycle is reviewed, and the frequency of the errors that are
detected during software development and independent validation are compared. Data obtained from validation
efforts are presented, indicating the number of errors in ten categories and three severity levels; the inferences
that can be drawn from these data are discussed. Data describing the effectiveness of validation tools and tech-
niques as a function of time are presented and discussed. The software validation cost is contrasted with the
software development cost. The applications of better quantitative software error data are summarized.

[Rums77] Abstract: The performance measure and analysis of software operating systems which extend basic
computing machinery is discussed. The description of an external monitoring technique which facilities the
correlation of hardware events with software functions without the need for software monitors is presented. A
time related event is defined to provide the basis for the technique used to implement the monitor system. In
addition, event analysis methods are introduced which allow a software system execution profile to be con-
structed.

[Rust7l] Abbreviated Introduction: This volume deals with efforts at control and extermination of that notori-
ous form of non-insect life which we in the programming community refer to, somewhat contemptuously, as
"bugs." Although as individuals we may in less cautious moments speak of bugs with cavalier disdain, it is always
with a latent awareness that such bravado may be the harbinger of a period of intense bug-hunting, relieved only
by occasional naps on piles of discarded dumps. To the bug-plagued victim, the sympathetic nods of one's col-
leagues more often suggest relief that it is "him rather than me."

The more fatalistic among us may find such a period good for the soul; a penance for the general malfea-
sance of those involved in activity in which a quantity of intellectual self-indulgence is tolerated. Of course, even
given the frustration of the exterminating effort, there is the pleasure in locating and ridding a program of the
infecting source. The gratification of discovery could only be enhanced at finding the bug was someone else's.

[SDIO87] Overview: The Strategic Defense Initiative Organization (SDIO) Test and Evaluation Master Plan
(TEMP) outlines the planning and management of test and evaluation activities for the Strategic Defense System.
It is an evolving document. Detailed planning, and results from, individual test and evaluation activities will be
included as the software effort proceeds.

[SDIOSga] Overview: The Strategic Defense Initiative Organization (SDIO) Software Policy requires the use of
promising software engineering approaches for the development and evolution of all full scale development Stra-
tegic Defense System (SDS) software. To ensure that all SDS mission-critical software exhibits the necessary lev-
els of quality, software efforts are required to address requirements of software reliability, security, interoperabil-
ity, portability, maintainability, and usability throughout the system life cycle.

The policy is restricted to identifying requirements for software engineering practices. The services, and
other implementing agents, will develop their own implementation documents that are consistent with their

332



August 9, 1989

* existing or planned software engineering management practices.

[SDIOSb] Overview. This Strategic Defense Initiative Organization (SDIO) Management Directive specifies
the implementation of the SDIO Software Policy [SDIO88a] required on all software efforts sponsored directly
by the SDIO. In addition to specifying how the Software Policy must be reflected in requests for proposals, and
other contracting documents, the management directive explicitly enumerates those conditions under which

* requests for waivers to the Software Policy will be accepted.

[SERC87] Abstract: Mutation analysis is a software testing technique that measures test data adequacy that is,
the ability of test data to ensure that certain errors are not present in the program under test. Mothra is a
software testing environment built on the mutation analysis approach to determining test effectiveness. It con-
sists of an integrated set of tools that allow the user to interactively test Fortran-77 software throughout the

• software development cycle. Mothra currently runs under 4.3 BSD UNIX, System V UNIX, and ULTRIX 32
1.2.

This document is a user's manual for first time users of Mothra as well as a reference manual for more
experienced users. The manual describes the function both of the tools that comprise Mothra and of cdemo, a
simple interface that was designed to facilitate the use of these tools. The first section provides some background
information and an explanation of the steps involved in using Mothra to test software. Readers wishing more

* detailed information on mutation analysis should consult the bibliography. The second section describes the
specifics of cdemo itself. Examples of software testing with Mothra are presented throughout the document.

[Sack68] Abstract: Two exploratory experiments were conducted at System Development Corporation to com-
pare debugging performance of programmers working under conditions of online and offline access to a com-
puter. These are the first known studies that measure programmers' performance under controlled conditions for

• standard tasks.
Statistically significant results of both experiments indicated faster debugging under online conditions, but

perhaps the most important practical finding involves the striking individual differences in programmer perfor-
mance. Methodological problems encountered in designing and conducting these experiments are described;
limitations of the findings are pointed out; hypotheses are presented to account for results; and suggestions are
made for further research.

[Sahn 7] Abstract: A graph-based modeling technique has been developed for the stochastic analysis of sys-
tems containing concurrency. The basis of the technique is the use of directed acyclic graphs. These graphs
represent event-precedence networks where activities may occur serially, probabilistically, or concurrently. When
a set of activities occur concurrently, the condition for the set of activities to complete is that a specified number
of the activities must complete. This includes the special cases that one or all of the activities must complete.

* The cumulative distribution function associated with an activity is assumed to have exponential polynomial form.
Further generality is obtained by allowing these distributions to have a mass at the origin and/or at infinity. The
distribution function for the time taken to complete the entire graph is computed symbolically in the time param-
eter t. The technique allows two or more graphs to be combined hierarchically. Applications of the technique to
the evaluation of concurrent program execution time and to the reliability analysis of fault-tolerant systems are
discussed.

[SaltS2] Abstract: Although the Software Science metrics originally proposed by Halstead are appealing, calcu-
lation of the metrics depends on the existence of well-defined counting strategies. The strategies require precise
definitions of operators and operands. It is important that the strategies employed be described in research
papers. Furthermore, the presentation of helpful examples of the application of the strategies is recommended.
Good descriptions do not imply correct strategies, but they do ensure that the strategies can be understood,

* tested, and evaluated. Appendices to this paper provide the description of a Pascal counting strategy and an
example of applying the strategy.

0 333



August 9, 1989

[Same76] Abstract- A method for compiler testing using symbolic interpretation is presented. This method is a
cross between program proving and program testing. It is useful in demonstrating that programs are correctly
translated from a high level language to a low level language thereby improving the reliability of the compiler. The
term symbolic interpretation is used to describe the process of obtaining an intermediate form of the low level
language program that is suitable for further processing by a proof system. Symbolic interpretation is the heart of
the system and enables the recording of a transcript of all computations in the program. This process interprets a
set of procedures which describe the effects of machine language instructions corresponding to the target
machine on a suitable computation model. The highlights and limitations of the process as well as future work
are discussed in a framework of a specific LISP implementation on a PDP-10 computer.

[Sank85] Abstract: Anna is a language extension of Ada to include facilities for formally specifying the intended
behavior of Ada programs. It augments Ada with precise machine-processable annotations so that well esta-
blished formal methods of specification and documentation can be applied to Ada programs.

This paper describes an implementation of a subset of Anna. The implementation is a transformer that
accepts as input an Anna parse tree and produces as output an equivalent Ada parse tree that contains the neces-
sary executable runtime checks for the Anna specifications. An approach called the Checking Function
Approach is used. This involves the generation of a function for each annotation and generating calls to these
functions at appropriate places. The transformer has to take care of various details like hiding, overloading,
nesting, etc.

It is hoped that the transformer will eventually cover most of Anna and have various features like a good
user interface, interaction with a symbolic debugger, and optimization of runtime checks for permanent inclu-
sion.

[Sari84b] Abstract- Protocol testing for the purpose of certifying the implementation's adherence to the proto-
col specification can be done with a test architecture consisting of remote tester and local responder processes
generating specific input stimuli, called test sequences, and observing the output produced by the implementa-
tion under test. It is possible to adapt test sequence generation techniques for finite state machines, such as tran-
sition tour, characterization, and checking sequence methods, to generate test sequences for protocols specified
as incomplete finite state machines. For certain test sequences, the tester or responder processes are forced to
consider the timing of an interaction in which they have not taken part; these test sequences are called nonsyn-
chronizable. The three test sequence generation algorithms are modified to obtain synchronizable test
sequences. The checking of a given protocol for intrinsic synchronization problems is also discussed. Complexi-
ties of synchronizable test sequence generation algorithm are given and complete testing of a protocol is shown
to be infeasible.

To extend the applicability of the characterization and checking sequences, different methods are pro-
posed to enhance the protocol specifications: special test input interactions are defined and a methodology is
developed to complete the protocol specifications.

[Sari87] Abstract: Communication protocol testing can be done with a test architecture consisting of remote
Lower Tester and local Upper Tester processes. For real protocols, tests can be designed based on the formal
specification of the protocol which uses an extended finite state machine model. The specification is transformed
into a simpler form consisting of normal form transitions. It can then be modeled by a control and a data flow
graph. The graphs are decomposed into subtours and data flow functions, respectively. Tests are designed by con-
sidering parameter variations of the input primitives of each data flow function and determining the expected
outputs. The methodology gives complete test coverage of all data flow functions and control paths in the specifi-
cation. Functional fault models are proposed for functions that are not formally specified.

(SariSla] Abstract: With wide-spread acceptance of the ISO-OSI reference model and its standardized proto-
cols in the areas of computer communication and information exchange, various types of protocol testing [have]
become an area of active research and development. This paper surveys recent developments in protocol valida-
tion. The discussion includes two important components any protocol test system must have: test sequence

334



0

August 9, 1989

generator and trace checker as well as protocol verification techniques.

(Sark89] Abstract- At the heart of any program verifier lies a theorem prover which proves theorems over the
domain of the program. For any meaningful program, the theorems encountered are quite complex. The prob-
lem, which is equivalent to the validity problem of second-order logic, reduces to that of first-order logic when
the assertions of the program are available. In both the cases, the problem remains undecidable and human
intervention at some stage or other becomes essential. Resolution-based theorem provers proposed for first-
order logic are very popular because they allow easy human intervention. However, the theorems encountered in
proving programs do not follow the exact syntax of predicate calculus; rather, they are obtained in more popular
algebraic notation. Thus, the inference rules available in first-order logic are not directly applicable to the verifi-
cation conditions of the paths of the program.

In the present paper significant modifications of the first-order rules have been developed so that they
apply directly to the algebraic expressions. The importance and implication of normalization of formulas in any
theorem prover have been discussed. It has also been shown how the properties of the domain of discourse have
been taken care of either by the normalizer or by the inference rules proposed. Through a nontrivial example the
following capabilities of the verifier, which would use these inference rules, have been highlighted: 1) closeness
of the proof construction process to human thought process and 2) efficient handling of user provided axioms;
such capabilities make the interfacing with human element easy.

[Satt72] Summary: The design of an integrated programming and debugging system using the language ALGOL
W is described. The debugging tools are based entirely upon the source language but can be efficiently imple-
mented. The most novel such tool is a selective trace, automatically controlled by execution frequency counts.
System performance information is included.

[Scha79] Abstract: This report presents the results of a study and investigation of software reliability models. In
particular, the purpose was to investigate the statistical properties of selected software reliability models, includ-
ing the statistical properties of the parameter estimates, and to investigate the goodness fit of the models to
actual software error data. The results indicate that the models fit poorly, generally due to in most part the
vagaries of the data rather than shortcomings of the models.

[Sehi78] Abstracth This paper examines the most widely used reliability models. The models discussed fall into
two categories, the data domain and the time domain. Besides tracing the historical development of the various
models their advantages and disadvantages are analyzed. This includes models based on discrete as well as con-
tinuous probability distributions. How well a given model performs its purpose in a specific economic environ-
ment will determine the usefulness of the model. Each of the models is examined with actual data as to the appli-
cability of the error finding process.

[Schn75] Abstract: A non-homogeneous poisson process is used to model the occurrence of errors detected dur-
ing functional testing of command and control software. The parameters of the detection process are estimated
by using a combination of maximum likelihood and weighted least squares methods. Once parameter estimates
are obtained, forecasts can be made of cumulative number of detected errors. Forecasting equations of cumula-
tive corrected errors, errors detected but not corrected, and the time required to detect or correct a specified

* number of errors, are derived from the detected error function. The various forecasts provide decision aids for
managing software testing activities. Naval tactical data system software error data are used to evaluate several
variations of the forecasting methodology and to test the accuracy of the forecasting equations.

[Scbn77b] Abbreviated Introduction: The significance of program structural characteristics has been recog-
nized for some time, as witnessed by the emergence of structured programming. But there is another tool avail-

* able that has usually been overlooked in the software development process: simulation.
Simulation is relatively new to the evaluation and measurement of software- even though examples

abound of simulation and analytical models that have been developed for modeling software error detection.

49 335

S



August 9, 1989

This paper attempts to show how simulation can be used both to evaluate alternatives during design and to simu-
late the detection of errors during testing.

To improve program quality we must not only avoid errors during program design; we must also detect
them during testing. Hence, one of the characteristics of a good design is a program structure that allows easy
error detection.

A convenient way of describing program structure and simulating the detection of errors is to represent
the program in a directed graph. By using a directed graph to represent the structure of a program and simulation
to study program error detection, the following information can be obtained:
1. Error detection (number or fraction of errors detected) as a function of a program's structural characteristics,
for a given number of tests. The test consists of beginning simulated program execution at the start node,
detecting and correcting any errors, restarting at the start node, and repeating this process until a terminal node
is reached.

2. Error detection as a function of number of tests for given structural characteristics.
Structural characteristics correspond to program characteristics. For example, numbers of nodes, arcs,

paths and source statements correspond to br aching and merging, arithmetic and data transfer operations, exe-
cution sequences, and size.

[Schn77c] Abstract: Program structure and modularity are important considerations for the development of reli-
able software. Most software specialists agree that higher reliability is achieved when software systems are highly
modularized and module structure is kept simple. However if this principle is carried too far in the design of
large systems, lower rather than higher reliability may result. This may occur because the added complexity of a
large number of communication paths among a large number of small modules may exceed the reduction in com-
plexity of individual modules. Real time operating system structures are examined in terms of their modularity
characteristics. Proposals are advanced for improving the structure of real time operating systems.

[Schn79a] Abstracth The propensity to make programming errors and the rates of error detection and correction
are dependent on program complexity. Knowledge of these relationships can be used to avoid error prone struc-
tures in software design and to devise a testing strategy which is based on anticipated difficulty of error detection
and correction. An experiment in software error data collection and analysis was conducted in order to study
these relationships under cinditions where the error data could be carefully defined and collected. Several com-
plexity measures which can be defined in terms of the directed graph representation of a program, such as
cyclomatic number, were analyzed with respect to the following error characteristics: errors found, time between
error detections, and error correction time. Significant relationships were found between complexity measures
and error characteristics. The meaning of directed graph structural properties in terms of the complexity of the
programming and testing tasks was examined.

[Schn79b] Introduction: Computer program graphs have proven very useful because they eliminate the struc-
tural characteristics of a program. Structural characteristics, as a representation of program complexity, have
been shown to be strongly related to program development time, program quality and difficulty of debugging.
The use of graphs for these purposes is not widely known or understood in the data processing community. It is
the aim of this paper to provide an introduction to graphs as they apply to program representation and to show
examples of their use in program design and debugging.

[Schr84] Abstraet: This paper describes an attempt to integrate the collection and the efficient utilization of
measurements in the development and the use of programs. The work presented consists in three parts:

" the design of both static and dynamic measurement tools,
" examples of data processing on measurements collected on a sample of Pascal programs,
* the design of a quantitative documentation of a program, which is automatically built as measurements are

collected.
The first and third steps have been developed inside an existing programming environment, Mentor, and

we shall discuss the advantages we found in integrating the tools in such an environment.

336



August 9, 1989

* [SchuSi] Abstract: This paper addresses the problem of programming distributed systems within the framework
of the Ada language, which provides primitives for interprocess communication based upon the model of Com-
municating Sequential processes. We first discuss our basic assumptions concerning the underlying target confi-
guration, the physical communication medium which is to support that application and pattern of the logical
communication within the application proper. We then develop a first approach for constructing such applica-
tions using the separate compilation facilities of Ada. Finally, we consider two possible protocols for implement-

* ing the requisite distributed interprocess communication, referred to as the Remote Entry Call and the Remote
Procedure Call, respectively.

[Schw70aJ Overview: A survey of the type, frequency, and habitat of bugs is outlined. Debugging tools presently
available are discussed and suggestions for their development advanced. The role of "proofs of program correct-
ness" and the debugging process itself are discussed.

[Scot84a] Abstract: New data domain reliability models have been developed for the N-version, Recovery Block
and Consensus Recovery Block approaches to fault-tolerant software and investigation of the validity of each of
these models is underway. Central to validation is the underlying dependence of the multiple versions of software
modules required by these approaches and the impact of this dependence on reliability predictions. This paper
presents reliability models for all three fault-tolerance approaches using assumptions of both independence and

* dependence. The presentation of the experimental investigation focuses in the Recovery Block strategy. The
results can be summarized by saying the models relying on the assumption of module independence did not ade-
quately predict reliability on the experiments. The dependent models were successful. Furthermore, the underly-
ing dependence could not be attributed to common cause errors resulting from similarities in the solution algo-
rithms. Rather, the dependence was attributable to the difficulty of the input test cases.

* [Scot84b] Abstract: Results are presented for an experiment conducted at North Carolina State University to
validate the author's fault-tolerant software reliability models. Both independent and dependent versions of the
Recovery Block, N-Version Programming, and Consensus Recovery Block reliability models were studied. It
was shown that the assumption of version independence leads to poor predictions of reliability. The reliability
gains offered by each of the three methods of software fault-tolerance were also compared.

* [Scot87] Abstract: In situations in which computers are used to manage life-critical situations, software errors
that could arise due to inadequate or incomplete testing cannot be tolerated. This paper examines three methods
of creating fault-tolerant software systems, Recovery Block, N-Version Programming, and Consensus Recovery
Block, and it presents reliability models for each. The models are used to show that one method, the Consensus
Recovery Block, is more reliable than the other two.

The results of an experiment used to validate the models -Ye presented. It is demonstrated that, for highly
* reliable acceptance tests, the Consensus Recovery Block system gave the highest reliability. In all cases, the Con-

sensus Recovery Block and Recovery Block systems were better than the N-Version Programming systems.
A simple cost model that shows the relative costs of increasing software reliability using the three fault-

tolerant methods is presented.

[Sed183] Abstract: Fault localization in program debugging is the process of identifying program statements
• which cause anomalous behavior. We have developed a prototype, knowledge-based model of the fault localiza-

tion process. Novel features of the model include multiple localization tactics and a recognition-based mechan-
ism for program abstraction. An explicit division of knowledge from the applications, programming and
language domains facilitate model tuning within as well as across applications domains. We describe model struc-
ture and performance for a class of faults associated with master file update programs. We foresee applications
of the model as an initial cognitive theory of expertise in fault localization and as a partially automated debugging

* tool.

[Seib85] Abbreviated Abstract: The evaluation of software technologies suffers because of the lack of

337



August 9, 1989

quantitative assessment of their effect on software development and modification. A seven-step approach for
quantitatively evaluating software technologies couples software methodology evaluation with software measure-
ment. The approach is applied in-depth in the following three areas. 1) Software Testing Strategies: A 74-subject
study, including 32 professional programmers and 42 advanced university students, compared code reading,
functional testing, and structural testing in a fractional factorial design. 2) CLEANROOM Software Develop-
ment: Fifteen three-person teams separately built a 1200-line message system to compare CLEANROOM
software development (in which software is developed completely off-line) with a more traditional approach. 3)
Characteristic Software Metric Sets: In the NASA SEL production environment, a study of 65 candidate pro-
duct and process measures of 652 modules from six (51,000 - 112,000 line) projects yielded a characteristic set of
software cost/quality metrics.

[Selb$6] Abstract: This study compares the three testing strategies of (1) code reading by stepwise abstraction,
(2) functional testing using equivalence partitioning and boundary value analysis, and (3) structural testing with
100% statement coverage criteria - and the six pairwise combinations of these techniques. Thirty two profes-
sional programmers applied the techniques to three unit-sized programs in a fractional factorial experimental
design.

The major results of this study are the following.
1. The six combined testing approaches detected 17.7% more of the program' faults on the average than did the
three single techniques, which was a 35.5% improvement in fault detection.

2. The highest percentage of the programs' faults were detected when there was a combination of either two code
readers or a code reader and a functional tester. However, a pairing of two code readers detected more faults
per hour than did a pairing of a code reader and a functional tester.

3. The pairing of two individuals of advanced expertise resulted in the highest percentage of faults being
detected.

4. The most cost-effective (number of faults detected per hour) testing approach overall was when code reading
was applied by an individual. The most cost-effective combined testing approach was when a code reader was
paired with either another code reader or a structural tester.

5. Both the percentage of faults detected and the fault detection cost-effectiveness depended on the type of
software being tested.

[Selbg7a] Abstract: Software metrics have been useful to measure, evaluate, and control the software develop-
ment process and evolving software product. Software environments provide software tools and infrastructure
to support a variety of activities related to software development. This paper proposes 23 guidelines for incor-
porating metrics into software environments. The guidelines are organized into five areas: the purpose, type,
scope, collection, and analysis of metrics. An example application of the guidelines in a software environment
project is described briefly.

[Selbg7b] Abstract- The CLEANROOM software development approach is intended to produce highly reliable
software by integrating formal methods for specification and design, nonexecution-based program development,
and statistically based independent testing. In an empirical study, 15 three-person teams developed versions of
the same software system (800-2300 source lines); ten teams applied CLEANROOM, while five applied a more
traditional approach. This analysis characterizes the effect of CLEANROOM on the delivered product, the
software development process, and the developers.

The major results of this study are the following.
1. Most of the developers were able to apply the techniques of CLEANROOM effectively (six of the ten
CLEANROOM teams delivered at least 91% of the required system functions).

2. The CLEANROOM teams products met system requirements more completely and had a higher percentage
of successful operationally generated test cases.

3. The source code developed using CLEANROOM had more comments and less dense control-flow complex-
ity.

338



August 9, 1989

• 4. The more successful CLEANROOM developers modified their use of the implementation language; they used
more procedure calls and IF statements, used fewer CASE statements and WHILE statements, and had a
lower frequency of variable reuse (average number of occurrences per variable).

5. All ten CLEANROOM teams made all of their scheduled intermediate product deliveries, while only two of
the five non-CLEANROOM teams did.

6. Although 86% of the CLEANROOM developers indicated that they missed the satisfaction of program execu-
* tion to some extent, this had no relation to the product quality measures of implementation completeness and

successful operational tests.
7.81% of the CLEANROOM developers said that they would use the approach again.

[Selb88a] Abstract: One central feature of the structure of a software system is the coupling among its com-
ponents (e.g., subsystems, modules) and the cohesion within them. The purpose of this study is to quantify ratios

* of coupling and cohesion and use them in the generation of hierarchical system descriptions. The ability of the
hierarchical descriptions to localize errors by identifying error-prone system structure is evaluated using actual
error data. Measures of data interaction, called data bindings, are used as the basis for calculating software cou-
pling and cohesion. A 135,000 source line system from a production environment has been selected for empirical
analysis. Software error data was collected from high-level system design through system test and from some
field operation of the system. A set of five tools is applied to calculate the data bindings automatically, and clus-

* ter analysis is used to determine a hierarchical description of each of the system's 77 subsystems. An analysis of
variance model is used to characterize subsystems and individual routines that had either many/few errors or
high/low error correction effort.

[ShanSO] Abstract: The main intent of this paper is to derive expressions for software performance prediction
using a state-dependent error occurrence-rate model. Using a Markov process representation for the remaining

* number of errors in the software system we derive a set of linear difference-differential equations for the proba-
bility distribution of the number of remaining errors at an arbitrary time t. Solving this set of equations we obtain
a binomial distribution for the number of remaining errors. We also obtain the relevant system performiance
measures for the software system. This analysis is first carried out assuming that the initial error content at the
time t-0 is a fixed unknown constant and subsequently extend it for the case in which the initial error content is a
random variable. Using these results we exhibit an interesting insensitivity characteristic of this model.

[ShanSl] Abstract: In this paper, assuming a state- and time-dependent software failure rate and imperfect
debuggings, we develop a simple binomial model for software error occurrences. Maximum likelihood estimates
for the required parameters of this model are also derived. It is established that the Jelinski-Moranda, imperfect
debugging and non-homogeneous Poisson process models are all special cases of ours.

* [Shan82] Abstract: The purpose of this paper is to develop a method for designing and verifying data abstrac-
tions using the functional approach. Before doing so, the existing techniques for designing and verifying pro-
cedure and data abstractions will be surveyed briefly. These techniques will then be modified and extended to ver-
ify data abstractions. By using the concept of a mathematical function, one can model the behavior of a pro-
cedure abstraction and give a more uniform and clearer meaning to the stepwise refinement and verification of
procedure abstractions. The concept of a state machine is then used as a basis to specify data abstractions. Using

* state machine specification, a technique for expressing the design of a data abstraction is then given. A method is
then developed to verify the design of a data abstraction with respect to its specifications.

[Shat88] Abstract: In order to understand and analyze real-time distributed programs, one must account for
interactions between processes. Unfortunately, these interactions can be quite complex due to concurrency and
nondeterminism. This paper describes a framework for automated static analysis of distributed programs written

* in Ada. The analysis is aimed at discovery of a program's potential tasking behavior, that is, behavior in terms of
tasking-related issues. Central to the framework is the translation of a program into an abstract grammar system
that represents a Petri net graph model.

339



August 9, 1989

[Sbaw7S] Abst-ac Flow expressions describe sequential and concurrent flows of entities, such as control, mes-
sages, commands, jobs, and resources, through system software components, such as programs, procedures,
modules, and processes. They consist of regular expressions extended with cyclic and interleaving operators and
a synchronization facility. The language of flow expressions is defined and some of its formal properties are
presented. Applications are exhibited in the modeling of concurrent programs, the description of operating sys-
tem architectures, the specification and solution of synchronization problems, the flow and description of com-
mand languages, and in systems analysis and verification.

[Shaw89] Abstract: Halstead's theory of software science is used to describe the compilation process and gen-
erate a compiler performance index. A nonlinear model of compile time is estimated for four Ada compilers. A
fundamental relation between compile time and program modularity is proposed. Issues considered include data
collection procedures, the development of a counting strategy, the analysis of the complexity measures used, and
the investigation of significant relationships between program characteristics and compile time. The results sug-
gest that the model has a high predictive power and provides interesting insights into compiler performance
phenomena. The research suggests that the discrimination rate of a compiler is a valuable performance index and
is preferred to average compile time statistics.

[Shelil] Abstract: Most innovations in programming languages and methodology are motivated by a belief that
they will improve the performance of the programmers who use them. Although such claims are usually
advanced informally, there is a growing body of research which attempts to verify them by controlled observation
of programmers' behavior. Surprisingly, these studies have found few clear effects of changes in either program-
ming notation or practice. Less surprisingly, the computing community has paid relatively little attention to these
results. This paper reviews the psychological research on programming and argues that its ineffectiveness is the
result of both unsophisticated experimental technique and a shallow view of the nature of programming skill.

[Shen83] Abstract: The theory of software science was developed by the late M.H. Halstead of Purdue Univer-
sity during the early 1970's. It was first presented in unified form in the monograph "Elements of Software Sci-
ence" published by Elsevier North-Holland in 1977. Since it claimed to apply scientific method to the very com-
plex and important problem of software production, and since experimental evidence supplied by Halstead and
others seemed to support the theory, it drew widespread attention from the computer science community.

Some researchers have raised serious questions about the underlying theory of software science. At the
same time, experimental evidence supporting some of the metrics continues to be presented. This paper is a cri-
tique of the theory as presented by Halstead and a review of experimental results concerning software science
metrics published since 1977.

[Shen85] Abstract: A major portion of the effort expended in developing commercial software today is associ-
ated with program testing. Schedule and/or resource constraints frequently require that testing be conducted so
as to uncover the greatest number of errors possible in the time allowed. In this paper we describe a study under-
taken to assess the potential usefulness of various product- and process-related measures in identifying error-
prone software. Our goal was to establish an empirical basis for the efficient utilization of limited testing
resources using objective, measurable criteria. Through a detailed analysis of three software products and their
error discovery histories, we have found simple metrics related to the amount of data and the structural complex-
ity of programs to be of value for this purpose.

[Shep78] Overview: The late 70's find structured programming increasingly popular-this and other techniques
are programming's future. But what does experimental evaluation say about their actual effects on programmer
performance?

[Shep79] Abbreviated Introduction: In a series of experiments we investigated the effects of modern coding
practices on three different programming tasks. The first experiment examined the effects of structured coding
and mnemonic variable names on program comprehension. The second studied the influence of structured

340



August 9, 1989

* coding and commenting style on modification tasks. The third studied the influence of structured coding and of
several code-structuring methods on debugging performance. Participants in these experiments were all profes-
sional programmers whose experience ranged from several months to 25 years and averaged six or more years.
Participants in each experiment were selected from several locations in order to increase the diversity of pro-
gramming backgrounds.

• [Shim8] Abbreviated Introduction: Reliability is a pressing concern in the development of software for modern
systems. Many techniques have been proposed to improve software reliability. One technique, N-Version Pro-
gramming, has been used in software to control aircraft and railroads and has been proposed for nuclear power
plants. One drawback to the n-version technique is that the total development costs are increased due to the
costs of developing multiple versions.

In order to make the technique affordable, it has been suggested that n-version programming will be so
* effective that it can be used as a partial substitute for current software verification and validation procedures. It

seems important to investigate the hypothesis that testing can be reduced in n-version systems, and in general, to
study the relationship between fault elimination techniques and fault tolerance techniques.

There have also been proposals to use n-version voting in the testing process. In this method, the vote
itself is used as the test oracle, and, therefore, a larger number of tests can be executed. The underlying assump-
tions here are that (1) given that a fault leads to an erroneous output, it will be detected by the voting process,

* and (2) the faults that would have been detected by other testing techniques, such as structural testing or static
analysis techniques, will be elicited and detected by voting on random or functional test cases alone.

The authors of this paper are engaged in a large-scale experiment comparing software fault-tolerance and
software fault elimination as approaches to improving software quality. This paper describes the experiment and
the results that apply to the appropriateness and underlying assumptions of these two proposals.

l • [Shne75] Abbreviated Background: In the oarly stages of the development of high-level languages, radically
differing alternatives were often promulgated. Now as the field matures, there is a widespread recognition of the
usefulness of a variety of languages.

Although Dijkstra explicitly stated that computer programming was primarily a human activity as early as
1965, it was not until the publication, in 1971, of Gerald Weinberg's text The Psychology of Computer Program-
ming that this notion was widely recognized. [This] text concentrates on defining the programming task in the

* context of the professional environment and promotes the notion of "egoless programming teams." This team
organization concept may be contrasted with the "chief programmer team" strategy advocated by IBM. Experi-
mental comparison of interactions in these personal organization strategies would be an intriguing task for social
psychologists. Other sections of Weinberg's book concentrate on individual personality factors, training, and
motivational factors. Much more research needs to be done on the psychological make-up of programmers. For-
tunately, psychologists have begun to study programming behavior as an aspect of problem solving. Training and
teaching of programming has long been of interest to academically oriented researchers. Programming has only
recently become a subject for related disciplines such as educational psychology.

Although experimentation in the above mentioned areas would undoubtedly be welcome, the focus of this
paper is on experiments in programming language features, stylistic considerations and design techniques.

[Shne77a] Abstract: This paper describes previous research on flowcharts and a series of controlled experiments
• to test the utility of detailed flowcharts as an aid to program composition, comprehension, debugging, and modif-

ication. No statistically significant difference between flowchart and nonflowchart groups has been shown,
thereby calling into question the utility of detailed flowcharting. A program of further research is suggested.

[Shoi75] Abstract: An engineering-oriented performance model of a computation is developed by extending the
concept of a computation structure to cover the performance costs appropriate to software modeling. The model

* allows both serial and parallel (multiprocessor) configurations, and the evaluation of both time and space param-
eters for alternate realizations.

A brief discussion on the use of the model as a mechanism to guide the performance optimization of

341



August 9, 1989

programs is included.

[Shoo/2] Abstract: This paper discusses a probabilistic model for predicting software reliability. The model con-
stants are calculated from debugging data collected from similar previous programs. The calculations result in a
decreasing probability of number of software errors vs. operating time (reliability function). The decay rate of
the reliability function (reciprocal of the mean time to failure) decreases as a function of the man-months of
debugging time. The model provides initial estimates of software reliability before any code is written and allows
later updating to improve the accuracy of the parameters when integration or operational test begin.

[Shoo7S] Abstract: In order to develop some basic information on software errors, an experiment in collecting
data on types and frequencies of such errors was conducted at Bell Laboratories.

The paper reports the results of this experiment, whose objectives were to: (1) Develop and utilize a set of
terms for describing possible types of errors, their nat.,re, and their frequency; (2) Perform a pilot study to deter-
mine if data of the type reported in this paper could be collected; (3) Investigate the error density and its
correspondence to predictions from previous data reported; (4) Develop data on how resources are expended in
debugging.

A program of approximately 4K machine instructions (final size) was chosen. Programmers were asked to
fill out for each error, in addition to the regular Trouble Report/Correction Report (TR/CR) form, a special
Supplementary TR/CR form for the purpose of this experiment. Sixty-three TR/CR and Supplementary forms
were completed during the Test and Integration phase of the program.

In general, the data collected were felt to be accurate enough for the purpose of the analyses presented.
The 63 forms represented a little over 1-1/2% of the total number of machine instructions of the program. (In
good agreement with the 1% to 2% range noted on previous studies.)

It was discovered that a large percentage of the errors was found by hand processing (without the aid of a
computer). This method was found to.be much cheaper than techniques involving machine testing.

[Shoo76] Abstract: Many previous software reliability prediction models by this author and others have concen-
trated on the bulk (macro) aspects of the program. This paper describes a newly developed micro model which
is based on program structure.

It is assumed that the program has been written in structured or modular form so that decomposition into
its constituent parts is simple. Further, we assume that via analysis of the program the decomposition can be
related to several paths or other functional structures within the program.

The model is constructed based upon the frequencies with which each of the j paths are run, (f.), the run-
ning time of each path, (t.), and the probability of error along each path, (q.).

Several methods of calculating or measuring the f., t., and q. paranfeters are suggested. In fact it is possi-
ble to use one technique (historical data) to produce crude Jstimatel at the start of the design, and refine the esti-
mates with more accurate values as the design progresses.

The paper concludes with the application of the model to a particular example: calculation of the roots of
a quadratic equation, and a discussion of proposed experiments for validating the model.

[Shoo77a] Abstract: The paper begins by describing the types and causes of software errors and provides work-
ing definitions of software errors and software reliability. Some of the basic data on frequency of occurrence of
errors is then discussed. The paper then summarizes and references some of the software reliability models
which have been proposed and concentrates on one developed by the author. One of the probabilistic models,
the macro model, predicts reliability based on the initial number of errors in a program, the number removed,
and the number remaining in the program. The model constants are calculated from operational test data taken
on the software performance. The other, the micro model, focuses on the paths in the program, their frequency
and time of traversal, and the error rate along these paths.

[Shoo79 Abbreviated Abstract: This interim report summarizes the research performed by Polytechnic Insti-
tute of New York for Rome Air Development Center under contract F30602-78-C-0057. The principal topics

342



0

August 9, 1989

* covered are (1) software test models and implementation of automated test drivers to force-execute every pro-
gram path, (2) development of new measures of program complexity based upon information theory, (3) models
of software management and organizational structure, and (4) statistical measures relating the probability of find-
ing a program error to the testing of that program.

Recursive function theory was applied to the problem of program complexity. This study was completed
and a technical report was issued. The present report contains the abstract of the technical reports.

* The inquiry into the number of tests necessary to verify a computer program was undertaken. One phase
of this study was completed, and a technical report was issued. The present report contains the abstract of the
technical report.

A study was undertaken of software test models and of the implementation of associated test drivers. The
present report describes this work as well as the test drivers obtained so far.

A new measure of complexity based upon information theory is introduced. This measure assumes that a
* language feature used infrequently is more likely to be used incorrectly than a language feature used frequently.

The measure has the advantage of being sensitive to the different levels of nestings in either IF'S, DO'S, or pro-
cedures.

A number of different schemes are suggested for the calculation of the measure. A method for automatic
calculation of the measure at an installation is also discussed.

The relation between program complexity and the program's information content was also investigated.
* The results obtained so far are described in this report.

Two models for the management of software were investigated. The first one models the productivity
(measured in instructions per months), as well as the man-months required. The second model investigates dif-
ferent communication schemes that can be evolved when a problem is partitioned into several subproblems.

The concluding section section of the report describes the planned work in the next period and lists pro-
fessional activities of the personnel during the present reporting period.

[Sldh$9] Abstract: A protocol standard, in general, can lead to different implementations, which necessitate the
need for conformance testing of an implementation to its standard. Testing is carried out with the help of a test
sequence generated from a protocol specification. This paper presents a detailed study of four formal methods
(T-, U-, D-, and W-methods) for generating test sequences for protocols. Applications of these methods to NBS
Class 4 Transport Protocol are discussed. This paper also presents an estimation of fault coverage of four proto-

* col test sequences generation techniques using Monte Carlo simulation. The ability of a test sequence to decide
whether a protocol implementation conforms to its specification heavily relies upon the range of faults that it can
capture. Conformance is defined at two levels, namely, weak and strong conformance. This study shows that a
test sequence produced by T-method has a poor fault detection capability whereas test sequences produced by
U-, D- and W-methods have comparable (superior to that for T-method) fault coverage on several classes of ran-
domly generated machines used in this study. Also, some problems with a straightforward application of the four

* protocol test sequence generation methods to real-world communication problems are pointed out.

[SlefSg] Abstract: The purpose of this project was to develop a tool to automate the method for evaluating
software quality in Software Quality Evaluation Guidebook RADC-TR-85-37 Vol M (of three). The Automated
Measurement System (AMS), a computer-based software tool, provides the capabilities to monitor the overall
quality and resource expenditure of software under development. The AMS collects, stores and analyzes

* software measurement data for use by software acquisition and software project personnel. It provides managers
with a means to quantitatively specify goals and track progress toward those goals during all phases of the
software life cycle (in concert with DOD-STD-2167). The underlying philosophy of the AMS is based on a
framework consisting of a set of 13 software factors (i.e., reliability, maintainability, reusability, portability,
interoperability, usability, integrity, flexibility, expandability, verifiability, correctness, survivability, and effi-
ciency) which are associated with high level concerns of software quality.

[SkllS9] Abstract: We present a methodology for transforming a functional specification written in Lucid, to an
equivalent specification that captures its real-time properties. The enhanced specification consists of a set of

0 343



August 9, 1989

equations. These equations can be solved for several properties, including execution time and external require-
ments, or they may simply be checked for the existence of a solution. Lucid has a set of meaning-preserving
transformations, and a proof system corresponding to a behavioral semantics has been constructed. Both of
these tools can be used to reason about properties of the specification.

[Sneeg] Abstract The data processing community needs to apply software engineering techniques and tools to
real projects to determine their practical usefulness. Such an opportunity was provided by the Bertelsmann Pub-
lishing Corporation of Gutersloh, West Germany, during a two year period from 1981 to 1983. This article reports
the results of that project and the experience gained from it.

[Snee8S Abstract This paper describes a family of tools which not only supports software development, but
also assures the quality of each software product from the requirements definition to the integrated system. It is
based upon an explicit definition of the design objectives and includes specification verification, design evalua-
tion, static program analysis, dynamic program analysis, integration test auditing, and configuration manage-
ment.

[SneeS6] Abstract: The following paper presents a metric for measuring test coverage which will enhance the
present test metrics. This measurement focuses on the data used by the program under test. By dynamically mon-
itoring the change of data states at test time it is possible to record how data are actually used. By statically
analyzing the operands of a program it is possible to record how they are referenced by the program. By analyz-
ing the specification it is possible to derive how the data should be used. Finally, the specified use is compared
with the programmed use and the programmed use with the tested use, in order to determine to what degree all
specified data usages have been tested. The ratio of actual tested usage to the specified usage gives the total data
coverage.

(SoloS4] Abstract: We suggest that expert programmers have and use two types of programming knowledge: 1)
programming plans, which are generic program fragments that represent stereotypic action sequences in pro-
gramming, and 2) rules ofprogramming discourse, which capture the conventions in programming and govern the
composition of the plans into programs. We report here on two empirical studies that attempt to evaluate the
above hypothesis. Results fro, ,,ase studies do in fact support our claim.

[SoneSO] Abstract: A finite state, continuous time Markov model is presented, which provides reliability meas-
ures (i.e., expected down time) for duplicated and repairable fault-tolerant computing systems whose main
penalty depends on the total duration of failures over a given time period. Most of the existing models estimate
reliability measures (e.g., mean time before failure) derived from the reliability function, meaningful only for sys-
tems whose main penalty depends on the frequency of failures. In addition, the model described here removes
the simplifying assumption, made by some of the previous models, that the system is made of independent sub-
systems and this each subsystem can be modeled separately. Recognizing the fact that certain faults may affect
more than one subsystem, this model represents the entire system, assuming however a small number of dupli-
cated subsystem. The model has been implemented as a general interactive program to provide speedy estima-
tion of reliability measures in the evaluation of fault-tolerant computer architecture designs. An example is
included to illustrate the capability of the model.

[Sone8l] Abstract:

[Soon77] Summary: This paper contributes to the understanding of program structures in terms of its stability
and reliability in a quantitative sense. Distinctions are made between the logical structure of a program and the
information structure of a program.

The general characteristics of a good program will not be discussed in this paper other than citing relevant
references. The term stability is defined as the resistance to the amplification of changes that has been made to a
given program. The information structure of a program is based on the sharing of information between the

344



August 9, 1989

* components of the program.
Some quantitative analysis is derived to measure the quality of a program in terms of its information struc-

ture. The techniques used here are the method of connectivity matrix and that of random Markovian process. A
high level quantitative measure of the information structure will be presented together with an informal proof for
the uniqueness and the existence of this measure.

Applying this technique, several simple program information structures are measured for their stability
* characteristics. The simplicity of the structure is chosen deliberately so that this technique can be checked

against intuitive preference of stability. Another example with a structure of some sophistication is presented to
compare a tree structure to a pair of cooperating sequential processes.

[Sork79] Abstract: Here is a presently operational plan to improve the quality of program testing. After all pro-
grams are tested alone, an independent quality control staff uses automated tools to certify that minimum testing

* criteria have been met.

[SrdnS] Introduction: The dataflow model of computation allows functions to be run concurrently on multiple
processors, reducing execution time significantly. This advantage and the partial results of the computation will
be lost if processors fail. Therefore, a crucial feature in a concurrent system is the ability to continue the compu-
tation when components fail, a feature known as fault tolerance.

* Although several dataflow architectures have been proposed, few are fault tolerant and able to balance the
load on the system dynamically. But a distributed computer system (DCS) based on a task-level dataflow archi-
tecture can reduce traffic, speed communication between processors, and tolerate hardware faults by automati-
cally reassigning computations to a healthy processor. Such a DCS has the potential to provide better perfor-
mance than conventional multiprocessors because the execution of a function is free of side effects.

By asking when and how to do node reassignment as the dataflow architecture and processor are designed,
designers can incorporate the necessary support mechanisms. This article considers dataflow graphs with nodes
representing asynchronous tasks.

[Stan83] Abstract: Arcturus offers an approach to the integrated use of compiled and interpreted Ada, tem-
plate-driven Ada text editing, an Ada Program Design Language (PDL), Ada program performance measure-
ment with color profiles, formated printing of Ada programs with useful listing options, and automated stepwise

* refinement from Ada program designs written in Ada PDL into executable Ada. This paper has two objectives:
(a) to provide a two page thumbnail sketch of some interactive Ada capabilities in Arcturus, and (b) to provide a
detailed scenario of interactive Ada programming at the very simplest level, using Ada-oriented variants of
interactive programming techniques that have proven effective in practice - the hope being that the reader will
be convinced that interacive Ada is an idea worth vigorous further pursuit.

* [Stan4a] Abstract: The Arcturus system demonstrates several important principles that will characterize
advanced Ada programming support environments. These include conceptual simplicity, tight coupling of tools,
and effective command and editing concepts. Arcturus supports interactive program development and permits
the combined used of interpretive and complied execution. Arcturus is not complete however, as practical,
mature environments for Ada must also support the development, analysis, testing, and debugging of concurrent
programs. These issues are currently being explored. Arcturus, therefore is a platform for experimental

* exploration of key programming environment issues. This paper focuses primarily on the current system,
describing and illustrating some of its components, while issues less fully developed are more briefly described.

[Stet86] Abstrat: In a recent paper, an approximate formula for the number of faults per line of code was
developed. We show that there is an approximation which is easier to develop, more accurate, and simpler to
use.

[Stev74] Abstract: Considerations and techniques are proposed that reduce the complexity of programs by divid-
ing them into functional modules. This can make it possible to create complex systems from simple,

0 345



August 9, 1989

independent, reusable modules. Debugging and modifying programs, reconfiguring I/O devices, and managing
large programming projects can all be greatly simplified. And, as the module library grows, increasingly sophisti-
cated programs can be implemented using less and less new code.

[Stig74] Abbreviated Introduction: The complexity of digital computers and their large scale use have led some
researchers to investigate tools not commonly used. In recent years, applications of graph theory to computers
as well as other fields of study have given fruitful results and have attracted more and more scientists. The
attempt here will be to review previous accomplishments on a fundamental level and to stimulate the reader to
investigate an area where valuable work is being performed.

[Stue2] Abbreviated Introduction: The measurement process plays a vital role in the quality assurance and
testing of new hardware systems. To insure the reliability of the final hardware system, each stage of development
incorporates performance standards and testing procedures. The establishment of software performance criteria
has been very nebulous. At first the desire to "just get it working" prevailed in most software development
efforts. With the increasing complexity of new and evolving software systems, improved measurement tech-
niques are needed to facilitate disciplined program testing beyond merely debugging. The Program Testing Trans-
lator is an automatic tool designed to aid in the measurement and testing of software systems.

Early attempts at the application of measurement techniques to software dealt mainly with efforts to meas-
ure the hardware utilization characteristics. In an attempt to further improve hardware utilization, several aids
have been developed ranging from optimized compilers to automated execution monitoring systems. The Pro-
gram Testing Translator, designed to aid in the testing of programs, goes further. In addition to providing execu-
tion time statistics on the frequency of execution for various program statements, the Program Testing Translator
performs a "standards" check to insure programmers' compliance to an established coding standard, gathers
data on the extent to which various branches of a program are executed, and provides data range values on
assignment statements and DO-loop control variables.

[Stuc7Sa] Abstract. Automated tools and structured programming techniques are in use on a variety of scientific
and business application programming projects within the McDonnell Douglas Corp. An examination of the
resulting programs reveals certain development and maintenance characteristics that suggest new and very
interesting applications for automated tools.

An extension of PET (a currently operational McDonnell Douglas validation tool for FORTRAN) to
include a user embedded assertion capability offers a step in the direction of automatically verifying the dynamic
execution of programs. A user-oriented local and global assertion capability is introduced and its implementa-
tion is discussed.

Application of these tools within a well-conceived structured programming environment offers a positive
step forward in the development of more reliable software systems.

[Stuc77] Abbreviated Background: Another set of tools has also been introduced over the last few years to deal
with control flow through programs. Software probes or instrumentation are automatically placed into a program
for monitoring the dynamic execution behavior of an algorithm. Software probes in the form of source language
statements are inserted into the source code to gather statistics during program execution. These probes can pro-
vide insight into many aspects of algorithmic behavior beyond a simple flow of control analysis. The notion of
building self-metric software has been introduced previously by the author; however, significant expansion of this
concept is now being explored as a vehicle for improving software quality.

In order to illustrate the type of automated tool capabilities currently available and some of the new tech-
niques now under construction, the tool most familiar to the author will be described. It is hoped that this
currently operational system will offer some insight into the concept of self-metric software and show a few of the
measurement schemes available for dynamic program analysis.

[Suke77a] Abstract: Reports on the initial phase of a software reliability modeling study, in which nine software
reliability models are applied against software error data detailing the complete error history from the start of

346



August 9, 1989

* formal testing through delivery of a large command and control software development project with over 100,000
lines of Jovial code. The paper describes the models considered and the procedures used to prepare the data for
model input. Model predictions are then compared and analyzed against the actual post-delivery error data for
this project. From this analysis, conclusions concerning model applicability and some possible extensions of this
study are discussed.

[Suke79] Abtrat: From 1974 Aug to 1978 May a study to validate several mathematical models for predicting
the reliability and error content of a software package against error data extracted from four large U.S.A.
Department of Defense software development projects was undertaken by Rome Air Development Center. This
paper will describe the results of this empirical study for three such models: Jelinski-Moranda, Schick-Wolver-
ton, modified Schick-Wolverton. Model predictions will be compared on a total project, functional, and error
severity basis, and on a daily vs. weekly basis for defining model time intervals. The question of when to begin

* applying these models will be addressed. General conclusions are drawn as to model applicability.

[Sano82] Abstract: The program complexity measure currently seems to be the most capable measure for both
quantitative and objective control of the software project. Five program complexity measures (step count,
McCabe's V(G), Halstead's E, Weighted Statement Count and Process V(G)) were assessed from such a
viewpoint. This empirical study was done with the data collected through a practical software project. All of

* these measures have highly significant correlations with the management data. Application of complexity meas-
ures to software development management is discussed and a method for the detection of anomalous modules in
a program is proposed.

[Suns77] Abstract: It is becoming increasingly important that communication protocols be formally specified
and verified. This paper describes a particular approach - the state transition model - using a collection of

* •mechanically supported specification and verification tools incorporated in a running system called AFFIRM.
Although developed for the specification of abstract data types and the verification of their properties, the for-
malism embodied in AFFIRM can also express the concepts underlying state transition machines. Such models
easily express most of the events occurring in protocol systems including those of the users, their agent
processes, and the communication channels. The paper reviews the basic concepts of state transition models,
and the AFFIRM formalism and methodology and describes their union. A detailed example, the alternating bit

* protocol, illustrates various properties of interest for specification and verification. Other examples explored
using this formalism are briefly described and the accumulated experience is discussed.

[Symo88] Abstract: The method of Function Point Analysis was developed by Allan Albrecht to help measure
the size of a computerized business information system. Such sizes are needed as a component of the measure-
ment of productivity in system development and maintenance activities, and as a component of estimating the

* effort needed for such activities. Close examination of the method shows certain weaknesses, and the author
proposes a partial alternative. The paper describes the principles of this "Mark I" approach, the results of some
measurements of actual systems to calibrate the Mark II approach, and conclusions on the validity and applica-
bility of function point analysis generally.

[SzulS4] Introduction: The manner in which software for DoD applications is developed is undergoing evolu-
* tionary change with the introduction of Ada and its support tools. This change has been prompted by the desire

to increase software quality and developer productivity. Although design-aid tools, and techniques for measuring
software quality have been of interest to the research community for some time now, the user community has
only recently expressed a need for this technology as evidenced by the Software Technology for Adaptable and
Reliable Systems (STARS) program. An important part of the STARS program is the development of metrics to
measure the quality of both the software development process and software products. Even though the STARS

* focus is not Ada, tools and techniques developed through this effort will likely become part of the Ada Program-
ming Support Environments (APSEs).

This paper reports on work done in investigating the use of Ada as a Program Design Language (PDL),

347



August 9, 1989

and the evaluation of Ada designs with a design metric. The first section provides background and describes the
context for the work. The second section defines the Halstead metrics and discusses their application during the
design phase. The third section discusses using Ada as a Program Design Language. The fourth section presents
an example which illustrates the usefulness of the design metrics on the Ada PDL design medium. Finally, the
conclusions of this work are presented.

[TaIS0] Abstract: This paper explores the testing complexity of several classes of programs, where the testing
complexity is measured in terms of the number of test data required for demonstrating program correctness by
testing. It is shown that even for very restrictive classes of programs, none of the commonly used criteria, namely
having every statement, branch, and path executed at least once, is nearly sufficient to guarantee absence of
errors.

Based on the study of testing complexity, this paper proposes two new test criteria, one for testing a path
and the other for testing a program. These new criterion suggest how to select test data to obtain confidence in
program correctness beyond the requirement of having each statement, branch, or path tested at least once.

[Tai8$a] Abstract: In this paper a type of error in concurrent software, called synchronization error, is defined.
How to analyze a concurrent specification or design in order to detect synchronization errors is discussed.

[Tal8$c] Abstract: Repeated executions of a concurrent program with the same input may exercise different
paths in this program, thus making concurrent programs more difficult to test than sequential programs. This
paper addresses several fundamental issues on the testing of concurrent programs. A type of error in concurrent
programs, called synchronization error, is formally defined. To detect such errors, a new form of test case is pro-
posed, which consists of an input and a synchronization sequence and is called an INSYN test case. How to
generate INSYN test cases for a concurrent program is discussed. In order to execute an INSYM test case,
the problem of reproducing a sequence of synchronizations between concurrent processes arises, which is
referred to as the reproducible testing problem. Four basic approaches to solving this problem are presented.

[Ta86] Abstract- Repeated executions of a concurrent Ada program with the same input may exercise different
sequences of rendezvous, thus making concurrent Ada programs more difficult to test than sequential Ada pro-
grams. The reproducible testing problem for Ada is how to reproduce a sequence of rendezvous of a concurrent
Ada program. This problem exists not only for debugging concurrent Ada programs, but also for determining
the correctness of concurrent Ada programs.

In this paper, we present a solution to the reproducible testing problem for an arbitrary concurrent Ada
program. This solution transforms a concurrent Ada program P into P' such that the reproduction of a sequence
of rendezvous, say S, of P with input X requires exactly one execution of P' with (X,S) as input. The proposed
solution can be easily automated.

[TakaS9] Abstract: Accuracy in program error prediction is a major problem in quality control of a large-scale
software system. This -paper presents a model to estimate the number of errors remaining in a program at the
beginning of the testing phase of development. In the first part of the study, the relationships between the errors
occurring in a program and the various factors which have an effect on software development, such as program-
mer's skill, are statistically analyzed. The model is then derived by using the factors significantly identified in the
analysis. This empirical study is based on data collected during the development of large-scale software systems.
Results of the study indicate that factors such as frequency of program specification change, programmer's skill,
and volume of program design documentation are significant and that the model based on these factors is more
reliable than conventional error prediction methods based on program size alone.

[TausS8] Abstract: This article contains the results of initial research work performed to extend the applicability
of McCabe's Cyclomatic Complexity Metric for the analysis of Ada software. Having proved useful both as a log-
ical measurement technique and as a testing aid, the Ada Complexity Extension (ACE) is proposed for general
acceptance as a standard to provide a useful metric that may assist in improving the quality of Ada software

348



August 9, 1989

* programs.

[TayI7Sb] Abstract: This paper describes the overall design of some modular capabilities for error detection
testing, verification, and documentation of concurrent process HAL/S programs. The work described draws
upon many ideas first advanced in building tools for single process software. In this paper, these ideas are signifi-
cantly extended and adapted to realize the power of these tools for concurrent software. Particular attention is

* paid to the design of static data flow analysis capabilities for concurrent software.

[TaylS0al Abstract: The increasing cost of computer system failure has stimulated interest in improving software
reliability. One way to do this is by adding redundant structural data to data structures. Such redundancy can be
used to detect and correct (structural) errors in instances of a data structure. The intuitive approach of this
paper, which makes heavy use of examples, is complemented by the more formal development of the companion

* paper, "Redundancy in Data Structures: Some Theoretical Results."

[TaylSOb] Abstract: Algorithms are presented for detecting errors and other anomalies in programs which use
synchronization constructs to implement concurrency. The algorithms employ data flow analysis techniques.
First used in compiler object code optimization, the techniques have more recently been used in the detection of
variable usage errors in single process programs. By adapting these existing algorithms, the same class of variable

* usage errors can be detected in concurrent process programs. Important classes of errors unique to concurrent
process programs are also described, and algorithms for their detection are presented.

[Tayl82a] Abstract: This paper sets some context, raises issues, and provides [the authors] initial thinking on the
characteristics of effective rapid prototyping techniques.

After discussing the role rapid prototyping techniques can play in the software lifecycle, the paper looks
* at possible technical approaches including: heavily parameterized models, reusable software, rapid prototyping

languages, prefabrication techniques for system generation, and reconfigurable test harnesses.
The paper concludes that a multi-faceted approach to rapid prototyping techniques is needed if we are to

address a broad range of applications successfully - no single technical approach suffices for all potentially
desirable applications.

* [TayI82b] Abstract: A common paradigm for the development of process-control or embedded computer
software is to do most of the implementation and testing on a large host computer, then retarget the code for final
checkout and production execution on the target machine. The host machine is usually large and provides a
variety of program development tools, while the target may be a small, bare machine. A difficulty with the para-
digm arises when the software developed has real-time constraints and is composed of multiple communicating
processes. If a test execution on the target fails, it may be exceptionally tedious to determine the cause of the

* failure. Host machine debuggers cannot normally be applied, because the same program processing the same
data will frequently exhibit different behavior on the host. Differences in processor speed, scheduling algorithm,
and the like, account for the disparity. This paper proposes a partial solution to this problem, in which the errant
execution is reconstructed and made amenable to source language level debugging on the host. The solution
involves the integrated application of a static concurrency analyzer, an interactive interpreter, and a graphic pro-
gram visualization aid. Though generally applicable, the solution is described here in the context of multi-task

* real-time Ada programs.

[Tayl83al Abstract: Developing and verifying concurrent programs presents several problems. A static analysis
algorithm is presented here that addresses the following problems: how processes are synchronized, what deter-
mines when programs are run in parallel, and how errors are detected in the synchronization structure. Though
the research focuses on Ada, the results can be applied to other concurrent programming languages such as

* CSP.

[TayIg3b] Summary: Foundational to verification of some aspects of communicating concurrent systems is

349



August 9, 1989

knowledge of the synchronization which may occur during execution. The synchronization determines the
actions that may occur in parallel, may determine program data flow, aud may also lead to inherently erroneous
situations (e.g., deadlock). This paper formalizes the notion of the synchronization structure of concurrent pro-
grams that use the rendezvous (or similar mechanism for achieving synchronization). The formalism is oriented
towards supporting verification as performed by automated static program analysis. Complexity results are
presented which indicate what may be expected in this area and which also shed light on the difficulty of correctly
constructing concurrent systems. Specifically, most of the analysis tasks considered are shown to be intractable.

[TayIS3c] Abstract: Stand-alone techniques for the analysis and testing of the synchronization structure of con-
current programs have recently been developed. These techniques are able to detect, for example, task block-
age, including deadlock. Static analysis provides firm results, but has limited applicability and is potentially
expensive. Dynamic analysis makes fewer assumptions, but its assurances are not as strong. This paper presents
strategies whereby the two can be employed jointly to advantage. Dynamic analysis can be used to further investi-
gate results from static analysis, and vice versa. Their joint use can be facilitated by an appropriate implementa-
tion, some principles for which are outlined.

[TayIS] Abstract: Conceptual simplicity, tight coupling of tools, and effective support of host-target software
development will characterize advanced Ada programming support environments. Several important principles
have been demonstrated in the Arcturus system, including template-assisted Ada editing, command completion
using Ada as a command language, and combining the advantages of interpretation and compilation. Other prin-
ciples, relating to analysis, testing, and debugging of concurrent Ada programs, have appeared in other contexts.
This paper discusses several of these topics, considers how they can be integrated, and argues for their inclusion
in an environment appropriate for software development in the late 1980's.

[Tayf86a] Abstract. Though structural testing techniques are among the weakest available with regard to
developing confidence in sequential programs, they are not without merit. This paper extends the notion of struc-
tural testing criteria to concurrent programs and proposes tools supporting structural testing techniques.
Requisite support tools include a static concurrency analyzer and either a program transformation system or a
powerful run-time monitor. Also helpful is a controllable run-time scheduler. The techniques proposed will work
for Ada or CSP-like languages. Best results will be obtained for programs having only static naming of task
objects.

[Tayl86b] Abstract: The research objectives of the Arcadia project are twofold: discovery and development of
environment architecture principles and creation of novel software development tools. The environment archi-
tecture is intended to reconcile extensibility with the often conflicting goal of integration, including both a uni-
form user interface and coordination and management of tools and software objects. Work on tools is focused on
analysis of software objects at every stage of software development and maintenance, and is especially aimed at
analysis of concurrent and real-time software. A prototype environment architecture and toolset is being
developed in Ada, to support Ada software development. The authors describe the research objectives and
approaches being taken, the organization of the research endeavor, and current status of the work.

[Tayi88] Abstract: Early software environments have supported a narrow range of activities (programming
environments) or else been restricted to a single "hard-wired" software development process. The Arcadia
research project is investigating the construction of software environments that are tightly integrated, yet flexible
and extensible enough to support experimentation with alternative software processes and tools. This had led us
to view an environment as being composed of two distinct, cooperating parts. One is the variant part, consisting
of process programs and the tools and objects used and defined by those programs. The other is the fixed part, or
infrastructure, supporting creation, execution, and change to the constituents of the variant part. The major
components of the infrastructure are a process programming language and interpreter, object management sys-
tem, and user interface management system. Process programming ' litates precise definition and automated
support of software development and maintenance activities. The ot' management system provides typing,

350



August 9, 1989

* relationships, persistence, distribution and concurrency control capabilities. The user interface management sys-
tem mediates communication between human users and executing processes, providing pleasant and uniform
access to all facilities of the environment. Research in each of these areas and the interaction among them is
described.

[Teic77] Abstract: PSL/PSA is a computer-aided structured documentation and analysis technique that was
* developed for, and is being used for, analysis and documentation of requirements and preparation of functional

specifications for information processing systems. The present status of requirements definition is outlined as the
basis for describing the problem which PSL/PSA is intended to solve. The basic concepts of the Problem State-
ment Language are introduced and the content and use of a number of standard reports that can be produced by
the Problem Statement Analyzer are briefly described.

The experience to date indicates that computer-aided methods can be used to aid system development
• during the requirements definition stage and that the main factors holding back such use are not so much related

to the particular characteristics and capabilities of PSL/PSA as they are to organizational considerations
involved in any change in methodology and procedure.

[Teit8l] Abstract- Interlisp is a programming environment based on the Lisp programming language. In
widespread use in the artificial intelligence community, Interlisp has an extensive set of user facilities, including

• syntax extension, uniform error handling, automatic error correction, an integrated structure-based editor, a
sophisticated debugger, a compiler, and a filing system. Its most popular implementation is Interlisp-10, which
runs under both the Tenex and Tops-20 operating systems for the DEC PDP-10 family. Interlisp-10 now has
approximately 300 users at 20 different sites (mostly universities) in the US and abroad. It is an extremely well
documented and well maintained system.

Interlisp has been used to develop and implement a wide variety of large application systems. Examples
• include the Mycin system for infectious disease diagnosis, the Boyer-Moore theorem prover, and the BBN

speech understanding system.
This article describes the Interlisp environment, the facilities available in it, and some of the reasons why

Interlisp developed as it has.

[Teit84] Introduction: This paper introduces the reader to many of the salient features of the Cedar Program-
* ming Environment, a state-of-the-art programming system that combines in a single integrated environment: high

quality graphics, a sophisticated editor and document preparation facility, and a variety of tools for the program-
mer to use in the construction and debugging of his programs. The Cedar programming language is a strongly-
typed, compiler-oriented language of the Pascal family. What is especially interesting about the Cedar project is
that it is one of the few examples where an interactive, experimental programming environment has been built
for this kind of language. In the past, such environments have been confined to dynamically typed languages like

* Lisp and Smalltalk.
The paper attempts to give the reader the feel of the Cedar system by emulating a live demonstration. The

demonstration is actually taken from a video tape of such a live demo; the sequence of events, as well as the
dialogue, is fairly close to what a viewer of this tape would see and hear. Numerous snapshots of the display
taken at various points during the session simulate the visual information contained in the tape. Text that would
actually appear on the display during the demonstration - either because the user typed it or the system printed it

* - will appear in this paper in a distinguished font. The explanations that the demonstrator would give will be in
the normal font. Comments that would be distracting during a live demonstrnon but are appropriate for the
paper are included as footnotes.

[Thay75] Abbreviated Introduction: The need for improving the reliability of delivered software is becoming
increasingly obvious to both the purchasers and producers of today's software systems. As noted by Boehm, the

* records show many examples of software systems which, when delivered for operational use, either performed in
a degraded fashion or failed to perform at all. The results are higher software costs and delays in operational
usage.

351



August 9, 1989

In a study being performed by TRW for the Rome Air Development Center, data from four large software
systems are being analyzed to determine the types of errors found in software during testing. The objective is
principally to recommend new development or test techniques for the detection and prevention of software
errors, but we are also attempting to model software reliability. In the course of supplying real data descriptive of
software reliability and for model evaluation, we have had to determine (1) what data are generally available, (2)
methods for collecting and storing these data, (3) methods for describing software errors, (4) methods for
characterizing the software, and the development and test processes in quantitative terms, and finally (5)
methods of analysis. Although the projects studied have varied greatly in size, language, operating mode, and
structure, the data available during the development process were similar for each project: error data, recorded
in various forms of software problem reports (SPR) and ancillary project data needed to understand and support
analysis of the error data. Although the data were not generated specifically for the study, we found that we
could do much to quantify software reliability and the characteristics of the software itself, as well as improving
our understanding of both the software and the development process. Some results of the Software Reliability
Study will be presented to illustrate the benefits of software reliability data collection and analysis. Also
presented are some recommendations for identifying data that need collecting.

[ThaySO] Abbreviated Introduction: Nearly every software engineering development project is plagued with
numerous problems leading to late delivery, cost overruns, or unsatisfied customers. Often, these problems are
technical. However, just as often, they are managerial.

Although both the technological and managerial aspects of software engineering were recognized at about
the same time, improvements and developments in management have not kept pace with advances in the tech-
nology. The technology of software engineering as a well-defined discipline is relatively new; however, software
engineering has progressed to the point where many major issues regarding software production have been iden-
tified, and considerable progress in addressing these issues has been made. Practical working tools to support
improved production are commonly available, and their design and generation have become a recognized topic
for university instruction.

Software engineering project management has not enjoyed the same progress. While it might be argued
that SEPM has been defined, it is far from a recognized discipline. The major issues and problems of SEPM have
not been agreed on by the computing community as a whole, and consequently, priorities for addressing them
have not been widely established. Furthermore, research in this area has been scant.

[Theb84] Abstract: Recent work conducted by members of the Purdue Software Metrics Research group has
focused on the complexity associated with coordinating the activities of persons involved in large-scale program-
ming efforts. A resource model is presented which is designed to reflect the impact of this complexity on the
economics of software development. The model is based on a formulation in which development effort is func-
tionally related to measures of product size and manloading. The particular formulation used is meant to suggest
a logical decomposition of development effort into components related to the independent programming activity
of individuals and to the overhead associated with the required information flow within a programming team.
The model is evaluated in light of acquired data reflecting a large number of commercially developed software
products from two separate sources. Additional sources of data are actively being sought. Although strongly
analytic in nature, the model's performance is, for the available data, at least as good in accounting for the
observed variability in development effort as some highly publicized empirically based models of comparable
complexity. It is argued, however, that the model's principle strength lies not in its data fitting ability, but rather in
its straightforward and intuitively appealing representation of relationships involving manpower, time, and effort.

[Thon80] Abstract: This paper deals with the statistics of estimating the software reliability of complex real-time
systems where an electronic digital computer and associated computer programs are essential elements of system
design and function. Testing is conducted in the operating environment or a simulated environment related to the
operating environment in some way. The procedure is Bayesian so that improvement of reliability estimation is
realized in a formal and convenient way as more and more test data are accumulated. The method provides for
estimating a) both hardware and software components of total system reliability and b) Bayesian interval limits

352



August 9, 1989

* using existing analytic techniques developed by the authors and others. The results apply to measurement and
prediction of reliability performance, to acceptance testing, and to contractual definition and implementation of
software warranty provisions for embedded computer systems.

The Bayesian method of software-hardware reliability estimation presented here exhibits the following
unique features:
- The use of a prior p on the probability that the software contains errors. This prior is updated as test failure

* data are accumulated. Only a p of 1 (software known to contain errors) corresponds to a case already treated
in the literature.

- Hardware, software, and unknown/ambiguous source failure data are combined to yield a system reliability
estimation.

- A decision-rule treatment is developed for the continuation or termination of testing on the basis of specifica-
tion of consumer and producer risks and observed test results.

[Tich86] Abstract: With current compiler technology, changing a single line in a large software system may
trigger massive recompilations. If the change occurs in a file with shared declarations, all compilation units
depending upon that file must be recompiled to assure consistency. However, many of those recompilations may
be redundant, because the change may affect only a small fraction of the overall system.

Smart recompilation is a method for reaucing the set of modules that must be recompiled after a change.
• The method determines whether recompilation is necessary by isolating the differences among program modules

and analyzing the effect of changes. The method is applicable to languages with and without overloading. A pro-
totype demonstrates that the method is efficient and can be added with modest effort to existing compilers.

[Tsc83] Abstract- This paper describes how MAP, a tool for understanding software, combines static analysis,
some dynamic features, and an interactive presentation to aid programmers in debugging. Static analysis of the

* sort produced in optimizing compilers could provide programmers with useful information that they cannot get
from dynamic debuggers. The challenge for designers of static analysis tools is to present the information in a
useful form.

[TrlvSO] Abstract: This paper addresses the problem of validating the reliability of computer systems used in
life-critical applications. Due to extremely high reliability requirements, traditional validation methods based on

* lifetesting are no longer applicable. A validation approach based on a judicious combination of logical proofs,
analytical models, and experimental testing is advocated. The role of Markov reliability models in the validation
process is discussed and a taxonomy of validation techniques is presented.

[Troy$1] Abstract: The purpose of this study is to investigate the possibility of providing some useful measures
to aid in the evaluation of software designs. Such measurements should allow some degree of predictability in

* estimating the quality of a coded software product based upon its design and should allow identification and
correction of deficient designs prior to the coding phase, thus providing lower software development costs. The
study involves the identification of a set of hypothesized measures of design quality and the collection of these
measures from a set of designs for a software system developed in industry. In addition, the number of modifica-
tions made to the coded software that resulted from these designs was collected. A data analysis was performed
to identify relationships between the measures of design quality and the number of modifications made to the

• coded programs. The results indicated that module coupling was an important factor in determining the quality
of the resulting product. The design metrics accounted for roughly 50-60% of the variability in the modification
data, which supports the findings of previous studies. Finally, the weaknesses of the study are identified and pro-
posed improvements are suggested.

[TroyS6] Abstract: Over the past decade, a set of models derived from the application of conventional reliability
* theory to software engineering has been proposed with regard to the evaluation of program reliability. Observa-

tions of operating software have shown that these models are not sufficient to account for operational reliability.
This limitation requires a cautious utilization of every model: each reliability evaluation must be considered as a

353



August 9, 1989

special case which must be based upon a statistical analysis preceding any modeling. This implies suitable
methods and means are needed. The purpose of this paper is to propose a stepwise statistical methodology for
the study of operating system reliability and associated tools. An example of the application of this method for
the ARGOS center of CNES is presented.

(Tsal]6] Abstract: This paper describes the concepts, functions and user interface of the tool for unit test con-
struction and execution. This tool, the Interactive Unit Test Facility (IUTF), addresses some of the major con-
cerns in the unit testing process. The first of these is the execution of the unit and reporting its results in terms of
success/failure and coverage measures. The other concern, sometimes more painful and time consuming for the
programmer, is the preparation and maintenance of test cases for execution.

IUTF performs static and dynamic testing of the unit provided all results from the analysis and execution
stage are stored in a central data base. The important design notions such as testing environment, scaffolding,
and test drivers and construction mechanisms are introduced in the paper, and the transformation of internal
functions of the unit testing tool into usable and consistent interfaces (via the predefined screen hierarchy) is
described.

[TurnS0] Summary: Choosing the right program structures can lead to better programs and modular design can
make large programs more manageable. This paper reviews the possible structural relationships between the
modules of a program and generates a tentative morphology of program structure types. It concludes that, with
some exceptions, the hypothetical pure tree structure is the best choice for most data processing applications.

[Ulm73] Summary: We give two algorithms for computing the set of available expressions at entrance to the
nodes of a flow graph. The first takes 0 (inn) steps on a program flow graph (one in which no node has more than
two successors), where n is the number of nodes and m the number of expressions which are ever computed. A
modified version of this algorithm requires 0 (n 2) steps of an extended type, where bit vector operations are
regarded as one step. We present another algorithm which works only for reducible flow graphs. It requires 0 (n
log n) extended steps.

[Unde63] Introduction: When a scientific program is to be used by physicists as an aid in their investigation, the
programmer must pay careful attention to the problem of producing the program in a suitable form. It may hap-
pen that parts of the program which the programmer may prefer to regard as peripheral activity, such as input
and output processes, then assume a major importance and occupy much of his time and program; the numerical
method becomes a small box which works well most of the time and is a great nuisance when it doesn't.

The problem presented by the construction of a good input section is severe. Best efforts to date fall far
short of perfection, and this will be attained only when the experience gained by use of a program is stored, not
by the user who runs problems on it, but within the program itself, ready for intelligence use by the program
when a problem is presented to it.

[Vale89] Abstract: The practice of measuring software is increasingly seen as a valuable tool in the overall
development of high-quality software projects. Software measurement attempts to use known, quantifiable,
objective, and subjective measures to compare and profile software projects and products. To compute these
measures effectively, data that characterize the software project and product are needed. This paper covers
aspects of data collection and software measurement as they have bee applied by one particular organization, the
Software Engineering Laboratory (SEL). The measurement results include the experiences and lessons learned
through numerous experiments conducted by the SEL on nearly 60 flight dynamics software projects. These
experiments have attempted to determine the effect of various software development technologies on overall
software project quality and on specific measures such as productivity, reliability, and maintainability.

[Vail"] Abstract: Humans appear to be able to learn new concepts without needing to be programmed explicitly
in any conventional sense. In this paper we regard learning as the phenomenon of knowledge acquisition in the
absence of explicit programming. We give a precise methodology for studying this phenomenon from a

354



August 9, 1989

* computational viewpoint. It consists of choosing an appropriate information gathering mechanism, the learning
protocol, and exploring the class of concepts that can be learned using it in a reasonable (polynomial) number of
steps. Although inherent algorithmic complexity appears to set serious limits to the range of concepts that can be
learned, we show that there are some important nontrivial classes of propositional concepts that can be learned
in a realistic sense.

* [Vemu8O] Abstract: Software and its development are complex. The complexity stems from the multiplicity of
objectives and attributes that one has to work with during its development. Human comprehension of multiple
objectives and attributes can be aided by displaying the relevant data on a two-dimensional plane. Several display
techniques, and in particular the so called snowflakes and Chernoff faces, are discussed and their utility in
software research explored. Examples using real and hypothetical data are presented to illustrate the suitability
of these pictures.

[Vern89] Abstract: Because Function Point Analysis (FPA) has now been in use for a decade, and in spite of its
increasing popularity has met with some recent criticisms, it is time to review how appropriate it still is for
today's technologies. A critical review of the FPA approach examines in particular the pioneering and continu-
ing work of Albrecht and more recent work by Symons. Technological dependencies in FPA-type metric for a
new software technology is given. A model for the calibration of FPA-type metrics for new technologies in terms

* of a reference technology is also presented. Such calibration is essential for comparative productivity studies.
The role of module estimation in exposing parts of the 'anatomy' of the FPA approach is investigated. The
derivation and calibration models are applied to a significant case study in which a new FPA-type metric suited to
a particular software development technology is derived, calibrated and compared with other published versions
of FPA metrics.

* (Vess83] Abstract: An empirical study of 447 operational commercial and clerical Cobol programs in one Aus-
tralian organization and two U.S. organizations was carried out to determine whether program complexity, pro-
gramming style, programmer quality, and the number of times a program was released affected program repair
maintenance. In the Australian organization only program complexity and programming style were statistically
significant. In the two U.S. organizations only the number of times a program was released was statistically signi-
ficant. For all organizations repair maintenance constituted a minor problem: over 90 percent of the programs

* studied had undergone less than three repair maintenance activities during their lifetime.

[VogeS0] Abstract: This paper describes the automated testing tool SADAT, which supports the testing of sin-
gle Fortran modules. The different functions which are integrated in this system are explained, the usage of the
tool is demonstrated, and some output results are presented. The special benefits of the SADAT system are sum-
marized. The history and the present status of the system are outlined. Finally, a listing of further reference

* material and information on the program availability are included.

[Vosb84l Abstract: Fourteen factors that influence the efficiency of programming projects were identified in a
corporate-wide study of 44 ITT programming projects in nine countries. Productivity factors were classified
according to project management's ability to control them. Product-related factors are not generally under the
control of project management. They describe intrinsic properties of the programming product and tend to place

* limitations on achievable productivity. Project-related factors, on the other hand, are controllable by project
management to varying degrees. These factors provide real opportunities for productivity improvement. The
analysis indicates that productivity variation is almost equally attributable to product-related and project-related
factors.

[VoukS5c] Abstract: Software fault tolerance mechanisms commonly used today suffer from their inability to
* successfully cope with correlated failures of components of a fault-tolerant software (FTS) system. In this paper

methods for computing the reference and observed distributions of multiple component failures (MCF's) of a
FTS are given. A MCF of category k refers to existence of a test case for which exactly k components of a FTS

0 355



August 9, 1989

system fail. The reference distribution is based on the response of all components on a randomly selected test
set, and the assumption that the conditional intercomponent responses are mutually independent. Identification
of correlated failures and the effectiveness of random testing for detecting correlated failures is discussed
through comparison of the reference and observed MCF distributions for an experimental FTS system.

[Vouk86a] Abstract: A major weakness of software fault tolerance mechanisms commonly discussed today is
their inability to cope successfully with correlated failures of components of a fault-tolerant software (FTS) sys-
tem. When correlated errors are present, the probability that a FTS system fails may become unacceptably large.
The results of a FTS experiment are used to show deficiencies of the simple random testing approach in the con-
text of FTS testing. Inter-version failure dependence was detected in the experiment, and the data indicate that
in high reliability FTS components a considerable percentage of correlated failures occur in the domain of
extremal or special input values, a region not excited by simple random sampling of the input space. The use of
carefully designed test cases as a supplement to random testing, as well as use of structure based testing is recom-
mended.

[Vouk86b] Abstract: Common approaches to software fault-tolerance depend on redundancy of critical
software components. Six functionally equivalent programs were tested with specification based random and
extremal/special value (ESV) test cases. Statement and branch coverage were used to measure and compare the
attained testing effectiveness. It was observed that both measures reached a nearly steady state value after 25 to
75 random test cases. Coverage saturation curves appear to follow an exponential growth model. However, the
steady state values for branch coverage of different components, but the same input cases, differed by as much as
22%. The effect is the result of the differences in the detailed structure of the components. Improvement in cov-
erage provided by the random test data, after the ESV cases were executed, was only about 1%. Results indicate
that extensive random testing can be a process of diminishing returns, and that in the FTS context functional
("black box") testing can provide a very uneven execution coverage of the functionally equivalent software, and
therefore should be supplemented by structure based testing.

[Wahl88] Abstract: As a consequence of timing considerations, program execution behavior on a distributed
system may not be reproducible from one execution to the next. The situation is exacerbated when the architec-
ture of the distributed system is non von Neumann, as in the case of a dataflow machine. This fact has implica-
tions for the testing and debugging of dataflow programs. In this paper a distributed debugging methodology for
dataflow architectures is presented. A graphical debugging simulator for a dataflow machine is being developed
to implement this methodology. This debugging simulator allows the user to debug compiled high-level dataflow
programs written for the machine. The ideas of the debugging methodology are outlined and the debugging simu-
lator is described. Special emphasis is paid to the multi-pass feature of the debugging simulator which solves the
nonreproducibility problem of distributed debuggers and allows the user to execute the program more than once
with the identical instruction sequence to be sure that a fault has been removed.

[Waka89] Abbreviated Introduction: Generally, telecommunications software must handle a complex, large-
scale protocol modeled as extended finite-state machines. Much research has been done on how to specify
telecommunications software with formal specification languages. However, these research results have not been
completely successful for three main reasons:
1. The methods devised cannot detect errors in individual finite-state machines.
2. They cannot detect protocol errors, such as missing signal-reception definitions, in large-scale protocol specif-
ications.

3. They do not have functions to improve the legibility of manually drafted specifications.
To overcome these defects, we proposed new validation, verification, and simplification methods for

telecommunications specifications. At Kokusai Denshin Denwa Co., we have developed a prototype specifica-
tion support system, Escort, that integrates these proposed methods.

[WakeS8] Abstract: Computer scientists are continually attempting to improve software system development.

356



August 9, 1989

* Systems are developed in a top-down fashion for better modularity and understandability. Performance enhance-
ments are implemented for more speed. One area in which a great deal of effort is being devoted is software
maintenance. Brooks estimates that fifty percent of the development costs of a software system is for mainte-
nance activities. Since a large portion of the effort of a system is devoted for maintenance, it is reasonable to
assume that driving down maintenance costs would drive down the overall cost of the system. Measuring the
complexity of a software system could aid in this attempt. By lowering the complexity of the system or of subsys-

* tems within the system, it may be possible to reduce the amount of maintenance necessary. Software quality
metrics were developed to measure the complexity of software systems. This study relates the complexity of the
system as measured by software metrics to the amount of maintenance to that system. We have developed a
model which uses several software quality metrics as parameters to predict maintenance activity.

[WalHSl] Preface: The purpose of the Paradigmatic Approach is to provide a new image for conceptualizing the
* software development cycle. It is believed that this new image will endanger methodologies that predictably pro-

duce reliable software systems. This text is not a cookbook of techniques. It does not attempt to direct action
through prescribing specific behavior patterns. This text does, however, present an integrated image for organiz-
ing behavior and a universal metric for evaluating that behavior. The reader will be exposed to a powerful image,
a paradigm, which provides an integrated perception of software development. This paradigm will help him to
organize and judge technical behavior in a consistent and productive manner. The consistent behaviors which

* result from paradigmatic thinking are termed "the paradigmatic approach" and will facilitate the evolution of
software management from a craft to an engineering discipline.

(WaU$91 Abbreviated Introduction: Verification and validation is one of the software-engineering disciplines
that help build quality into software. V&V is a collection of analysis and testing activities across the full life cycle
and complements the efforts of other quality-engineering functions. This overview article explains what V&V is,

* shows how V&V groups' efforts relate to other groups' efforts, describes how to apply V&V, and summarizes
evaluations of V&V effectiveness.

[Wals77a] Overview: Improvements in programming technology have paralleled improvements in computing
system architecture and materials. Along with increasing knowledge of the system and program development
processes, there has been some notable research into programming project measurement, estimation, and plan-

* fning. Discussed is a method of programming project productivity estimation. Also presented are preliminary
results of research into methods of measuring and estimating programming project duration, staff size, and com-
puter cost.

[Walt79] Abstract- With the increasing complexity of the software systems being developed today and the
requirement to develop them within a short schedule, there is greater emphasis than before on a strong quality

* management program. In such a program it is essential that we know how to specify and measure software quality
so that we can ensure the system meets our overall life cycle objective. It is important not only from the system
performance point of view but also in cost. *

The role of the manager in a software quality program is important throughout the entire development
phase of our program. The impact of the manager's decisions during this phase will be felt not only during opera-
tion and maintenance but also during future acquisitions that interface with the system or that incorporate exist-

* ing software from the current development.
This chapter addresses how both the acquisition manager and the development program manager can

identify which quality factors are important and how metrics of these factors can be applied in the software qual-
ity management program. (The acquisition manager and the development program manager titles throughout this
chapter refer to the organizations rather than the persons, per se.) This approach of applying metrics is based
upon the concept of software quality and of the associated metrics described in the previous chapter.

[WampSS] Abstract: The topic of this thesis is the development of and the results obtained from a system which
analyzes Ada tasking programs in order to identify potential concurrency related programming anomalies. The

357



August 9, 1989

static data flow used in this thesis are described in great detail in a paper by Taylor.
The major purpose for this undertaking was to characterize the actual size necessary to store the con-

currency related information from some sample programs. This goal was deemed appropriate since many of the
techniques used in the analysis process have already been shown to be in the set of NP-complete programs. The
method employed toward this end was to build a prototype version of the Static Concurrency Analysis system
with this sufficient instrumentation in order to gather statistics on the size of several of the data structures
involved in the process, and then to run some sample programs through this tool.

It will be seen that the size of the major structure built, the Concurrency State Graph (CSG), grows
exponentially in the number of tasks that exist in the program being analyzed for all example programs thus far
run through the prototype system. This CSG structure models all possible tasking related program states that a
given Ada program could possibly be in as well as the successor and predecessor relationships between these
states.

The SCA system currently does not accept the full Ada language and it appears to be a less than trivial
task to extend the prototype system so that all Ada tasking programs are analyzable.

[Warn72 Introduction: With the billions of dollars in installed computer equipment deployed worldwide and
with vast sums needed to operate, program, and maintain this hardware, computer users are increasingly aware
of the need to improve the efficiency of data processing operations.

Corporations use computers to handle many tasks. The range of tasks and size of the computers increase
constantly. But corporations do not know how to evaluate the efficiency of their data processing operations. Ina-
bility to make an accurate assessment has kept management fearful of the entire data processing experience and
has resulted, generally, in a hands-off attitude. This tail-wags-the-dog situation places a particularly heavy burden
on that portion of management directly responsible for the data processing operation. They have to make recom-
mendations on new and/or added equipment, but they lack objective techniques for evaluating the DP operation
and projecting needs. This paper reviews some of the issues faced and alternative techniques for assessing sys-
tem performance.

[Wart82] Maintenance of software is a major problem that the data processing industry faces today. This paper
describes MAP, a tool, that addresses the problems of software maintenance by helping programmers to under-
stand their programs.

[Wate79] AbstractL This paper presents a method for automatically analyzing loops, and discusses why it is a
useful way to look at loops. The method is based on the idea that there are four basic ways in which the logical
structure of a loop is built up. An experiment is presented which shows that this accounts for the structure of a
large class of loops. The paper discusses how the method can be used to automatically analyze the structure of a
loop, and how the resulting analysis can be used to guide a proof of correctness for the loop. An automatic sys-
tem is described which performs this type of analysis. The paper discusses the relationship between the structure
building methods presented and programming language constructs. A system is described which is designed to
assist a person who is writing a program. The intent is that the system will cooperate with a programmer
throughout all phases of work on a program and be able to communicate with the programmer about it.

[Webeg3] Abstractb This paper summarizes techniques for designing and implementing source-level interactive
debuggers for concurrent programs. Facilities common to source-level interactive debuggers have been adapted
to meet the needs of a concurrent programming environment. Of special interest are those debugging facilities
which allow the programmer to monitor and influence the execution of concurrent processes.

[Wegb74] Abstractb Current methods for mechanical program verification require a complete predicate specifi-
cation on each loop. Because this is tedious and error prone, producing a program with complete, correct predi-
cates is reasonable difficult and would be facilitated by machine assistance. This paper discusses techniques for
mechanically synthesizing loop predicates. Two classes of techniques are considered: (1) heuristic methods
which derive loop predicates from boundary conditions and/or partially specified inductive assertions: (2)

358



August 9, 1989

* extraction methods which use input predicates and appropriate weak interpretations to obtain certain classes of
loops predicates by an evaluation on the weak interpretation.

[Wegb7] Abstract: One means of analyzing program performance is by deriving closed-form expressions for
their execution behavior. This paper discusses the mechanization of such analysis, and describes a system,
Metric, which is able to analyze simple Lisp programs and produce, for example, closed-form expressions for

• their running time expressed in terms of size of input. This paper presents the reasons for mechanizing program
analysis, describes the operation of Metric, explains its implementation, and discusses its limitations.

[Wegb76] Abstract: This paper is concerned with proving properties of programs which use data structures. The
goal is to be able to prove that all instances of a class (e.g., as defined in Simula) satisfy some property. A method
of proof which achieves this goal, generator induction, is studied and compared to other proof rules and

* methods: inductive assertions, recursion induction, computation induction, and, in some detail, structural
induction. The paper concludes by using generator induction to prove a characteristic property of an implemen-
tation of hashtables.

[Wegb77] Abstract: Most current approaches to mechanical program verification transform a program and its
specifications into first-order formulas and prove these formulas valid. Since first-order predicate calculus is not

• decidable, such approaches are inherently limited. This paper proposes an alternative approach to program
verification: correctness prooft are constructively established by proof justification written in algorithmic nota-
tion. These proof justifications are written as part of the program, along with the executable code and correct-
ness specifications. A notation is presented in which code, specifications, and justifications are interwoven. For
example, if a program contains a specification {exists x P(x)l, the program also contains a justification that exhi-
bits the particular value of x that makes P true. Analogously, justifications may be used to state how universally

* quantified formulas are to be instantiated when they are used as hypotheses. Programs so justified may be verified
by proving quantifier-free formulas. Additional classes of justifications serve related ends. Formally, justifica-
tions reduce correctness to a decidable theory. Informally, justifications establish the connection between execut-
able code and correctness specifications, documenting the reasoning on which the correctness is based.

[Wen79] Introduction and Overview: The primary purpose of this book is to provide an understandable but
• nontrivial description by active research workers of concepts and research issues in principal subareas of

software technology. It should be useful to both the specialist and the technical layman as a source of factual
infc!-mation about research issues and can serve as a starting point for discussions of what to do next. We hope it
will make practitioners aware of the practical contributions of research, make researchers aware of the needs of
technology, and serve to stimulate greater collaboration between practitioners and research workers. An even
more ambitious objective is to encourage dialogue among research workers in different areas (such as computer

* architecture, programming languages and data base management) so that the basis for an integrated approach to
computer systems can be established. Last but not least, this study may be useful to funding agencies and other
policy-making bodies in making policy decisions concerning future support of research.

The first four chapters (Part I) consider the nature of the software problem and describe concepts and
tools for managing large software systems. The remaining sixteen chapters (Part U) describe and analyze specific
research areas. In order to stimulate discussion, over 50 discussion items further explore specific research areas

* or offer novel and sometimes controversial points of view.

[Weid86] Introduction: Most of the work in tne evaluation of software development environments has fallen into
one of three categories. First, there are evaluations of particular components such as compilers, editors, or win-
dow managers. These evaluations are useful in their own right, but they fail to consider global aspects of the
environment or how components interact. Second, there are evaluations of particular environments. These stu-

• dies usually consider the tools available in that environment but they do not lend themselves to cross environ-
ment comparisons. Third, there are lists of questions and criteria without the details of how to answer the ques-
tions ,,r apply the criteria. These lists are useful, but are frequently difficult to apply in practice.

• 359



August 9, 1989

The purpose of this paper is to address the shortcomings of the above approaches by providing a metho-
dology that is comprehensive, repeatable, extensible, user-oriented, and partly environment independent. This
methodology has been applied to several Ada environments at the Software Engineering Institute so that they
may be compared objectively according to the same criteria. This paper provides the requirements for an effec-
tive environment evaluation methodology, the individual steps of the methodology, and an example of how the
methodology has been applied in practice.

[Weln7l] Abbreviated Preface: This book has only one major purpose-to trigger the beginning of a new field
of study: computer programming as a human activity, or, in short, the psychology of computer programming. All
other goals are subservient to that one. What [the author is] trying to accomplish is to have the reader say, upon
finishing the book, "Yes, programming is not just a matter of hardware and software. [The author] shall have to
look at things in a new way from now on."

As [the author hopes] the text demonstrates with numerous examples, our profession suffers under an
enormous burden of myths and half-truths, many of which my students and [the author] have been able to chal-
lenge with extremely simple experiments. But our resources are limited and the problem is great. There are, by
various estimates, hundreds of thousands of programmers working today. If our experiences are any indication,
each of them could be functioning more efficiently, with greater satisfaction, if he and his manager would only
learn to look upon the programmer as a human being, rather than as another one of the machines.

[The author thinks] that great strides are possible in the design of our hardware and software too, if we can
adopt the psychological viewpoint. [The author] would hope that this book would encourage our designers to add
this new dimension to their design philosophy. Not that the few ideas and speculations in this book will give them
all the information they need; but hopefully the book will inspire them to go to new sources for information. At
the moment, programming-sophisticated as it may be from an engineering or mathematical point of view-is so
crude psychologically that even the tiniest insights should help immeasurably. My own experience, and the
experience of my students, in teaching, learning, and doing programming with psychological issues in mind,
bears out this assertion. [The author hopes] each of [his] readers will try it for himself.

[WeinSO Abstract: Traditional cost/benefit methods in the risk assessment process are predicated on the
occurrence of the threat and the resultant loss incurred. Thus, savings can be obtained only if the threat actually
occurs. A more appropriate method is the application of the Bayesian decision model in the analysis of the cost-
effectiveness of controls to improve system integrity. The applied Bayesian decision model is specifically
designed for cost/benefit decisions under conditions of uncertainty and allows for the calculation of the benefit
obtained when implementing controls for a threat that does not occur. This method also allows for the calcula-
tion of the cost-effectiveness of taking no action, that is, deciding not to implement any control against an identi-
fied threat.

[Weis82] Abstract: Error detection and error correction are now considered to be the major cost factors in
software development. Much current and recent research has been devoted to finding ways to prevent software
errors. The purpose of this paper is to compare error data obtained from two different software-development
environments using different software-development methodologies. The data are used to characterize the simi-
larities and differences in the environments and may be used to evaluate the success with which different metho-
dologies meet the claims made for them. Data were obtained by the use of a goal-directed data-collection process
which is described briefly. A key feature of the process is that data are collected and validated concurrently with
software development. Validation often involves interviewing the programmers supplying the data. The results
are data distributions across characterizations, such as effort to correct error, type of error, locality of error. The
distributions show that in both environments the principal error source was in the design and implementation of
single routines. Requirements misunderstandings, specifications misunderstandings, and interface misunder-
standing were all minor sources of errors. Few errors were the result of changes, few errors required more than
one attempt at correction, and few error corrections resulted in other errors. Most errors were correctable in a
day or less.

360



August 9, 1989

[Weis"] Abstract: Program slicing is a method for automatically decomposing programs by analyzing their data
flow and control flow. Starting from a subset of a program's behavior, slicing reduces that program to a minimal
form which still produces that behavior. The reduced program, called a "slice," is an independent program
guaranteed to represent faithfully the original program within the domain of the specified subset of behavior.

Some properties of slices are presented. In particular, finding statement-minimal slices is in general
unsolvable, but using data flow analysis is sufficient to find approximate slices. Potential applications include

• automatic slicing tools for debugging and parallel processing of slices.

[WeisgSa] Abbreviated Introduction: Empirically comparing structural test coverage metrics reveals that test
sets that satisfy one metric are likely to satisfy another metric as well.

[Weis85b] Abstract: A definition of software reliability is proposed in which reliability is treated as a generaliza-
* tion of the probability of correctness of the software in question. The definition is parameterized by the distribu-

tion characterizing the operational environment. It is shown that the definition can be used to provide many
natural models of reliability by varying an integer parameter, and that it may be approximated reasonably using
well-chosen test sets. It is proved that, under fairly weak conditions, one cannot hope to measure reliability
exactly by using finite test sets.

• [Weis85c] Abstract: An effective data collection methodology for evaluating software development methodolo-
gies was applied to five different software development projects. Results and data from three of the projects are
presented. Goals of the data collection include characterizing changes, errors, projects, and programmers, iden-
tifying effective error detection and correction techniques, and investigating ripple effects.

The data collected consists of changes (including error corrections) made to the software after code was
written and baselined, but before testing began. Data collections and validations were concurrent with software

* development. Changes reported were verified by interviews with programmers. Analysis of the data showed pat-
terns that were used in satisfying goals of the data collection. Some of the results are summarized in the follow-
ing.
1. Error corrections aside, the most frequent type of change was an unplanned design modification.
2. The most common type of error was one made in the design or implementation of a single component of the
system. Incorrect requirements, misunderstandings of functional specifications, interfaces, support software

• and hardware, and languages and compilers were generally not significant sources of errors.
3. Despite a significant number of requirements changes imposed on some projects, there was no corresponding
increase in frequency of requirements misunderstandings.

4. More than 75% of all changes took a day or less to make.
5. Changes tended to be nonlocalized with respect to individual components but localized with respect to subsys-
tems.

* 6. Relatively few changes resulted in errors. Relatively few errors required more than one attempt at correction.
7. Most errors were detected by executing the program. The cause of most errors was found by reading code.
Support facilities and techniques such as traces, dumps, cross-reference and attribute listings, and program
proving were rarely used.

[Weis86J Abstract: A definition of software reliability is proposed in which reliability is treated as a generaliza-
* tion of the probability of correctness of the software in question. The definition is parameterized by the distribu-

tion characterizing the operational environment, and by a tolerance function characterizing a notion of degree of
correctness. It is shown that the definition can be used to provide many natural models of reliability by varying
the tolerance function, and that it may be reasonably approximated using well-chosen test sets. It is proved that,
under fairly weak conditions, one cannot hope to measure reliability exactly by using finite test sets.

* [Weis88a] Abstract: Representing a concurrent program as a set of simulating, sequential programs provides a
solution to the reproducible testing problem as well as a formal foundation for a theory of concurrent program
testing. It is shown how this model of concurrent programs is used to extend the methods and theory of testing

361



August 9, 1989

sequential programs to concurrent programs.

[Weis88b] Abstract: A definition of software reliability is proposed in which reliability is treated as a generaliza-
tion of the probability of correctness of the software in question. A tolerance function is introduced as a method
of characterizing an acceptable level of correctness. This in turn is used, together with the probability function
defining the operational input distribution, as a parameter of the definition of reliability by varying the tolerance
function and that it may be reasonably approximated using well-chosen test sets. It is also shown that there is an
inherent limitation to the measurement of reliability using finite test set.

[WeyuS0c] Abstract: The theory of test data selection proposed by Goodenough and Gerhart is examined. In
order to extent and refine this theory, the concepts of a revealing test criterion and a revealing subdomain are
proposed. These notions are then used to provide a basis for constructing program tests.

A subset of a program's input domain is revealing if the existence of one incorrectly processed input
implies that all of the subset's elements are processed incorrectly. The intent of this notion is to partition the pro-
gram's domain in such a way that all elements of an equivalence class are either processed correctly or
incorrectly. A test set is then formed by choosing one element from each class. This process represents perfect
program testing. For a practical testing strategy, the domain is partitioned into subdomains which are revealing
for errors considered likely to occur.

Three programs which have previously appeared in the literature are discussed and tested using the
notions developed in the paper.

(Weyu82] Abstract: A frequently invoked assumption in program testing is that there is an oracle (i.e., the tester
or an external mechanism can accurately decide whether or not the output produced by a program is correct). A
program is non-testable if either an oracle does not exist or the tester must expend some extraordinary amount of
time to determine whether or not the output is correct. The reasonableness of the oracle assumption is examined
and the conclusion is reached that in many cases this is not a realistic assumption. The consequences of assum-
ing the availability of an oracle are examined and alternatives investigated.

[Weyu83] Abstract: Despite the almost universal reliance on testing as the means of locating software errors and
its long history of use, few criteria have been proposed for deciding when software has been thoroughly tested.
As a basis for the development of usable notions of test data adequacy, an abstract definition is proposed and
examined, and approximations to this definition are considered.

[Weyu84a] Abbreviated Introduction: Rapps and Weyuker introduced a family of test data selection criteria
based on data flow analysis as used in optimizing compilers. Most test data selection criteria rely solely on the
program's control flow characteristics. By incorporating data flow information into the selection procedure, it is
possible to focus on associations between physically disjoint portions of the program which are related by the
flow of data. In this paper we determine the upper bounds on the amount of test data needed to satisfy each cri-
terion, and thus the relative difficulty of fulfilling each. We call such an upper bound the complexity of the cri-
terion.

[Weyug4b] Abstract: A test data adequacy criterion is a set of rules used to determine whether or not sufficient
testing has been performed. A general axiomatic theory of test data adequacy is developed, and five previously
proposed adequacy criteria are examined to see which of the axioms are satisfied. It is shown that the axioms are
consistent, but that only two of the criteria satisfy all of the axioms.

[WeyuSSa] Abstract: A family of test data adequacy criteria employing data flow information has been previ-
ously proposed, and theoretical complexity analysis performed. This paper describes an empirical study to help
determine the actual cost of using these criteria. This should help establish the practical usefulness of these cri-
teria in testing software, and serve as a means of predicting the amount of testing needed for a given program.

362



August 9, 1989

* [Weyu89] Overview: Rebuttal of first main point (inconsistent evaluation of previously defined criteria) is based
on the fact that definitions used in the original paper were taken directly from the literature. Rebuttal of second
main point (lack of precision and formality) revolves around assumption of a software engineer's understanding
of an adequacy criterion.

[Whlt7Sb] Abstract- This paper presents a testing strategy designed to detect errors in the control flow of a com-
* puter program, and the conditions under which this strategy is reliable are given and characterized. The control

flow statements in a computer program partition the input space into a set of mutually exclusive domains, each of
which corresponds to a particular program path and consists of input data points which cause that path to be exe-
cuted. The testing strategy generates test points to examine the boundaries of a domain to detect whether a
domain error has occurred, as either one or more of these boundaries will have shifted or else the corresponding
predicate relational operator has changed. If test points can be chosen within e of each boundary, under the

* appropriate assumptions, the strategy is shown to be reliable in detecting domain errors of magnitude greater
than e. Moreover, the number of test points required to test each domain grows only linearly with both the dimen-
sionality of the input space and the number of predicates along the path being tested.

[WhitSOJ Abstract: Many current software development methodologies require designers to select design
options based on a comparative evaluation of the merits of various design alternatives. However, techniques for

• the evaluation and continuous monitoring of software quality lack sufficient development or generality to have
achieved widespread acceptance. While there is much interesting work addressing the assessment of software
code quality, few measurement techniques are applicable to software designs. In this paper, software design qual-
ity is emphasized. A general formalism for expressing software designs is presented, and two metrics of design
quality, as functions of control flow and data flow complexity, are proposed.

* •[WhitS6J Abstract: An automated testing approach called the Domain Testing Strategy has been developed to
primarily detect errors in software control flow, though it may also detect errors in computation. Detection of
control flow errors is accomplished by determining that the domain boundary is correct within an acceptable
error bound. An analysis of this strategy has appeared in the literature which identifies those conditions under
which this error bound is not acceptable, and methods were proposed to select test points which achieved a
reduced error bound. It is the objective of this paper to provide an alternative measure of error bound which is

* more easily calculated, and an heuristic method for selecting test points. Although the use of this measure and
test selection method will not result in the same level of reduction in error bounds in Domain Testing as those
previously proposed, it is argued that the reduction in effort can justify this alternative approach.

[Whit88a] Abstract: One of the s-'rious limitations of domain testing is the potentially infinite number of
domains to be examined in the presence of iteration loops in the computer program. The purpose of this paper is

* to show that only a small number of domains need to be examined, and that one can concentrate on testing cer-
tain borders of those domains. It is first shown that for definite loops, where the number of iterations is known
upon entry, iteration loops can be represented by a primitive recursive schema. This involves the identification of
simple loop patterns, and it is proven that these simple loop patterns can be used as basic building blocks to form
arbitrarily complex loop patterns. It is further shown that domain testing can be adapted to test these simple
loop patterns, which precludes the necessity of having to test any of the complex loop patterns. A bound is

* obtained on the number of loop patterns that have to be tested and worst cases identified for the corresponding
control flow graphs: for loop patterns from the perspective of the exit node, for loop patterns required to test all
predicate nodes, and for loop patterns required to test all final predicate nodes. The paper concludes with some
recommendations for those simple loop patterns which should be selected first for testing in order to provide
greatest information about errors in the program, and identifies some problems for future research.

• [Wht88bJ Position Statements Included:
Gensheimer, E.L. "Technology Transfer in the Product Verification/Quality Areas."

363



August 9, 1989

" Good, D.I. "Transferring Testing and Verification Technology to Industry."
* Hennell, M.A. "Technology Transfer."
" Miller, E. "Testing and Verification Problems in Industry: Technology Transfer."
" Sneed, H.M. "State Coverage of Embedded Real-time Programs."

[Wlen4] Abstract: In this paper, a formal model of the software manloading pattern, the Rayleigh model, is
described and then applied to four Bankers Trust Company (BTCo.) new development projects processing com-
plete life cycle manloading data (maintenance phase included). To fit the Rayleigh curve to a project's manload-
ing scores, (nonlinear) regression was used to obtain least squares estimates of the Rayleigh parameters, which,
in turn, were used to generate the Rayleigh manloading curve. For all four projects, deviation from the Rayleigh
curve was small and constant throughout the software development phases (i.e., preliminary design through
implementation); however, the Rayleigh curve consistently deviated from the actual manloading during system
maintenance, underestimating the amount of maneffort expended. Restricting maintenance maneffort to man-
power expended on repair of system faults ("corrective" maintenance) resulted in a single Rayleigh curve that
could be applied over the entire BTCo. life cycle. Furthermore, this corrective portion of the maintenance effort
could be accurately forecasted from the Rayleigh curve fit to software development. Implications of these find-
ings for software management are discussed.

[Wild8g] Overview: Current logic programming systems, as typified by PROLOG, contain limitations which res-
trict their usefulness during the specification, design and testing of software. A major limitation is the inability to
perform analysis in the presence of incomplete information. Three sources of incompleteness are discussed
here. First, the analysis is incomplete because the system is only partially finished. Second, in order to provide
overall guidance, the analysis is first performed at an abstract level. The abstraction can be done selectively in
order to focus the analysis. Third, some forms of incompleteness can only be resolved at run time by examining
the properties of objects which are determined dynamicaly It is the program itself which resolves the last form
of incompleteness.

In logic programming, the program is expressed in terms of predicates relating the input and output and
execution proceeds by constructing a proof of these input/output relationships. Generic Constraint Logic Pro-
gramming is r, form of logic programming developed to address incompleteness in analysis.

[WileS8] Abstract: Defining, creating, and manipulating persistent typed objects will be central activities in future
software environments. PGRAPHITE is a working prototype through which we are exploring the requirements
for the persistent object capability of an object management system in the Arcadia software environment.

PGRAPHITE represents both a set of abstractions that define a model for dealing with persistent objects
in an environment and a set of implementation strategies for realizing that model. PGRAPHITE currently pro-
vides a type definition mechanism for one important class of types, namely directed graphs, and the automatic
generation of Ada implementations for the defined types, including their persistence capabilities.

We present PGRAPHITE, describe and motivate its model of persistence, outline the implementation
strategies that it embodies, and discuss some of our experience with the current version of the system.

[Wi11791 Abstract: In languages such as Pascal, the programmer can arrange to have the compiler check such
things as the range of the value of a variable only by defining a new type or sub-type. [The author has] investigated
how more powerful checking facilities might be provided if they were divorced from the type machinery, and also
if the necessary language constructs were designed independent of what any particular compiler would check at
compile-time.

(Wing89] Abstract: Toward the overall goal of putting formal specifications to practical use in the design of large
systems, we explore the combination of two specification methods: using temporal logic to specify concurrency
properties and using an existing specification language, Ina Jo, to specify functional behavior of nondeterministic
systems. In this paper, we give both informal and formal descriptions of both current Ina Jo and Ina Jo enhanced
with temporal logic. We include details of a simple example to demonstrate the use of the proof system and

364



August 9, 1989

* details of an extended example to demonstrate the expressiveness of the enhanced language. We discuss at length
our language design goals, decisions, and their implications. The Appendix contains a list of axioms, rules of
inference, derived rules, and theorem schemata for the enhanced formal system.

[Wirs83] Summary: Hierarchical abstract data types are algebraic specifications of computation structures
where certain sorts, function symbols, and axioms are designated as being primitive. On hierarchical abstract

* data types additional structure is imposed. An algebraic specification is thus decomposed into several well-
separated levels, such that both the understanding and the independent implementation of the levels is sup-
ported. This paper provides both model-theoretic and deduction-oriented conditions guaranteeing the soundness
of a hierarchical specification. Furthermore necessary and sufficient conditions for the existence of initial and
terminal models are investigated, and their close connection to the soundness of a hierarchy is demonstrated. In
order to provide freedom and flexibility for specifications a wide class of axioms - namely universal-existential

• formulas - are admitted.

[Wolf8Sa] Abstract: The Ada programming language is intended for the implementation of large and complex
software systems. Such systems often exceed a half-million lines of code; if their developers adhere to the
software engineering maxim that no module should contain more than 50 lines of code, then the number of
modules in such systems will exceed 10,000! As DeRemer and Kron point out, dealing with a "large collection of

* modules to form a 'system' is an essentially distinct and different intellectual activity from that of constructing
the individual modules." Thus, developers and maintainers of large Ada systems will require tools beyond the
syntax-directed editors, compilers, debuggers and so on needed for "programming-in-the-small." They will need
extensive support for describing, analyzing, organizing, and managing the modules in a system-that is, an
environment for "programming-in-the-large."

* •[(Wolf86e] Abstract: Despite the importance of describing and analyzing the relationships among a software sys-
tem's components, most languages and development environments do not provide suitable support for these
activities. While Ada and the various existing Ada environments offer some assistance, the capabilities they offer
are inadequate for use in truly large and complex software development projects. To address these shortcomings,
we are developing the AdaPIC toolset, which we envision as an important component of an Ada software
development environment. The AdaPIC toolset is one particular instantiation, specifically adapted for use with

• Ada, of the more general collection of language features and analysis capabilities that constitute the PIC
approach to describing and analyzing relationships among software system components. This toolset is being
tailored to support an incremental approach to the interface control aspects of the software development pro-
cess. Following a discussion of the interface control and incremental development concepts, this paper u escribes
the AdaPIC toolset, concentrating on its analysis tools and support for incremental development and demon-
strating how it contributes to the technology for developing large Ada software systems.

[Wolv74] Abstract: The work of software cost forecasting falls into two parts. First we make what we call struc-
tural forecasts, and then we calculate the absolute dollar.volume forecasts. Structural forecasts describe the
technology and function of a software project, but not its size. We allocate resources (costs) over the project's
life cycle from the structural forecasts. Judgement, technical knowledge, and econometric research should com-
bine in making the structural forecasts. A methodology based on a 25 x 7 structural forecast matrix that has been

* used by TRW with good results over the past few years is presented in this paper. With the structural forecasts in
hand, we go on to calculate the absolute dollar-volume forecasts. The general logic followed in "absolute" cost
estimating can be used on either a mental process or an explicit algorithm. A cost estimating algorithm is
presented and five traditional methods of software cost forecasting are described: top-down estimating, similari-
ties and difference estimating, ratio estimating, standards estimating, and bottom-up estimating. All forecasting
methods suffer from the need for a valid cost data base for many estimating situations. Software information ele-

* ments that experience has shown to be useful in establishing such a data base are given in the body of the paper.
Major pricing pitfalls are identified. Two case studies are presented that illustrate the software cost forecasting
methodology and historical results. Topics for further work and study are suggested.

365



August 9, 1989

[Wood79a] Abstract: This paper discusses the need for measures of complexity and of unstructuredness of pro-
grams. A simple language independent concept is put forward as a measure of control flow complexity in pro-
gram text and is then developed for use as a measure of unstructuredness. The proposed metric is compared with
other metrics, the most notable of which is the cyclomatic complexity measure. Some experience with automatic
tools for obtaining these metrics is reported.

[Wood79b] Abstract: The effect of a variation in problem complexity and how the variation relates to program-
ming complexity is predicted and measured. An experiment was conducted in which eighteen graduate students
programmed two variations of the same small algorithm where the problem complexity varied by 25 percent.
Eight measurable program characteristics are compared with predicted values obtained using only two known
parameters. The agreement between observed and predicted values is very good. Both predicted and observed
measurements indicate that the 25 percent increase in problem complexity results in a 100 percent increase in
programming complexity.

[Wood80b] Abstract: There are a number of practical difficulties in performing a path testing strategy for com-
puter programs. One problem is in deciding which paths, out of a possible infinity, to use as test cases. A hierar-
chy of structural test metrics is suggested to direct the choice and to monitor the coverage of test paths. Another
problem is that many of the chosen paths may be unfeasil in the sense that no test data can ever execute them.
Experience with the use of "allegations" to circumvent tais problem and prevent the static generation of many
unfeasible paths is reported.

(Wood8la] Abstract: As the cost of programming becomes a major component of the cost of computer sys-
tems, it becomes imperative that program development and maintenance be better managed. One measurement
a manager could use is programming complexity. Such a measure can be very useful if the manager is confident
that the higher the complexity measure is for a programming project, the more effort it takes to complete the pro-
ject and perhaps to maintain it. Until recently most measures of complexity were based only on intuition and
experience. In the past 3 years two objective metrics have been introduced, McCabe's cyclomatic number v(G)
and Halstead's effort measure E. This paper reports an empirical study designed to compare these two metrics
with a classic size measure, lines of code. A fourth metric based on a model of programming is introduced and
show to be better than the previously known metrics for some experimental data.

[Wood8lb] Abstract: An experiment was conducted to investigate how different types of modularization and
comments are related to programmers' ability to understand programs. Forty-eight experienced programmers
were given eight different versions of the same program and asked to answer a twenty question quiz used to meas-
ure comprehension. These eight different versions were the result of the program being constructed with four
types of modularization (monolithic, functional, super, and abstract data type), each with and without com-
ments. Those subjects whose programs contained comments were able to answer more questions than those
without comments. Also, those subjects who were given the abstract data type version of the program were able
to do significantly better than those with any other type of modularization.

[Wood81c] Overview: In order to improve upon the complexity measurement results obtained using the LOC,
McCabe's cyclomatic number, and Halstead's software science effort measure, the authors have developed
another model for programming complexity. This measure includes consideration of control, data, and implicit
module interconnections.

[Wood88] Abstract: Despite the intrinsic appeal of the mutation approach to testing, its disadvantage in being
computationally expensive has hampered its widespread acceptance. When weak mutation was introduced as a
less expensive and less stringe, rm of mutation testing, the original technique was renamed strong mutation.
This paper argues that strong mutation testing and weak mutation testing are in fact extreme ends of a spectrum.
The term firm mutation is introduced here to represent the middle ground in this spectrum. This paper also
argues, by means of a number of small examples, that there is a potential problem concerning the criterion for

366



August 9, 1989

* deciding whether a mutant is 'dead' or 'live'. A variety of solutions are suggested. Finally, practical considera-
tions for a firm mutation testing system, with greater user control over the nature of result comparison, are dis-
cussed. Such a system is currently under development as part of an interpretive development environment.

[WuS7c] Abstract: Coverage metrics have traditionally been used to evaluate the effectiveness of procedures for
testing software systems. In practice, however, the metrics are heavily influenced by the characteristics of tradi-

* tional programming languages such as Fortran and Pascal. Languages such as Ada differ from traditional
languages to such an extent that it is necessary to develop new metrics.

This paper proposes a number of coverage measures for Ada features such as packages, generic units,
and tasks, and discusses their interpretations in relation to the traditional coverage metrics. It also proposes a
mechanism for collecting these coverage measures. In addition, it suggests that coverage metrics may also be
interpreted as indicators of dynamic system performance.

[WuSS] Abstract: Program mutation is a suitable technique for investigating software reliability and quality con-
trol since it is able to detect many potential errors. However it is necessary to improve the technique for indus-
trial practice. A new method of program mutation is presented here which increases the feasibility, effectiveness
and efficiency of searching for those errors which have escaped from the activities of Afterers and competent
programmers. It is based on syntax direction and it is aided by the language semantics. This means that the scope

•. of a program mutation (i.e. the mutation rules of the method), and its corresponding mutants, are rigorously
directed by a syntax and related semantics as defined by the tester. A paradigm for the mutation syntax and
semantics when limited to boolean expressions and the corresponding test coverage metrics in terms of this
method are given in the paper.

[Wulf76] Abstract: The programming language Alphard is designed to provide support for both the methodolo-
* gies of "well-structured" programming and the techniques of formal program verification. Language constructs

allow a programmer to isolate an abstraction, specifying its behavior publicly while localizing knowledge about its
implementation. The verification of such an abstraction consists of showing that its implementation behaves in
accordance with its public specifications; the abstraction can then be used with confidence in constructing other
programs, and the verification of that use employs only the public specifications.

This paper introduces Alphard by developing and verifying a data structure definition and a program that
* uses it. It shows how each language construct contributes to the development of the abstraction and discusses the

way the language design and the verification methodology were tailored to each other. It serves not only as an
introduction to Alphard, but also as an example of the symbiosis between verification and methodology in
language design. The strategy of program structuring, illustrated for Alphard, is also applicable to most of the
"data abstraction" mechanisms now appearing.

* [Yama83] Abstract: A stochastic model for a software error detection process in which the growth curve of the
number of detected software errors for the observed data is S-shaped is investigated. The software error detec-
tion model is a nonhomogeneous poisson process where the mean-value function has an S-shaped growth curve.
The model is applied to actual software error data, and the maximum-likelihood estimates (MLES) of the
unknown parameters and the related quantitative indices are obtained. Statistical inference on the unknown
parameters is discussed. Comparison with other models indicates that the model presented fits the observed data

* better than other models.

[Yau7g] Abstract: Maintenance of large-scale software systems is a complex and expensive process. Large-scale
software systems often possess both a set of functional and performance requirements. Thus, it is important for
maintenance personnel to consider the ramifications of a proposed program modification from both a functional
and a performance perspective. In this paper the ripple effect which results as a consequence of program modifi-

* cation will be analyzed. A technique is developed to analyze this ripple effect from both functional and perfor-
mance perspectives. A figure-of-merit is then proposed to estimate the complexity of program modification. This
figure can be used as a basis upon which various modifications can be evaluated.

40 367



August 9, 1989

[Yau79] Abstract- Software maintenance has been the dominant factor contributing to the high cost of software.
In this paper, the software maintenance process and the important software quality attributes that affect the
maintenance effort are discussed. Among these quality attributes, the stability of a program, which indicates the
resistance to the potential ripple effect that the program would have when it is modified, is an important one.
Measures for estimating the stability of a program and the modules of which the program is composed are
presented, and an algorithm for computing these stability measures is given. Application of these measures dur-
ing the maintenance phase is discussed along with an example. Further research efforts involving validation of
the stability measures, application of these measures during the design phase, and restructuring based on these
measures are also discussed.

(YauS0] Abstract: A control flow checking scheme capable of detecting control flow errors of programs result-
ing from software coding errors, hardware malfunctions, or memory mutilation during the execution of the pro-
gram is presented. In this approach, the program is partitioned into loop-free intervals and a database containing
the path information in each of the loop-free intervals is derived from the detailed design. The path in each loop-
free interval actually traversed at run time is recorded and then checked against the information provided in the
database, and any discrepancy indicates an error. This approach is general, but can detect all uncompensated
illegal branches. Any uncompensated error that occurs during the execution of a loop-free interval and manifests
itself as a wrong branch within the loop-free interval is also detectable. The approach can also be used to check
the control flow in the testing phase of program development. The capabilities, limitations, implementation, and
the overhead of using this approach are discussed.

[Yeh77] Abbreviated Preface: Software validation involves analyzing software to determine the extent to which
it performs the logical functions intended by its creator. Techniques in software validation can be classified
broadly into two categories: testing and verification. In this volume, the first five chapters are concerned with
testing techniques and tools, and the remaining chapters are concerned with verification techniques.

In the first chapter, Henderson argues that testing should be a constructive activity and should be planned
during the developmental phase of a program. In the second chapter, Huang gives a tutorial discussion of a
specific technique for testing. In Chapter 3, Goodenough and Gerhart make a first attempt to develop a theory
for software testing. In Chapter 4, Stucki presents a specific set of software tools as an aid for software testing.
In Chapter 5, Ramamoorthy and Ho present a comprehensive survey of automated tools for testing large
software. Operational experiences of several major systems and their limitations are also discussed in this
chapter.

There are two ways of approaching program verification. The static approach considers a program and its
specifications to be given. Mathematical proofs are developed to demonstrate that the logical behavior of a pro-
gram is as specified, viewing this logical behavior as completely characterized by a set of formal assertions. The
constructive approach lays stress on the correct development of a program. The remaining five chapters survey
various techniques in the static approach.

In Chapter 6, London discussed the role of software verification and gives a tutorial introduction to the
"inductive assertion" proof technique. In Chapter 7, Robinson and Levitt extend the inductive assertion tech-
nique to verify hierarchically structured programs. In Chapter 8, Morris and Wegbreit present another proof
technique called subgoal induction. In Chapter 9, Yeh gives yet another proof technique which differs from
inductive assertion and subgoal induction in [providing a] proof of total correctness. In Chapter 10, Katz and
Manna survey existing techniques for proving that programs terminate.

Finally, Ann Marmor-Squires' selected annotated bibliography provides an easy guide to literature in pro-
gram validation.

[Yeh79] Introduction: Maury Halstead had a dream! By treating computer programs as neither art forms nor as
examples of mathematical logic, but instead as basic material which can be investigated with the classical
methods of experimental and theoretical natural science, Maury had dreamed of and worked hard toward a uni-
fied and coherent new field he called Software Science, in which attributes of a computer program, such as
implementation efforts, clarity, structure, error rates, language levels, etc., can be derived from its basic metrics

.68



August 9, 1989

* through quantitative hypotheses.
The special collection of papers on Software Science not only contains some of Maury's final contribu-

tions to the field he started, but its diversity and sophistication is an assurance that Maury's dream will be carried
on.

[Yin78] Abstract.- It has been recognized that success in producing designs that realize reliable software, even
• using Structured Design, is intimately dependent on the experience level of the designer. The gap in this metho-

dology is the absence of easily applied quantitative measures of quality that ease the dependence of reliable sys-
tems on the rare availability of expert designers.

Several metrics have been devised which, when applied to design structure charts, can pinpoint sections
of a design that may cause problems during coding, debugging, integration, and modification. These metrics can
help provide an independent, unbiased evaluation of design quality. These metrics have been validated against

* program error data of two recently completed software projects at Hughes, The results indicate that the metrics
can provide a predictive measure of program errors experienced during program development.

Guidelines for interpreting the design metric values are summarized and a brief description of an interac-
tive structure chart graphics system to simplify metric value calculation is presented.

[Yin80] Abstract. A software design and testability analysis system has been developed at Hughes Aircraft Com-
• pany to measure the software quality in terms of reliability, maintainability, and testability. Based on software

design structure charts, the system indicates the error-prone and difficult-to-test areas of software design by
quantitatively measuring the program complexity and testability. Also the system produces several testing aids
which facilitate integration. The results have been successfully validated against several software projects at
Hughes-Fullerton.

The system is configured for the AMDAHL/470 and is accessible via a HP2648A graphics terminal. It
* allows the designers to interactively create and edit the design, and automatically produces structure charts for

documentation, metrics for quality measurements, and test plans for integration.

[Youn86a] Abstract.- Static concurrency analysis detects anomalous synchronization patterns in concurrent pro-
grams, but may also report spurious errors involving unfeasible execution paths. Integrated applications of static
concurrency analysis and symbolic execution sharpens the results of the former without incurring the full costs of

• the latter applied in isolation. Concurrency analysis acts as a path selection mechanism for symbolic execution,
while symbolic execution acts as a pruning mechanism for concurrency analysis. Methods for combining the
techniques follow naturally from explicit characterization and comparison of the state spaces explored by each,
suggesting a general approach for integrating state-based program analysis techniques in a software development
environment.

* [Youn88a] Abstract: Analyses based on state-space models of execution must omit some details of execution, in
order to fold the infinite space of possible program executions into a sufficiently small space for analysis. These
simplifications are generally justified by a claim that the resulting analysis is conservative with respect to a certain
class of faults, i.e., that the simplification will not cause any faults to be overlooked in the analysis. We formalize
a notion of error-preserving abstractions which captures this claim, give sufficient conditions for verifying this
property in practical cases, and discuss the role of error-preserving abstractions in combining fault detection

* techniques.

[Youn$9a] Abbreviated Preface: The purpose of IDA Paper P-2132, SDS Software Testing and Evaluation: A
Review of the State-of-the-Art in Software Testing and Evaluation With Recommended R&D Tasks, is to identify
the technology required for effective and efficient testing and evaluation of Strategic Defense System (SDS)
software. This document was prepared for the Strategic Defense Initiative Organization (SDIO), and provides

• an overview of current testing and evaluation technology, a mapping of available technology against SDS needs,
and recommendations to close critical gaps in technology.

369



August 9, 1989

(Youz89b] Abbreviated Preface: The purpose of IDA Memorandum M-496, Bibliography of Testing and
Evaluation Reference Material, is to present the reference material acquired in the course of developing IDA
Paper P-2132, SDS Testing and Evaluation: A Review of the State-of-the-Art in Software Testing and Evaluation
With Recommended R&D Tasks. This document was prepared for the Strategic Defense Initiative Organization
(SDIO).

[Youa89c] Abstract-. The conventional classification of software fault detection techniques by their operational
characteristics (static vs. dynamic analysis) is inadequate as a basis for identifying useful relationships between
techniques. A more useful distinction is between which sample the space of possible executions, and techniques
which fold the space. The new distinction provides better insight into the ways different techniques can interact,
and is a necessary basis for considering hybrid fault detection techniques.

(Your76] Abbreviated Preface: In the past few years, the programming industry has been revolutionized by a
number of new philosophies and techniques. One of the most popular of these techniques, structured program-
ming, has led to order-of-magnitude improvements in programmer productivity, program reliability, and program
maintenance costs.

More recently, though, there has been a recognition that perfectly structured GOTO-less code is essen-
tially worthless if the basic design of the program or system is unsound.

Our concern is with the overall architecture of programs and systems. How should a large system be bro-
ken into modules? Which modules? Which ones should be subordinate to which? How do we know when we
have a "good" module and, more important, how do we know when we have a "bad" module? What information
should be passed between modules? Should a module have the opportunity to access data other than that which
it needs to know in order to accomplish its task? How should the modules be "packaged" together into efficient
executable units in a typical computer?

Naturally, the answers to these questions are influenced by the specific details of hardware, operating sys-
tem, and programming language - as well as the designer's interest in such things as efficiency, simplicity, main-
tainability, and reliability. Nevertheless, we argue that questions such as the ones posed above are of a higher
level than the detailed coding questions of "Should I use a GOTO here?" or "How can I write a nested IF state-
ment to accomplish this editing logic?"

[Yu8SaJ Abstract: This paper presents the data and capabilities provided by the Software Metrics Data Collec-
tion (SMDC) system. SMDC is an APL-based system that runs on the UNIX 4.3BSD system at Purdue Univer-
sity. The largest software product in SMDC has more than 1,000,000 lines of code. SMDC also provides a
number of statistical functions and plotting routines that can be used for detailed analysis of existing data. The
data and tools in SMDC are available for use by non-Purdue researchers with some limitations.

[YuSgbJ Abstract: This paper presents the results of analyzing several defect models using data collected from
two large commercial projects. Traditional models typically use either program metrics (i.e., measurements from
software products) or testing time or combinations of these as independent variables. The limitations of such
models have been well-documented. For example, program metrics are difficult to compute for those products
that consist of code modified from previous versions. Another example is that testing time is not available at the
beginning of the testing phase. The models considered in this paper all use the number of defects detected in the
earlier phases of the development process as the independent variable. This number can be used to predict the
number of defects to detected later, even in modified software products. We have found a very strong correlation
between the number of earlier defects and that of later ones. Using this relationship, we constructed a mathemat-
ical model which may be used to estimate the number of defects remaining in software. This defect model may
also be used to guide software developers in evaluating the effectiveness of the software development and testing
processes.

[Zafl0] Abstract: The production of error-free protocols or complex process interactions is essential to reliable
communications. This paper presents techniques for both the detection of errors in protocols and for prevention

370



0

August 9, 1989

* of errors in their design. The methods have been used successfully to detect and correct errors in existing proto-
cols. A technique based on a reachability analysis is described which detects errors in a design. This "perturba-
tion technique" has been implemented and has successfully detected inconsistencies or errors in existing protc-
col designs including both X.21 and X.25. The types of errors handled are state deadlocks, unspecified recep-
tions, nonexecutable interactions, and state ambiguities. These errors are discussed and their effects considered.
An interactive design technique is then described that prevents design errors. The technique is based on a set of

* production rules which guarantee that complete reception capability is provided in the interacting processes.
These rules have been implemented in the form of a tracking algorithm that prevents a designer from creating
unspecified receptions and nonexecutable interactions and monitors for the presence of state deadlocks and
ambiguities.

(ZeiiSlb] Abstract: Many testing methods require the selection of a set of paths over which testing is to be con-
• ducted. This paper presents an analysis of the effectiveness of individual paths for testing predicates in linearly

domained programs. A measure is derived for the marginal advantage of testing another path after several paths
have already been tested. This measure is used to show that any predicate in such programs may be sufficiently
tested using at most m+n+l paths, where m is the number of input values and n is the number of program vari-
ables.

• [ZeilS3a] Abstract: Many testing methods require the selection of a set of paths on which tests are to be con-
ducted. Errors in arithmetic expressions within program statements can be represented as perturbing functions
added to the correct expression. It is then possible to derive the set of errors in a chosen functional class which
cannot possibly be detected using a given test path. For example, test paths which pass through an assignment
statement "X:= f(Y)" are incapable of revealing if the expression "X -f(Y" has been added to later statements.
In general, there are an infinite number of such undetectable error perturbations for any test path. However,

* when the chosen functional class of error expressions is a vector space, a finite characterization of all undetect-
able expressions can be found for one test path, or for combined testing along several paths. An analysis of the
undetected perturbations for sequential programs operating on integers and real numbers is presented which per-
mits the detection of multinomial error terms. The reduction of the space of (potential) undetected errors is pro-
posed as a criterion for test path selection.

0 [ZeiiS4] Abstract: The use of algebraic techniques in defining a neighborhood of functions is particularly suited
to testing for computation errors. Two possible approaches are Howden's algebraic testing method and perturba-
tion testing, which in this paper is generalized to permit analysis of individual test points rather than entire paths.
These approaches are shown to be mathematically equivalent when applied to a program's black-box output. Per-
turbation testing, however, offers more flexibility in the choice of potential errors to be investigated. A significant
alternative offered by perturbation testing is the ability to work in the static domain, choosing test data to elim-

• inate possible error terms in specific assignment and output statements.

[Zel6] Abstract: This paper introduces a new testing strategy, EQUATE testing. EQUATE represents an
attempt to merge the strengths of perturbation testing and mutation testing in order to provide a testing strategy
that offers support for data and functional abstraction, that detects a wide variety of simple faults, and that also
provides good coverage of combinations of those simple faults. EQUATE selects a number of test locations

• throughout the program and chooses a set of expressions derived from the abstract syntax tree of the modules
being tested. Test data is required that distinguishes each pair of these expressions from one another at every test
location.

[Zei$7] Abstract: The philosophy of composing new software tools from previously created tool fragments can
facilitate the development software systems. An examination is made of the extension of this philosophy to the

0 design of program interpreters, demonstrating how the separation of interpretation into a core algorithm, value-
kind definitions, and computation model allows the capture of conventional execution models, symbolic execu-
tion models, dynamic dataflow tracking, and other useful forms of program interpretation. An interpretation

371



August 9, 1989

system based on this separation, called ARIES, is currently under development.

[Zel a Abstract: A given path selection criterion is more selective than another such criterion with respect to
some testing goal if it never requires more, and sometimes requires fewer, test paths to achieve that goal. This
paper presents canonical forms of control-flow and data-flow path selection criteria and demonstrates that, for
some simple testing goals, the data-flow criteria as a general class are more selective than the control-flow cri-
teria. It is shown, however, that this result does not hold for general testing goals, a limitation that appears to
stem directly from the practice of defining data-flow criteria upon the computation history contributing to a sin-
gle result.

[Zeil88b] Abstract: Most testing methods do not fare well with software whose modules contain data and opera-
tions at widely varying levels of abstraction. With the evolution of new design techniques and new languages that
encourage the use of more abstract data types, it is becoming increasingly important that testing methods begin
to deal with abstraction in a reasonable and consistent manner. The EQUATE testing strategy offers strong sup-
port for consistent manner. The EQUATE selects a number of test locations throughout the program and
chooses a set of expressions derived from the abstract syntax tree of the module being tested. Test data is
required that distinguishes these expressions from one another at every test location. The time complexity of
EQUATE is at worst O(L ) and the space complexity O(LP3) where LP is the length of the program under test.

[ZeilSSc] Abstract: Despite the important role played by the notion of abstraction in modem methods of
software design and implementation, relatively little consideration has been paid to the interaction between
abstraction and testing criteria, especially for automatable criteria. A survey of relevant syntactic, semantic, and
methodological problems is presented, and a brief overview is presented of research by the author aimed at
developing testing criteria free of those problems.

[Zeil89] Abstract: Perturbation testing is an approach to software testing which focuses on faults within arith-
metic expressions appearing throughout a program. In this paper perturbation testing is expanded to permit
analysis of individual test points rather than entire paths, and to concentrate on domain errors. Faults are
modeled as perturbing functions drawn from a vector space of potential faults and added to the correct form of
an arithmetic expression. Sensitivity measures are derived which limit the possible size of those faults that would
go undetected after the execution of a given test set. These measures open up an interesting new view of testing,
in which attempts are made to reduce the volume of possible faults which, were they present in the program
being tested, would have escaped detection on all tests performed so far. The combination of ttiese new meas-
ures with standard optimization techniques yields a new test data generation method, called arithmetic fault
detection.

[Zelk78] Abstract: Software engineering refers to the process of creating software systems. It applies loosely to
techniques which reduce high software cost and complexity while increasing reliability and modifiability. This
paper outlines the procedures used in the development of computer software, emphasizing large-scale softv%.re
development, and pinpointing areas where problems exist and solutions have been proposed. Solutions from
both the management and the programmer points of view are then given for many of these problem areas.

[ZoInSl] Abstract: Program complexity is a topic often discussed in the literature. Research is ongoing in verify-
ing existing complexity measures. There is also a continuing effort to produce and validate new approaches to a
complexity measure which incorporate ideas from a variety of areas.

Too often, however, approaches to complexity measurement center on a particular aspect of a program,
e.g., structures, without incorporating other relevant program characteristics. The question to be answered,
then, is, What aspects of a program contribute to its complexity?

This paper presents a first step in answering this question. Preliminary results are presented from a Delphi
Survey on program complexity. The survey was sent to a cross-section of programmers, managers and software
experts. Respondents rated a large number of characteristics as to their effect on program complexity. The paper

372



August 9, 1989

* summarizes the results and includes preliminary analyses.

[Zweb79] Abstract: During the past few years, several investigators have noted definite patterns in the distribu-
tion of operators in computer programs. Their proposed models have provided explanations for other observed
software phenomena and have suggested possible relationships between programming languages and natural
languages. However, these models contain notable deficiencies.

* This study concentrates on a set of production programs written in PL/I. Using some basic relationships
from software science, and a previously published algorithm generation technique, a model for computing opera-
tor frequencies is constructed which is based only on the number of distinct operators in the program and the
total number of operator occurrences. The model provides a considerable statistical improvement over existing
models for the PL/I programs studied.

* [ZwebS9] Abstract: Weyuker has recently proposed a set of properties which should be satisfied by any reason-
able criterion used to claim that a computer program has been adequately tested. She called these properties
"axioms." She also evaluated several well-known testing strategies with respect to these properties, and con-
cluded that some of the commonly used strategies failed to satisfy several of the properties.

We question both the fundamental nature of the properties and the precision with which they are
presented, and illustrate how a number of ideas in Weyuker's paper can be simplified and clarified through

• greater precision and a more consistent set of definitions. We also reanalyze the testing strategies after account-
ing for these inconsistencies. The strategies tend to fare much better as a result of this reanalysis.

[vanl68] Abstract: The designer of a computing system should adopt explicit criteria for accepting or rejecting
proposed system features. Three possible criteria of this kind are input recordability, input specifiability, and
asynchronous reproducibility of output. These criteria imply that a user can, if he desires, either know or control

• all the influences affecting the content and extent of his computer's output. To define the scope of the criteria,
the notion of an abstract machine of a programming language and the notion of a virtual computer are explained.
Examples of applications of the criteria concern the reading of a time-of-day clock, the synchronization of paral-
lel processes, protection ii. multiprogrammed systems, and the assignment of capability indexes.

(vonlS5] Ada packages are the basic building blocks of Ada programs. The separation in Ada into package visi-
* ble part and body is intended to support a programming style that employs modularization, encapsulation and

information hiding. Unfortunately, the visible part provides only the syntactic interface to the package; it does
not convey any information about the meaning of, e.g., visible subprograms. Instead, when the user of an Ada
package wants to understand what services it provides he needs to study the package body. Thus, the purpose of
the separation into visible part and body is somewhat subverted if the body is the only place where semantic
information can be found.

0 373



August 9, 1989

374



* Distribution List for IDA Memorandum Report M-496

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

• Lt Col Chuck W. Lillie 2
SDIO/ENA
Room 1E149, The Pentagon
Washington, D.C. 20301-7100

Other
* Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

Mr. Karl H. Shingler
Department of the Air Force

* Software Engineering Institute
Joint Program Office (ESD)
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Ms. Christine Youngblut 2
* 17021 Sioux Ln.

Gaithersburg, MD 20878

CSED Review Panel

* Dr. Dan Alpert, Director
Program in Science, Technology & Society
University of Illinois
Room 201
912-1/2 West Illinois Stree~t

* Urbana, Illinois 61801

Dr. Barry W. Boehm
DARPA
1400 Wilson Blvd.
Arlington, VA 22209-2308

* Dr. Ruth Davis
The Pyrnatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

D

Distribution List-I



NAME AND ADDRESS NUMBER OF COPIES

Dr. C.E. Hutchinson, Dean 1

Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano 1

Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay
302 Mill St.
Occoquan, VA 22125

Dr. John M. Palms, President 1

Georgia State University
University Plaza
Atlanta, GA 30303

Mr. Oliver Selfridge 1

45 Percy Road
Lexington, MA 02173

Mr. Keith Uncapher 1

University of Southern California
Olin Hall
330A University Park
Los Angeles, CA 90089-1454

IDA

General W.Y. Smith, HQ 1
Mr. Philip L. Major, HQ 1

Dr. Robert E. Roberts, HQ 1

Dr. Cy R. Adoin, CSED 1
Mr. Bill R. Brykczynski, CSED 5
Ms. Anne Douville, CSED 1

Dr. Dennis W. Fife, CSED 1

Dr. John F. Kramer, CSED 1

Dr. Cathy Jo Linn, CSED 1

Mr. Terry Mayfield, CSED 1

Ms. Katydean Price, CSED 2

Dr. Richard Wexeiblat, CSED I

Distribution List-2



* NAME AND ADDRESS NUMBER OF COPIES

IDA Control & Distribution Vault 3

0

0

EN

Distribution List-3


